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Recap- Optimizers

Gradient Descent
o Vanilla, costly, but for best convergence rate

Stochastic Gradient Descent
o  Simple, lightweight

Mini-batch SGD
o  balanced between SGD and GD
o  1st choice for small, simple models

SGD w. Momentum
o  Faster, capable to jump out local minimum

AdaGrad
RMSProp

Adam
o Just use Adam if you don’t know what to use
in deep learning
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Agenda

e Backpropagation
e Optimizers

O O O O O

(@)

Gradient Descent
Stochastic Gradient Descent
SGD w. Momentum
AdaGrad

RMSProp

Adam

e Learning rate scheduling
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Agenda

Motivation behind regularization
Regularization in deep learning
Data Augmentation
Normalization methods

" BIAS, VARIANCE TRADOFF,
" WASITALLAA L
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Are all Optimizers equivalent somehow?

No!

There are many minimizers of the training loss
The optimizer determines which minimizer you converge to
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Why do we care?

e Regularization and data
augmentation are really effective!

e Can be worth millions of additional
training images

90% 1

85% 1

80% A

75%

70% -

65% 1

60%

ImageNet top-1 accuracy after fine-tuning

T

m—— ViT-B/32
== ViT-B/16
= ViT-L/16

128M  1.28M+AugReg  13M  13M+AugReg  300M
Pre-training dataset size

“How to train your ViT? Data, Augmentation,and Regularization in Vision Transformers”, by Steiner et al. 2022
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= Training error
e Test error

0.4 1

Regime 2
0.3 1 (more data) » . . .‘ .
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Number of training instances

Remedies against overfitting:

Remedies against underfitting:

Collecting more training data e Increase model capacity

o  Add more layers / hidden nodes

o  More expressive architecture
e  Optimize for longer
e  More aggressive optimization

o  Largerlearning rate (e.g. use Batchnorm)
e  Reduce regularization

Use a simpler/smaller model
Early stopping
Add regularization

o  L2/L1regularization, weight decay
e Data augmentation




Cornell Bowers CiIS

Early Stopping
A
Error
Validation
Training
: 5
early stopping Epochs

e Pickthe training checkpoint with the strongest validation performance
e Easytoimplement, should use by default

https://wandb.ai/ayush-thakur/huggingface/reports/Examples-of-Early-Stopping-in-HuggingFace-Transformers--VmlldzoOMzE2MTM
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What is Regularization?

Regularization refers to techniques used to prevent machine learning models from
overfitting in order to minimize the loss function (Regime 1).

Models that overfit can have large generalization gaps.

= Training error
~—— Test error

Regime 2
(more data)

acceptable error €

0.1+

0.0

0.0 0.2 0.4 0.6 0.8 1.0
Number of training instances

Comparing Error and Number of Training Instances
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Regularizers

Regularizers are used to quantify the complexity of a model.

Empirical Risk Minimization:

= argmmﬁ Zf W, X, ;)

Regularized Empirical Risk Minimization:

w = argmin L(W) + A - r(w)

W

where r(w) is some measure of model complexity that we want to control.
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Optimization problem: Gradient update:

[a,rgmin L(w,D) } [wtﬂ =wy — aVL(wy, D) }

+L.2: [argmin L(w,D) + g||w||g } [Wt“ =w; — aVL(wy, D) — oz)\Wt}
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Optimization problem: Gradient update:
{argmin L(w,D) } [wtﬂ =wy — aVL(wy, D) }
W
4 A )\
+L2: | argmin L(w, D) + §||w||g [Wt_|_1 =w; — aVL(wy, D) — a)\wt}
\ Ll Y,

-

+L1: |argmin L(w, D) + A\|w| [
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Geometric Interpretation

Wia Wi

[argr{’lvin L(w,D) + %”W”% } [argrgvin L(w,D) + )\|Wﬂ
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Connection Between Weight Decay and L2 Regularization

Almost the same thing, but subtle differences.

- L2 regularization: Optimizer treats regularizer just like the loss
- Weight Decay: Regularizer is independent of optimizer’s adaptive scaling

Algorithm 2  Adam with L regularization and Adam with decoupled weight decay (AdamW)

0 =

10:

12:

13:
14:

O 0 5T Ogv U

given o = 0.001, 31 = 0.9,3 = 0.999,e = 1078, A € R

initialize time step ¢ <— 0, parameter vector 8;—¢ € IR", first moment vector m:—o < 0, second moment
vector vi—o < 0, schedule multiplier n:=o € R

repeat

t—t+1

V f:(60¢—1) < SelectBatch(0;—1) > select batch and return the corresponding gradient
g + Vfi(0:—1) [$A0—1

my < fimi—1 + (1 — B1)g, > here and below all operations are element-wise
vi < Bavi_1 + (1 — B2)g?

fiy < my /(1 — BY) > f31 is taken to the power of ¢
Py < ve/(1— BE) > B2 is taken to the power of ¢
1t < SetScheduleMultiplier(¢) > can be fixed, decay, or also be used for warm restarts

0+ 61— (a'ht/(\/f’_t-i- €) +A0:1 )
until stopping criterion is met
return optimized parameters 6;
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Adam w/ L2 Regularization vs Adam w/ Weight Decay (AdamW)

e Weight decay is more effective than L2 regularization when using Adam

T

Adam and AdamW with LR=0.001 and different weight decays Adgm and AdamW with LR=0.001 and different weight decays
10 : : : ; s ; ; i T T T T

Test error (%)
A o
[6)} (6] (&)}

N

Training loss (cross-entropy)

3.5¢F
—— Adam
10 —— AdamW
1 1 f 1 1 1 1 1 o) 3 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 0 200 400 600 800 1000 1200 1400 1600 1800

Epochs Epochs
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Adam w/ L2 Regularization vs Adam w/ Weight Decay (AdamW)

e Weight decay is more effective than L2 regularization when using Adam

6.5 T 5 T
—5— Adam O Adam
6 —=— AdamW L AdamW
55+ 2 . 45r
= 9
5 5 g
5 5 4l
7 45 2
= s
4 L
3.5¢
> B\S\E/E\B/Z/E _
3 7 I—6 I-s ‘4 5
10 10 10 10 10 3

Weight decay for Adam

10 10° 10 10"
Normalized weight decay times 10 for Adamw

Training loss (cross-entropy)
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Optimizers Recap

Gradient Descent
o Vanilla, costly, but for best convergence rate

Stochastic Gradient Descent
o  Simple, lightweight

Mini-batch SGD
o  balanced between SGD and GD
o  1st choice for small, simple models

SGD w. Momentum
o  Faster, capable to jump out local minimum

AdaGrad
RMSProp

Adam
o Just use Adam if you don’t know what to use
in deep learning
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(Updated) Optimizers Recap

e Gradient Descent
o Vanilla, costly, but for best convergence rate

e Stochastic Gradient Descent
o  Simple, lightweight

e Mini-batch SGD
o  balanced between SGD and GD
o  1st choice for small, simple models

e S5SGD w. Momentum
o  Faster, capable to jump out local minimum

AdaGrad
RMSProp
Adam

AdamWw
o Just use AdamW if you don’t know what to
use in deep learning
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Data Augmentation
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Discuss: Image Classification

How can we make a model for image classification more robust?

Can we augment the training data without annotating more images?

Horizontal Flip

https://imgaug.readthedocs.io/en/latest/index.html
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Data Augmentation!

e Use ourdomain knowledge to transform the image in ways that preserve the class
label

Horizontal Flip

https://imgaug.readthedocs.io/en/latest/index.html
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Data Augmentations

Horizontal flips

Rotate image
Zoom/crop image
Brighten/darken image
Shift colors

\

ﬂﬂﬂ!ﬂﬂga

AL - v 0
I' S
. y
Mibae | g

https://imgaug.readthedocs.io/en/latest/index.html
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Discuss: Text Classification

How can we make a model for sentiment classification more robust?

Can we augment the training data without annotating more examples?

Positive Movie Review:
Still, this flick is fun, and host to some truly excellent sequences.

Negative Movie Review:
begins with promise , but runs aground after being snared in its own tangled plot .
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Data Augmentation for Text

e Much harder for text!
o  How to change the text without breaking the meaning?
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DropOut
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Dropout

In each forward pass, randomly set some neurons to zero.

The probability of keeping a neuron is a hyperparameter; p=0.5 is common.

Input Layer

[Srivastava et al. 2014]

Dropout Layer

2l
X
X
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Deep Net with Dropout Layer
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Implementing Dropout

Input Layer Input Layer

el
O

\
XXXY

O 2\

%

o

»
s

9.
@
L d
L

Standard deep net with two hidden layers Deep net produced by applying dropout.
Crossed units have been dropped

[Srivastava et al. 2014]
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Why is Dropout a good idea?

Dropout forces the network to have a redundant representation, which prevents
co-adaptation of features.

——is furry
——hasa ta'ﬁ&
____—" catscore

has orange fur

has claws
[Srivastava et al. 2014]
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Why is Dropout a good idea?

e Anotherinterpretation: Dropout trains a large
ensemble of models with shared weights

e Each dropout mask corresponds to a different
“model” within the ensemble.

e Afully connected layer with 4096 units has

2409%~101233 possible masks!
o  Only ~10% atoms in the universe

http://cs231n.stanford.edu/slides/2018/cs231n_2018 lectureQ7.pdf
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Dropout During Test Time

Use all of the neurons in the network

Does this introduce any problems?

Dropout Layer Dropout Layer

K

P

Training Time Test Time

Input Layer

o000
000
¢0 060
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Dropout During Test Time

Need to re-scale activations so they are the same (in expectation) during training and
testing

Consider a single neuron.

At test time we have: E[a] = W1ZT + w2y

During training we have: g[4] :%(wlx + way) + i(wlx + 0y)

I 1

At test time, multiply

1
by dropout probability =§(w1x + way)

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf
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Effectiveness of Dropout

e Improves generalization of neural
nets when training with limited data

2.5H

2.0

Classification Error %

1.5F

| Witho@t dropoilt

UL A N AN A A e
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

! 1 i i
200000 400000 600000 800000 1000000

Number of weight updates

Figure 4: Test error for different architectures
with and without dropout. The net-
works have 2 to 4 hidden layers each

with 1024 to 2048 units.

“Dropout: A Simple Way to Prevent Neural Networks

from Overfitting” by Srivastava et al., 2014
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Batch Normalization
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Why should we standardize data?

e Standardization ensures all features have a similar scale
o  Beneficial for optimization
e We do not know a priori which features will be relevant and we do not want to penalize or
upweight features

e Example: Predict house prices

5 Ly — Mg
7
2
\/ 0%+ € N
Z1 Bedrooms:1to 5 i T X9

T2 Square footage: 0 to 2000 sq feet

=

L
-V

N2

Efficient Backprop [LeCun et al. 1998] =

—
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Batch Normalization

[loffe and Szegedy 2015]
Batch Normalization normalizes the

intermediate features in neural
networks.

We standardize the inputs to each
layer by normalizing the output of
the prior layer

Input Layer

Input: Values of x over a mini-batch: B = {x1. ., };
Parameters to be learned: v, 3

Output: {y; = BN, s(z;)}

1 m
UB — — Z 5 // mini-batch mean
m
i=1
og = i(m — pg)? // mini-batch variance
° m i=1 7’
T; Ti 1B // normalize
V0% +e€
Y; — YT; + B = BN, g(z;) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.
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BatchNorm: Inference Behavior

e Model inference should be deterministic
o Normalization depends on the elements in the batch

e Solution: Use running average statistics calculated during training as:

,uinf = AMtinf + (1 — A s
1nf )‘alnf + (1 o )‘)0-123
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Benefits of batch normalization

“Understanding Batch Normalization” by Bjorck et al. 2018

Improves conditioning of the network and enables using a larger learning rate
o  Benefit of batch norm disappears at small learning rates!
o Large learning rate improves generalization
100
90 -
95 1
85 |
90 4
o > 80 1
© 85 ©
> é 751
E 4 70,
g & 2 s
= ol —— Ir=0.003 (with BN) —— 1r=0.003 (with BN)
—— Ir=0.1 (with BN) 60 - —— Ir=0.1 (with BN)
6. —— Ir=0.0001 (with BN) —— 1r=0.0001 (with BN)
—— Ir=0.0001 (w/o BN) 55 —— 1r=0.0001 (w/o BN)
60 4, : : : : , L , : , , ,
0 20 40 60 80 100 0 20 40 60 80 100
% of training % of training
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Why does a large learning rate help?

e Noise of the gradient estimate scales with
the learning rate (Bjorck et al. 2018)

Learning rate drop.
\

O
o

e Add Gaussian noise to the activations of

neural net during training
o Improves performance when using low learni
rates (Li et al., 2019)

(o]
o

~
o

m—— |arge Ir
m— small Ir
= small Ir, noise

Clean Validation Accuracy
B (o)}
o o

w
o
- BN S N S . -

w
o

0 10 20 30 40 50 60
Epoch

“Towards Explaining the Regularization Effect of Initial Large
Learning Rate in Training Neural Networks” by Li et al., 2019
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Convex vs. Non-Convex Optimization

e Convex optimization: Only one global minima
o  Gradient descent is guaranteed to find it
o  Optimization is all about getting there quickly
e Non-Convex optimization: Many different minima (and saddle points)

o  No theoretical guarantees!
o Different optimization algorithms will find different minima
o Flatter minima lead to better generalization

Training Function

.
! Testing Function
1

: f(z)

“Visualizing the LOSS Landscape Of Neural Figure 1: A Conceptual Sketch of Flat and Sharp Minima. The Y-axis indicates value of the loss
Nets” by Li et al., 2017 function and the X-axis the variables (parameters)

Flat Minimum Sharp Minimum
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Algorithmic Regularization

e Traditional regularization adds explicit penalties (e.g., L1/L2 norm) to the loss

e Algorithmic regularization results from the optimization process itself
o Verydifferent from convex optimization!

Algorithmic Regularization:

w = argmin L(W) + A - 74 (W)

A%

where r (W) is some measure of model complexity implicitly controlled by the
learning algorithm, A
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Deep Double Descent

e Neural networks can exhibit a double descent curve in practice

under-parameterized

under-fitting over-fitting over-parameterized

. Test risk Test risk
"% % “classical” “modern”
E Q?: regime interpolating regime
N : .
~ o Training risk ~ Training risk:
sweet spot\:. = S~ . _interpolation threshold
Capacity of H Capacity of H

() (b)

“Reconciling modern machine learning practice and the bias-variance trade-of”, by Beklin et al. (2019)
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Deep Double Descent

e Neural networks can exhibit a double descent curve in practice

®
a _8/a
l.. o® under-parameterized A over-parameterized
@
D PS .
s /age Test ris!
[ ] 5
“classical” “modern”

regime

interpolating regim

ning risk;

interpolation threshold

-

= e— - — — — — — — — — — — —

Capamty of H

rarning practice and the bias-variance trade-of”, by Beklin et al. (2019)

“Reconcilin




Cornell Bowers CiIS

Double descent is not specific to deep learning

35 o
\ —— Test Risk
301 | . 22
Train Risk =
2. . . N c
2 —— Effective Dimensionality 0.2
20 5
- 88 E
& s a
[}
86.2
10 8
i
0.5 m
0.0 82

10 20 40 50 60

V?/oidth
(f) ResNet-18

[Andrew G. Wilson 2025]
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S,
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(g) Linear Random Features
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Regularization in the Interpolation Regime

under-parameterized /\ over-parameterized

Test risk

“classical”
regime

e Many solutions that perfectly fit the data
e Increasing the capacity of the hypothesis E
class means we can find a “simpler” Lt
Training risk:

solution T s e e S
Capacity of H

(b)

“modern”
interpolating regime

Regularization in the interpolation regime (L(h) ~ 0):

h =largmin L(h) + A - r(h)|~| argmin r(h)
heH he{h:L(h)~0}
Empirical risk minimization Interpolation Regime
where r(h) is some measure of complexity

“Reconciling modern machine learning practice and the bias-variance trade-of”, by Beklin et al. (2019)
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Deep Double Descent

e In-depth empirical study observed double descent with modern architectures
(ResNet, Transformers) and tasks (image classification, machine translation)

Classical Regime: Modern Regime:
Bias-Variance Tradeoff Larger Model is Better
A
S 1
0.5 ; Critical — Test 0.7 ____ Optimal Early
o) : Regime -~ Train » Stopping
—
0 0.4 & . 0.6 10
= - £ =
© 0.3 \ : w 0.5 S
~ \ 1 Interpolation % 100 8
0.2 ! Threshold V0.4 w
g7 \ 1 =
'0_) 0.1 \: 0.3 1000
I\\\
20 1 10 20 30 40 50 60 e 0 10 20 30 40 50 60
ResNet18 width parameter ResNet18 Width Parameter

“‘Deep Double Descent: Where Bigger Models and More Data Hurt”, by Nakkiran et al., 2019
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First Homework!

e We are releasing the first homework assignment
o Covers optimization (this week) and CNNs (next week)

e Two components:
o  Written problems - Released today!
o Codingproject - Released next week.
m  Use Google Colab

e Due: Both due at the same time two weeks from now.
e Workonitin groups of two

e Startearly!
o  Cando most of the written assignment

e Ask questionson Ed
e Office hours posted on the website
e Will be submitted on Gradescope! [Regrade request optional]




