Cornell Bowers CIS
College of Computing and Informaﬁtm Sc| o

Cornell Bowers C1IS

Agenda

e Backpropagation

e Optimizers

Gradient Descent
Stochastic Gradient Descent
SGD w. Momentum
AdaGrad

RMSProp

Adam

e Learning rate scheduling

o O O O O O

Cornell Bowers C1S
How to learn MLP weights?

Gradient descent through backpropagation!

Cornell Bowers CiIS
Calculus Review: The Chain Rule

Lagrange’s Notation: If h(z) = f(g(x)), then A’ = f'(g(x))g'(x)
Leibniz’s Notation: If z= h(y), A= g(ay), then g—; - g_;g_g

Example: If 2 = In(y),y = x?2, then

dz dzdy
E- &k
- ()(20) = (5)(29)

2

i

Cornell Bowers C1IS
Multivariate Chain Rule

If f(u)is z = f(v(u),w(u)), then
of _ O0vdz Ow oz

ou (8u ov g ou 8w)

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/

Cornell Bowers C1S
Backpropagation- An Example

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/

Cornell Bowers C1S
Backpropagation- An Example

Forward

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/

Cornell Bowers CiIS

0z dv 0z Ow 0z
du

Backpropagation— AN Example = du v 4 du ow

750 s

y 2 =
Forward v %2 _10-3-% s
(4]

Ju 0v

A

Backward

<50 . J—
ow

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/

Cornell Bowers CiIS

Backpropagation- Key Idea

If you know
0z 0z

u I (%)
\
N
Y
s\ V3
Ny ,\\

0z
You can compute =

N)
\ ¢
\ Y
N
-
! 4
I _ 27
,/
dz _ (0dv, az+6v2 az+6v3 0z
dou \du Odv, Ou 0dv, Ou OJvs

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/

Cornell Bowers C1S Algorithm Forward Pass through MLP

1: Input: input x, weight matrices Wl ... WIL bias vectors blll, ... blZ
Forwa rd PaSS 2. zl% = x > Initialize input
_MLP 3: for/=1to L do

4: alll = Wllzl=1] 4 pli] > Linear transformation

5 zlll = gl (all) > Nonlinear activation

6: end for

7. Output: z!

alll = witlzll a? — wigll

Cornell Bowers C1IS

Backprop

Loss = L(z,y)

zlll = o(alt)) 2 = 5(al?) z8 = o(all)

Cornell Bowers C1IS

Loss = L(z%,y)
Backprop

_OL
0zl3]*

We can directly compute

zlll = o(alt)) 2 = 5(al?) z8 = o(all)

Cornell Bowers C1S Loss = L(z%,y)

Backpro
3] oL _ oL 9z oL
For propagation to 0% = 13aBT = 520 5al Oz[3]
I ; /
next layer _ aazg] o 53] 2l — widl,2
| oL _ oL 9al 3
For weight updates: OWI[B] — Hal3l gWIB]
= 131 (z2HT

z8 = o(al®)

Cornell Bowers C1IS

Backprop T
8] — 8L

Cornell Bowers CiIS

o OL _ OL 02 Loss = L(z,y)
a Z a
oL
all 11400 al? _$,[2]zm Bl = 25 5

o

— a(a[z]) 73 — a(a[3])
oL oL Odal?l

9zl — Bal2l ozl — (WEHT 502l oL oC Dald

8z2 — 9all 5z

= (WBH)T Bl

Algorithm Backward Pass through MLP (Detailed)

Cornell Bowers C1S 1: Input: {zl,... 21}, {al'l,.. . alll}, loss gradient ;2f;
. Zz[L] ’
Backpropagation 2 OM = aafiy = ayftn S = aafiy © o' (2 > Exror term
3: for [= L to o
= ST = 38‘;;”[]1] = (2! -1HT > Gradient of weights
oL oL 8a[3] 5: a{ifm = 3%] Zf,[u]] =4l > Gradient of biases
_— alll
OW [3] dal3] OW 3] R o (W[[E)I]Tém
3 2\T n 0l = oy = attn ey = (WH)Tel) @ ol = (al =)
:5[](Z[]) 8: end for
9: Output: 6“%:”, 81;9[£L]

s _ O _ oL 0a” £

~ 9a2 ~ 9z 9al?
3] . oL 8£
a[l] = wliiglol a =gw- -zl (5[I = Hal3l Oz!3]

L(zP,y)

oL

We can directly compute 57!

oc oL 9aP
8z2l — 9aldl §zl2]

= (WBHT sl

Cornell Bowers CiIS

What is Optimization?

—— Gradient descent

Min = 1.9500000000000002

In deep learning, optimization methods attempt to find
model weights that minimize the loss function.

Cornell Bowers CiIS
Loss function

Empirical Risk:

t :attimestep ¢t

W¢. Model weights (parameters) at time ¢
X;: The i-th input training data

L : the Loss function (optimization target)
¢ : per-sample loss

4 \
Ay ““\\\\\t‘\\
2 ‘:‘0":“\\\\\\\\.‘.’\:;;1’};,’,\,0.““
2oy

417 '

7

20 1Y%
LN ARBIRES
"‘&?“"%‘v",, ”““{&\\\\\‘\;‘w

Local Minima .

Global Minima

Saddle Point

Cornell Bowers CiIS

Gradient Descent (GD)

—— Gradient descent

A\ | 3.5

T 2.5
- 2.0
1.5
- 1.0
T 05
- 0.0

Min = 1.9500000000000002

Wil — Wy — @Vﬁ(wt)

«v: the learning rate

VL(w,): the gradient of Loss w.r.t. w;

Cornell Bowers C1IS

What are some potential problems with gradient descent?

Cornell Bowers Ci1S
Convexity

e Afunctionon agraphisconvexifa
line segment drawn through any two
points on the line of the function,
then it never lies below the curved
line segment

e Convexity implies that every local
minimum is global minimum.

e Neural networks are not convex!

Not convex

Convex

Cornell Bowers CiIS

Challenges in Non-Convex Optimization

\

= 72 local minimum

global mini

-1 0

X

Local Minima vs. Global Minima

\

saddle point

Saddle Points

f(x)

1.0 1
0.5 1+
0.0
—-0.5 -

-1.0 i

vanishing gradie

Vanishing gradient

Cornell Bowers C1IS

Gradient Descent (GD)
1 mn
L(wi) = —) Jl(wexi)
7=
VL(w:) = %ZVK(Wt,xi)
=1

w1 = wy — aVL(wy)

Full gradient: O(n)time => Too expensive!
e Statistically, why don’t we use 1 or a few samples from the training dataset to
approximate the full gradient?

Cornell Bowers CiIS

Gradient Descent (GD)

Wil = Wi — QV£(Wt)

Cornell Bowers C1IS

Stochastic Gradient Descent (SGD)
Wit = Wi — QV£(Wt)
Select 1 example randomly each time

Wi = Wi — onﬁ(wt, Xz)

Per-sample gradient is equiva/ent to full gradient in expectation!

[Vﬁ Wt,XL = va Wt,XL V[:(Wt)

Cornell Bowers CiIS

Stochastic Gradient Descent (SGD)
Wi = wy — aVL(wy)
Select 1 example randomly each time

Wil = Wy — &Vﬁ(wt, X@)

Trade off convergence!

0- M
Per-sample gradients not necessarily wad
points to the local minimum, introducing a

AN

noise ball... I

Cornell Bowers CiIS

Minibatch SGD
Wil = Wi — (IVE(Wt)

Select 1 example randomly each time

Wi Wi — &Vﬁ(wt, X@)

Select a batch By of examples
randomly each time, with batch size b

1
Wit = Wy — O E EZB Vf(Wt,Xz')

Cornell Bowers CiIS

Draw the gradients:

e Smaller learning rate
e Larger learning rate

——

Local Minimum

Cornell Bowers C1IS

SGD with Momentum (Polyak, 1964)

Compute an Exponentially Weighted Moving Average (EWMA) of the gradients
as momentum and use that to update the weight instead.

Cornell Bowers C1IS

SGD with Momentum (Polyak, 1964)

Compute an Exponentially Weighted Moving Average
(EWMA) of the gradients as momentum and use that to
update the weight instead.

SGD Update Rule Mg = pIny — @VZ(WtS Xz’)

Wi = Wy — aVE(wy, X;) Wil = Wi + My

where p € [0, 1] is the momentum coefficient.

Cornell Bowers CiIS

SGD with Momentum (Polyak, 1964)

Compute an Exponentially Weighted Moving Average
(EWMA) of the gradients as momentum and use that to

update the weight instead.

/u-m, ______________

my = pmy — aVI(wy; x;)

Wip] = Wi + 1My g

where p € [0, 1] is the momentum coefficient.

Cornell Bowers CiIS

SGD with Momentum

Compute an Exponentially Weighted Moving Average
(EWMA) of the gradients as momentum and use that to
update the weight instead.

g: = VI(wy; x;)
mgyq = pmy — gy
Wit1 = Wy + Iy — 08y
= wy + p(pmg 1 — agi1) — g
= w; + p(p(pmi—2 — agr—2) — agi—1) — age

=Wy — g — pag_1 — [1Pag_o — Poag_3 — ...

t
i
=W — E M &t—i
i=0

Cornell Bowers C1IS

Quick Recap

Gradient Descent

Wifl = Wy — Q- ZVK Wi, X;)
Stochastic Gradient Descent

Wil = Wy — (ng(Wt, Xz)
Minibatch SGD

1
Wit = Wy — (e E Z VE(Wqu')
1€B;
SGD w. Momentum

M1 = pumy — aVI(wy; ;)

Wi41 = We + My

Cornell Bowers CiIS

Importance of Learning Rate

SGD (learning_rate=0.01)

SGD (learning_rate=0.1)

100 100
80 4 step: 0: (-6.63, 43.953) 801 step: 0: (-6.63, 43.953)
60 60
>
40 40
20 A 201
0+ T T T T T T T 0+ T T T 7 T T T
-10.0 7 £45 -5.0 =25 0.0 2.5 5.0 7.5 10.0 -10.0 =15 -5.0 =25 0.0 2:5: 5.0 7.5 10.0
X gbhat.com s
SGD(learning_rate=0.95) SGD(learing_rate=1.01)
100 100
80 4 step: 0: (-6.63, 43.953) 80 1 step: 0: (-6.63, 43.953)
60 60 1
>
40 1 40
20 204
o) T T T T T T T 0— T T T T T T T
-10.0 —7.5 -5.0 =2.5 0.0 2.5 5.0 75 10.0 -10.0 —7:5 -5.0 =25 0.0 2.5 5.0 7.5 10.0
X X

Cornell Bowers CIS

Another example
a, =0.015and o, = 0.05

50 50[.,
40 a0 I,
30 fi//lif 30
20} | 20-“
10} 10| |

> 0 > of
A0 | A0}
20 ¢ /] -20 f||[}L1]
30 ¢l -30 [
-40 1111|1111 40t
-50 -50

Cornell Bowers C1IS

Adaptive Optimizers

Different Learning Rate for each element of the Model Weights!

Cornell Bowers CiIS

AdaGrad (Duchi et al. 2011)

More updates -> more decay

e Handle sparse gradients well
o Sparse: The vector has 0 in most of the entries

Wil — Wi — CYVE(W{;)

SGD

Element-wise product

/

2
Vitl = Vi + 8

(8
VVit1 €
Adagrad

Wipl = Wy ® 8¢

Cornell Bowers CIS

AdaGrad

Cornell Bowers CiIS

RMSProp (Graves, 2013)

Keep an exponential moving average of the squared gradient for each element

2
Viyl = V¢ + 8
Qo
Wil = W — © g+
' VVir1 € °
Adagrad

Vit :t ‘|’[(1 — 5>]gt2

Wii] = Wi

© 8¢

C VViriFe

RmsProp

where 8 € [0, 1] the exponential moving average
constant.

Cornell Bowers CiIS

m; i = pmy — aVI(wy; x;)

Wipl = Wi + 1My

Momentum
Vi = Bvi+ (1 - B)g?
Qv
Wir] = Wi — N ARET: ® 8¢

RMSProp

Cornell Bowers C1IS

Virr = Bve+ (1 — B)th
o)

[\/Vt—l—l T €

Wil = Wi —

®© gt
]

RMSProp

Vigr = Bovi + (1 — Bo)g?

(87

Wit = Wi — [\/]@ my

{f\t_|_1 —|— €

ADAM
(Adaptive Moment Estimate)

Cornell Bowers C1IS

my 1 = (4IM; — @Vl(wt; Xi) //'[mt—i—l — 51mt + (1 - Bl)gt}
Wipl = Wi + 1My Viyl = BQVt + (1 - 52)&%

Momentum

Virr = Bve+ (1 — B)th
o)

— @gt W = Wt — «

\/{f\t_|_1 + €

Wil = Wy

O myyq

RMSProp ADAM

(Adaptive Moment Estimate)

Cornell Bowers C1IS

m; = Simy + (1 — 51)g:
Vigr = Bovi + (1 — Bo)g?

. I |
- Mi+1 = 1 — gt
1
~ Vit
Vt+1 o 1 . t+1
2
« =
Wit] = Wy — —= O My
\/Vt_|_1 + €
ADAM

(Adaptive Moment Estimate)

Cornell Bowers C1IS
Optimizers Recap

Gradient Descent
o Vanilla, costly, but for best convergence rate

Stochastic Gradient Descent
o Simple, lightweight

Mini-batch SGD
o balanced between SGD and GD
o 1st choice for small, simple models

SGD w. Momentum
o Faster, capable to jump out local minimum

AdaGrad
RMSProp

ADAM
o JUST USE ADAM IF YOU DON'T KNOW WHAT
TO USE IN DEEP LEARNING

| HAVE LEARNED - *"“\

S EVERY III'II IIM

IIIIW MANY OF
W TIIHI YOU USE

RN agl™

Y
y
1..CADAM)

X
!
\

Cornell Bowers CIS

But are they equivalent somehow?

No!

There are many minimizers of the training loss
The optimizer determines which minimizer you converge to

Cornell Bowers C1IS

Agenda

e Backpropagation
e Optimizers

O O O O O

(@)

Gradient Descent
Stochastic Gradient Descent
SGD w. Momentum
AdaGrad

RMSProp

Adam

e Learning rate scheduling

Cornell Bowers CiIS

Recall: Draw the gradients
e Smaller learning rate
e Larger learning rate

—

Local Minimum

Cornell Bowers CiIS

StepLR

Leasneg fate

o @ 16 » n
Seps
MultiStepLR

Learning Rate Scheduling

ConstantLR
oooi0 00010
00003 00008
K] F3
%00006 2 00006
g £
g g
2 Q0008 2 00008
00002 00002
Q0000 00000
L] 16 P n
Keps
LinearLR
Q00i0 00010
00wa 00008
i i
Q0006 00006
g g
£ £
3 i
5 oo 5 oocos
Q0002 00002
00000 00000
8 1% 24 n
Reps
ExponentialLR
0020
Q008
A
E Q0Xé
g
3
= 00004
00002
0020
-] L] 1%) L

PolynomialLR (Power 1)

B 16 2 2
Seps

PolynomialLR (Power 2)

o & 1% 24 n

Reps

00010

Learning Rate
5 ™

g

00002

00000

CosineAnnealingWarmRestarts

00010

Learning Rate
° °

i

00002

0.0000

CosineAnnealingLR

6
Steps

n

2

Seps

2

Learning Rate

Learnag Rate

00010

:

:

i

00002

CyclicLR (triangular)

00002

& 16
Seps

b

_CyclicLR (triangular2)

2

8 16
Regs

b

CyclicLR (exp_range)

Keps

»

00010

Learning Rate
i

i

OneCycleLR
8 16 P
Seps

OneCyclelR (linear)

)

Cornell Bowers C1IS

Training Hyper-Parameters.

We employ the AdamW optimizer (Loshchilov and Hutter, 2017) with hyper-parameters set to 8, = 0.9, 8, = 0.95, and
weight_decay = 0.1. We set the maximum sequence length to 4K during pre-training, and pre-train DeepSeek-V3 on
14.8T tokens. As for the learning rate scheduling, we first linearly increase it from 0 to 2.2 X 10~ during the first 2K steps.
Then, we keep a constant learning rate of 2.2 X 10~* until the model consumes 10T training tokens. Subsequently, we
gradually decay the learning rate to 2.2 X 10~ in 4.3T tokens, following a cosine decay curve. During the training of the
final 500B tokens, we keep a constant learning rate of 2.2 X 10 in the first 333B tokens, and switch to another constant
learning rate of 7.3 X 107° in the remaining 167B tokens. The gradient clipping norm is set to 1.0. We employ a batch size
scheduling strategy, where the batch size is gradually increased from 3072 to 15360 in the training of the first 469B to-
kens, and then keeps 15360 in the remaining training. We leverage pipeline parallelism to deploy different layers of a
model on different GPUs, and for each layer, the routed experts will be uniformly deployed on 64 GPUs belonging to 8
nodes. As for the node-limited routing, each token will be sent to at most 4 nodes (i.e., M = 4). For auxiliary-loss-free
load balancing, we set the bias update speed y to 0.001 for the first 14.3T tokens, and to 0.0 for the remaining 500B to-
kens. For the balance loss, we set a to 0.0001, just to avoid extreme imbalance within any single sequence. The MTP loss
weight 4 is set to 0.3 for the first 10T tokens, and to 0.1 for the remaining 4.8T tokens.

[Deep Seek V3 Technical Report, 2024]

https://arxiv.org/html/2412.19437v1

Cornell Bowers CiIS

Hyperparameters
e Learningrate
e Batchsize
e Betal & beta2 of adam
e Regularization strength

These are all hyperparameters that affect
performance!

loss

low learning rate

high learning rate

good learning rate

epoch

Source: https://cs231n.github.io/neural-networks-3/

>

Cornell Bowers CiIS

Hyperparameter Optimization (HPO)

e Learningrate
e Batchsize Mcv Maw
e Betal & beta2 of adam *g ‘ % . i .
N g ® & £ '
e Regularization strength 5 | T o0 e
£ Q0100 @ 2 ® ®
X £ ®
These are all hyperparameters that affects 2 o o @ 2 ° °
performance! 5 5
Important parameter Important parameter
Random search HPO is the efficient and (a) (b)

simple way to start! Grid Search Random Search

Cornell Bowers Ci1S
Summary

e Optimization tries to obtain the model weights that minimize the loss function.
e Adam is often a good default optimizer in deep learning
e The learning rate usually needs to be tuned carefully

e A monotonically decreasing learning rate scheduler with a warmup is a good
default choice

e Random search HPO is the efficient and simple way to start!

