Optimization

CS4782: Intro to Deepilearning
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Before we start:
Look at recap quizzes 1,2
Discuss with your neighbors

Choose option A, B, C







Which decision boundary CANNOT be
learned by this network?
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Course Announcement

e Ifyouarein5782
o Paper quizzes are mandatory (10%)

e Ifyouarein4782
o Paper quizzes are optional
o If you do them, we will use the better grade with or
without quizzes
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Agenda

e Backpropagation

e Optimizers

Gradient Descent
Stochastic Gradient Descent
SGD w. Momentum
AdaGrad

RMSProp

Adam

e Learningrate scheduling

o O O O O O

DATA

Which dataset do
you want to use?

REGENERATE

FEATURES

Which properties do
you want to feed in?

8 neurons

— 3 HIDDEN LAYERS OUTPUT
Training loss 0.014
e . N
8 neurons 8 neurons

Colors shows

- e
data, neuron and ‘I X

weight values,

[ show testdata  [J Discretize output
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Calculus Review: The Chain Rule

Lagrange’s Notation: If h(z) = f(g(x)), then A’ = f'(g(x))g'(x)
Leibniz’s Notation: If z= h(y), A= g(a';), then 3—; - g_;s_g
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Calculus Review: The Chain Rule

Lagrange’s Notation: If h(z) = f(g(x)), then A’ = f'(g(x))g'(x)
Leibniz’s Notation: If z= h(y), A= g(ay), then g—; - g_;g_g

Example:  If 2 = In(y),y = x?2, then

dz dzdy
E- &k
- ()(20) = (5)(29)

2

i
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Multivariate Chain Rule

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/
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Multivariate Chain Rule

If f(u)is z = f(v(u),w(u)), then
of _  O0vdz  Ow oz

ou (8u ov g ou 8w)

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/
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Backpropagation- An Example

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/
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Backpropagation- An Example

Forward

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/
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Backpropagation- An Example

Forward

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/
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BackpropagatiOn- AR Example oz _ (()l’ 0z Ow ()z)

du du dv Odu Jdw

Forward

Backward

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/
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Backpropagation- An Example

dz (()1’ dz oOw ()z)

du ‘()u dv du Jdw

Forward

Backward

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/
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Backpropagation- An Example i (()u Ba " Ba ‘(,W)

{)?
Forward Ea
Backward

e 125
= * e

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/
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0z dv 0z Ow 0z
du

Backpropagation— AN Example = du v 4 du ow

750 s

y 2 =
Forward v %2 _10-3-% s
(4]

Ju 0v

A

Backward

<50 . J—
ow

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/
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Backpropagation- Key Idea

If you know
0z 0z

u I (%)
\
N
Y
s\ V3
Ny ,\\

0z
You can compute =

N )
\ ¢
\ Y
N
-
! 4
I _ 27
,/
dz _ (0dv, az+6v2 az+6v3 0z
dou \du Odv, Ou 0dv, Ou OJvs

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/




Cornell Bowers CiIS Algorithm Forward Pass through MLP

1: Input: input x, weight matrices W, ... W, bias vectors bl1], ..., bl
2z =x > Initialize input
Forward Pass - MLP s for 121t L do
4 all = Wllgl=1] 4 pll > Linear transformation
5 zll = 5ll(all) > Nonlinear activation
6: end for
a[l] — 'W[]-] Z[O] 7. Output: z!
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Forward Pass - MLP
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Forward Pass - MLP
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Forward Pass - MLP




Cornell Bowers C1IS

Forward Pass - MLP

alll — Witz a? — wizl

T
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Forward Pass - MLP
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Forward Pass - MLP
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Forward Pass - MLP
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Forward Pass - MLP

zlll = o(alt)) 2 = 5(al?) z8 = o(all)




Cornell Bowers C1S Algorithm Forward Pass through MLP

Forward Pass *“ IE]put: input x, weight matrices W, ... WL bias vectors bl ... bl
M LF) 2: ; l= x1 o 2 > Initialize input
- 3: for l=1to L do
4: a[[ll]] = V\lf[l]zy_l] + bl > Linear transformation
5 dzf = gll(alt) > Nonlinear activation
6: end for
7. Output: z!!

alll = witlzll a? — wigll




Cornell Bowers C1S Algorithm Forward Pass through MLP

1: Input: input x, weight matrices Wl ... WIL bias vectors blll, ... blZ
Forwa rd PaSS 2. zl% = x > Initialize input
_MLP 3: for/=1to L do

4: alll = Wllzl=1] 4 pli] > Linear transformation

5 zlll = gl (all) > Nonlinear activation

6: end for

7. Output: z!

alll = witlzll a? — wigll
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Backprop

Loss = L(z,y)

zlll = o(alt)) 2 = 5(al?) z8 = o(all)
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Loss = L(z%,y)
Backprop

_OL
0zl3]*

We can directly compute

zlll = o(alt)) 2 = 5(al?) z8 = o(all)
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Loss = L(z%,y)
Backprop

x oL |
We can directly compute Z-rr!
one step
‘ f gradient
slope of loss at wl//' Odiieﬁn
is negative
w

2% — (al?) z8 = o(al®)
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Loss = L(z%,y)
Backprop

oL
We can directly compute 2>z;!

VwL(W;Drr) = | 5u® (Wi DIR) | |V, L(w; Drr) € R™

zlll = o(alt)) 2 = 5(al?) z8 = o(all)
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Backprop




Cornell Bowers CIS Loss = L(z%,y)

Backprop .

oL _ oL 98zl
atl = willz a® = Wzl 3BT = 3,067 5aB aazé]

— Wz 2

zlll = o(alt)) 2 = 5(al?) 20 = o(al®)
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Backprop

oL

daldl —

Loss = L(z,y)

— Bz

&~ o—

oL 0z oL
0z!3] dal3l Oz!3]
OL_ o 531 2l — widl,2

z8 = o(al®)
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Backprop

Loss = L(z,y)
—

oL
0z!3l

a3 — W3l

z8 = o(al®)




Cornell Bowers C1S Loss = L(z%,y)

Backprop Y —
3] oL __ oL 0zl oL
0Pl = 13aBT = 3207 9al 5z13]
= 2 0o 2 = Wilg2
oL oL Oal®l d
OWIBl 7 pal3l owWI3]
= 131 (z2HT

z8 = o(al®)




Cornell Bowers C1S Loss = L(z%,y)

Backpro
3] oL _ oL 9z oL
For propagation to 0% = 13aBT = 520 5al Oz[3]
I ; /
next layer _ aazg] o 53] 2l — widl,2
| oL _ oL 9al 3
For weight updates: OWI[B] — Hal3l gWIB]
= 131 (z2HT

z8 = o(al®)
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Backprop

Loss = L(al,y)

-~

oL 0z

_ 3] Q9L _
For propagation to dal3l 0z(3] fal3]

next layer:

oL

For weight updates: OW [3]

(XN
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Backpropagation- Key Idea

az
You can compute o

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial
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Backprop T
8] — 8L
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Backprop PR
3]

zlll = o(alt)) z = o(a?) z8 = o(al®)

oL oL Oall
- _ (BT 503]
0zl2l  paldl pzl2l e
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Backprop

oL oL oz!2!
dal2l  9z[2 fal?]

al? — %r[ﬂz[l]
” o

oc  oC oal
o0zl2l  9aldl 9zl2]

= o(a?)

Loss = L(z,y)

/\

3] _ oL oL
0B = 25 o5
| _ Wiyl

z8 = o(al®)

(WBHT s3]
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o OL _ OL 02 Loss = L(z,y)
a Z a
oL
all 11400 al? _$,[2]zm Bl = 25 5

o

— a(a[z]) 73 — a(a[3])
oL oL Odal?l

9zl — Bal2l ozl — (WEHT 502l oL oC Dald

8z2 — 9all 5z

= (WBH)T Bl




Algorithm Backward Pass through MLP (Detailed)

Cornell Bowers C1S 1: Input: {zl,... 21}, {al'l,.. . alll}, loss gradient ;2f;

Backpropagation 2 08 = 5 = a1 %201 = 226 © ol (alt) > Error term
4: 335[” = a?al[:ll 8‘9‘;[?” = s (zll-IHT > Gradient of weights
5; aic[l] = aé:[:ll gf;[[ll]] = 6l > Gradient of biases
6: azé[)lﬁ—ll = aiﬁ] 323[—”11 = (W[l])T5[l]
o Sl = 0L = 0L fuh — (WH)TSH) @ oli=1 (ali=1)
8: end for
9: Output: 6“‘?[51:,4, aba[ﬁL]

A

L(zP,y)

oL

We can directly compute 57!




Algorithm Backward Pass through MLP (Detailed)

Cornell Bowers C1S 1: Input: {zl,... 21}, {al'l,.. . alll}, loss gradient ;2f;
i Ol = 2L, = 0L 5 = O olLY (all)) > Error term
BaCkprOpagatlon & Balll — 5glT] §alt] — Gglt]
3: for =L to1do
= a%z] = a%l 38%[?11 = (2! -1HT > Gradient of weights
oL _ 0L 8a[3] 5: aic[z] = 3%] 33[[?] E g > Gradient of biases
oW I3l oal3] oW 3] & T = a2 aaiey = (W) T4l
— Zzll—1] 1 ;g
IR . ... = e = (TTeeE
— [/ 8: end for
9: Output: 3vafery, saam
A N
alll — Wit al? — w2zl 518l — % 882[531

L(zP,y)

oL

We can directly compute 57!




Algorithm Backward Pass through MLP (Detailed)

Cornell Bowers C1S 1: Input: {zl,... 21}, {al'l,.. . alll}, loss gradient ;2f;
i Ol = 2L, = 0L 5 = O olLY (all)) > Error term
BaCkprOpagatlon & Balll — 5glT] §alt] — Gglt]
3: for[ =L to1do
= a%z] = a%l 38%[?11 = (2! -1HT > Gradient of weights
oL _ 0L 3a[3] 5: aic[z] = 3%] Sf;[[ll]] E g > Gradient of biases
oW I3l oal3] oW 3] & T = a2 aeie = (W) T4l
— Zzl1—1] v ;g
IR . ... = s = (Tee
— [/ 8: end for
9: Output: 6“%:”, alﬁﬁl’]
A
alll — Wit al? — w2zl 518l — % 882[531

L(zP,y)

oL

We can directly compute 57!

oL oL 0al®

_ _ 3I\T <[3
3201 = Ball ggm = W)




Algorithm Backward Pass through MLP (Detailed)

Cornell Bowers C1S 1: Input: {zl,... 21}, {al'l,.. . alll}, loss gradient ;2f;
. Zz[L] ’
Backpropagation 2 OM = aafiy = ayftn S = aafiy © o' (2 > Exror term
3: for [ = L to o
= ST = 38‘;;”[]1] = (2! -1HT > Gradient of weights
oL oL 8a[3] 5: a{ifm = 3%] Zf,[u]] =4l > Gradient of biases
_— alll
OW [3] dal3] OW 3] R o (W[[E)I]Tém
3 2\T n 0l = oy = attn ey = (WH)Tel) @ ol = (al =)
:5[ ](Z[]) 8: end for
9: Output: 6“%:”, 81;9[£L]

s _ O _ oL 0a” £

~ 9a2 ~ 9z 9al?
3] . oL 8£
a[l] = wliiglol a =gw- -zl (5[ I = Hal3l Oz!3]

L(zP,y)

oL

We can directly compute 57!

oc oL 9aP
8z2l — 9aldl §zl2]

= (WBHT sl
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What is Optimization?

—— Gradient descent

Min = 1.9500000000000002

In deep learning, optimization methods attempt to find
model weights that minimize the loss function.
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Loss function

Empirical Risk:

t :attimestep ¢t

W¢. Model weights (parameters) at time ¢
X;: The i-th input training data

L : the Loss function (optimization target)
¢ : per-sample loss

4 \
Ay ““\\\\\t‘\\
2 ‘:‘0":“\\\\\\\\.‘.’\:;;1’};,’,\,0.““
2oy

417 '

7

20 1Y%
LN ARBIRES
"‘&?“"%‘v",, ”““{&\\\\\‘\;‘w

Local Minima .

Global Minima

Saddle Point
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Gradient Descent (GD)

—— Gradient descent

A\ | 3.5

T 2.5
- 2.0
1.5
- 1.0
T 05
- 0.0

Min = 1.9500000000000002

Wil — Wy — @Vﬁ(wt)

«v: the learning rate

VL(w,): the gradient of Loss w.r.t. w;
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Demo

Gradient descent with global minimum
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What are some potential problems with gradient descent?
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Convexity

e Afunctionon agraphisconvexifa
line segment drawn through any two
points on the line of the function,
then it never lies below the curved
line segment

e Convexity implies that every local
minimum is global minimum.

e Neural networks are not convex!

Not convex

Convex
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Challenges in Non-Convex Optimization

\

= 72 local minimum

global mini

-1 0

X

Local Minima vs. Global Minima

\

saddle point

Saddle Points

f(x)

1.0 1
0.5 1+
0.0
—-0.5 -

-1.0 i

vanishing gradie

Vanishing gradient
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Demo

Gradient descent with local minimum
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Gradient Descent (GD)
1 mn
L(wi) = — ) Jl(wexi)
7=
VL(w:) = %ZVK(Wt,xi)
=1

w1 = wy — aVL(wy)

Full gradient: O(n)time => Too expensive!
e Statistically, why don’t we use 1 or a few samples from the training dataset to
approximate the full gradient?
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Gradient Descent (GD)

Wil = Wi — QV£(Wt)
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Gradient Descent (GD)

Wil = Wi — (IV£(Wt)

Select 1 example randomly each time
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Gradient Descent (GD)
Wit = Wi — QV£(Wt)

Select 1 example randomly each time

Per-sample gradient is equiva/ent to full gradient in expectation!

[Vﬁ Wt,XL = va Wt,XL VE(Wt)
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Stochastic Gradient Descent (SGD)
Wit = Wi — QV£(Wt)
Select 1 example randomly each time

Wi = Wi — onﬁ(wt, Xz)

Per-sample gradient is equiva/ent to full gradient in expectation!

[Vﬁ Wt,XL = va Wt,XL V[:(Wt)
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Stochastic Gradient Descent (SGD)
Wi = wy — aVL(wy)
Select 1 example randomly each time

Wil = Wy — &Vﬁ(wt, X@)

Trade off convergence!

0- M
Per-sample gradients not necessarily wad
points to the local minimum, introducing a

AN

noise ball... I
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Stochastic Gradient Descent (SGD)
Wil = Wi — QV£(Wt)

Select 1 example randomly each time

Wil = Wy — &Vﬁ(wt, X@)

Select a batch By of examples
randomly each time, with batch size b
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Minibatch SGD
Wil = Wi — (IVE(Wt)

Select 1 example randomly each time

Wi Wi — &Vﬁ(wt, X@)

Select a batch By of examples
randomly each time, with batch size b

1
Wit = Wy — O E EZB Vf(Wt,Xz')
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Let's look at an example!




Cornell Bowers CiIS

Draw the gradients:

e Smaller learning rate
e Larger learning rate

——

Local Minimum
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Local Minimum
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Local Minimum

=
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Local Minimum

—
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Local Minimum

Minibatch SGD
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SGD with Momentum (Polyak, 1964)

Compute an Exponentially Weighted Moving Average (EWMA) of the gradients
as momentum and use that to update the weight instead.
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SGD with Momentum (Polyak, 1964)

Compute an Exponentially Weighted Moving Average
(EWMA) of the gradients as momentum and use that to
update the weight instead.




Cornell Bowers C1IS

SGD with Momentum (Polyak, 1964)

Compute an Exponentially Weighted Moving Average
(EWMA) of the gradients as momentum and use that to
update the weight instead.

SGD Update Rule Mg = pIny — @VZ(WtS Xz’)

Wi = Wy — aVE(wy, X;) Wil = Wi + My

where p € [0, 1] is the momentum coefficient.
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SGD with Momentum (Polyak, 1964)

Compute an Exponentially Weighted Moving Average
(EWMA) of the gradients as momentum and use that to

update the weight instead.

/u-m, ______________

my = pmy — aVI(wy; x;)

Wip] = Wi + 1My g

where p € [0, 1] is the momentum coefficient.




Cornell Bowers CiIS

SGD with Momentum

Compute an Exponentially Weighted Moving Average
(EWMA) of the gradients as momentum and use that to
update the weight instead.

m;iq = pimg — OéVl(Wt, Xi)

Wip1l = W¢ + 1My
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SGD with Momentum

Compute an Exponentially Weighted Moving Average
(EWMA) of the gradients as momentum and use that to
update the weight instead.

g = VI(wy; x;)
My = My — gy

Wil = Wi + 1My
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SGD with Momentum

Compute an Exponentially Weighted Moving Average
(EWMA) of the gradients as momentum and use that to
update the weight instead.

B = VZ(“’t;Xi)
mgyq = pmy — gy

Wit = Wi + pnmy — gy
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SGD with Momentum

Compute an Exponentially Weighted Moving Average
(EWMA) of the gradients as momentum and use that to
update the weight instead.

gt = VI(wy;x;)
Myl = pImy — gy
Wit1 = Wi + puImy — gy

=wy + p(pmy_ —agr_1) — agy
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SGD with Momentum

Compute an Exponentially Weighted Moving Average
(EWMA) of the gradients as momentum and use that to
update the weight instead.

g: = VI(wy; x;)
mgyq = pmy — gy
Witl = Wy + (g — 08y
= wy + p(pmg 1 —agi1) — ag
= w; + p(p(pme—2 — agr—2) — agi—1) — age

=Wy — a8 — pag_1 — [1Pag_o — Poag_3 — ...
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SGD with Momentum

Compute an Exponentially Weighted Moving Average
(EWMA) of the gradients as momentum and use that to
update the weight instead.

g: = VI(wy; x;)
mgyq = pmy — gy
Wit1 = Wy + Iy — 08y
= wy + p(pmg 1 — agi1) — g
= w; + p(p(pmi—2 — agr—2) — agi—1) — age

=Wy — g — pag_1 — [1Pag_o — Poag_3 — ...

t
i
=W — E M &t—i
i=0
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Local Minimum

Minibatch SGD
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Local Minimum

Minibatch SGD
my = p(mp — agq

g = VI(w:x;)
M1 = pINg — gy

Wiyl = Wy + 1My
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Local Minimum

Minibatch SGD
my = p(mp — agq

g = VI(w:x;)
M1 = pINg — gy

Wiyl = Wy + 1My
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Local Minimum

Minibatch SGD
my = p(mp — agq

e

g = VI(w:x;)
M1 = pINg — gy

Wiyl = Wy + 1My

L

m»o
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Local Minimum

Minibatch SGD
mo = [In; — &gy

(JC=——>

g = VI(w:x;)
M1 = pINg — gy

Wiyl = Wy + 1My
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Local Minimum

Minibatch SGD
my = pumj; — gy

Momentum converges almost always faster than standard

SGD!

g = VI(w:x;)
M1 = pINg — gy

Wiyl = Wy + 1My
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Quick Recap

Gradient Descent

Wifl = Wy — Q- ZVK Wi, X;)
Stochastic Gradient Descent

Wil = Wy — (ng(Wt, Xz)
Minibatch SGD

1
Wit = Wy — (e E Z VE(Wqu')
1€B;
SGD w. Momentum

M1 = pumy — aVI(wy; ;)

Wi41 = We + My
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Importance of Learning Rate

SGD (learning_rate=0.01)

SGD (learning_rate=0.1)

100 100
80 4 step: 0: (-6.63, 43.953) 801 step: 0: (-6.63, 43.953)
60 60
>
40 40
20 A 201
0+ T T T T T T T 0+ T T T 7 T T T
-10.0 7 £45 -5.0 =25 0.0 2.5 5.0 7.5 10.0 -10.0 =15 -5.0 =25 0.0 2:5: 5.0 7.5 10.0
X gbhat.com s
SGD(learning_rate=0.95) SGD(learing_rate=1.01)
100 100
80 4 step: 0: (-6.63, 43.953) 80 1 step: 0: (-6.63, 43.953)
60 60 1
>
40 1 40
20 204
o ) T T T T T T T 0— T T T T T T T
-10.0 —7.5 -5.0 =2.5 0.0 2.5 5.0 75 10.0 -10.0 —7:5 -5.0 =25 0.0 2.5 5.0 7.5 10.0
X X
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Another example
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Another example
a, =0.015and o, = 0.05

50 50[ .,
40 a0 I,
30 fi//lif 30
20} | 20-“
10} 10| |

> 0 > of
A0 | A0}
20 ¢ /] -20 f||[}L1]
30 ¢l -30 [
-40 1111|1111 40t
-50 -50
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Adaptive Learning Rate

Maybe we don’t want the SAME learning rate

for ALL ELEMENTS of the Weight!

-20 0 20

-50

-20

20

-20 0 20
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Adaptive Optimizers

Different Learning Rate for each element of the Model Weights!
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AdaGrad (Duchi et al. 2011)

More updates -> more decay

e Handle sparse gradients well
o  Sparse: The vector has 0 in most of the entries

Wil — Wi — CYVE(W{;)

SGD

Element-wise product

/

2
Vitl = Vi + 8

(8
VVit1 €
Adagrad

Wipl = Wy ® 8¢
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AdaGrad
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AdaGrad (Duchi et al. 2011)

More updates > more decay

e Handle sparse gradients well
o  Sparse: The vector has 0 in most of the entries

Wit — Wi — CYVE(Wt)

SGD

Element-wise product

2
Vitl = Vi + 8

¥

8
W1 = W — © 8t
! VVit1 T € =
Adagrad
Exercise:

What'’s could be wrong with this optimizator?
(What would happen to the denominator.)




Cornell Bowers CiIS

AdaGrad (Duchi et al. 2011)

More updates > more decay

e Handle sparse gradients well
o  Sparse: The vector has 0 in most of the entries

Wit — Wi — CYVE(Wt)

SGD

Element-wise product

’d
2
Vitl = Vi + 8

Y
VVit1 €

Wipl = Wy ® 8¢

Adagrad

Issue: decays too aggressively!
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RMSProp (Graves, 2013)

Keep an exponential moving average of the squared gradient for each element

2
Viyl = V¢ + 8
Qo
Wil = W — © g+
' VVir1 € °
Adagrad

Vit :t ‘|’[(1 — 5>]gt2

Wii] = Wi

© 8¢

C VViriFe

RmsProp

where 8 € [0, 1] the exponential moving average
constant.
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Demo > SGD
- Momentum
Adagrad & RMSprop e ﬁj:grad
Adadelta

Rmsprop

1.0
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m; i = pmy — aVI(wy; x;)

Wipl = Wi + 1My

Momentum
Vi = Bvi+ (1 - B)g?
Qv
Wir] = Wi — N ARET: ® 8¢

RMSProp
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Vi = Bvi+ (1 - B)g?
a

V/Vit1 +e€

Wi L] = Wi =

Gp e
]

RMSProp

ADAM
(Adaptive Moment Estimate)
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Virr = Bve+ (1 — B)th
o)

[\/Vt—l—l T €

Wil = Wi —

®© gt
]

RMSProp

Vigr = Bovi + (1 — Bo)g?

(87

Wit = Wi — [\/ ]@ my

{f\t_|_1 —|— €

ADAM
(Adaptive Moment Estimate)
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my 1 = (4IM; — @Vl(wt; Xi) //'[mt—i—l — 51mt + (1 - Bl)gt}
Wipl = Wi + 1My Viyl = BQVt + (1 - 52)&%

Momentum

Virr = Bve+ (1 — B)th
o)

— @gt W = Wt — «

\/{f\t_|_1 + €

Wil = Wy

O myyq

RMSProp ADAM

(Adaptive Moment Estimate)
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m; = Simy + (1 — 51)g:
Vigr = Bovi + (1 — Bo)g?

. I |
- Mi+1 = 1 — gt
1
~ Vit
Vt+1 o 1 . t+1
2
« =
Wit] = Wy — —= O My
\/Vt_|_1 + €
ADAM

(Adaptive Moment Estimate)
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Optimizers Recap

Gradient Descent
o Vanilla, costly, but for best convergence rate

Stochastic Gradient Descent
o  Simple, lightweight

Mini-batch SGD
o  balanced between SGD and GD
o  1st choice for small, simple models

SGD w. Momentum
o  Faster, capable to jump out local minimum

AdaGrad
RMSProp

ADAM
o JUST USE ADAM IF YOU DON'T KNOW WHAT
TO USE IN DEEP LEARNING

| HAVE LEARNED - *"“\

S EVERY III'II IIM

IIIIW MANY OF
W TIIHI YOU USE

RN agl™

Y
y
1..CADAM)

X
!
\




