

Cornell Bowers CIS

College of Computing and Information Science

When poll is active respond at PollEv.com/weichiuma

Optimization

CS4782: Intro to Deep Learning

Varsha Kishore, Justin Lovelace, Gary Wei

Before we start:

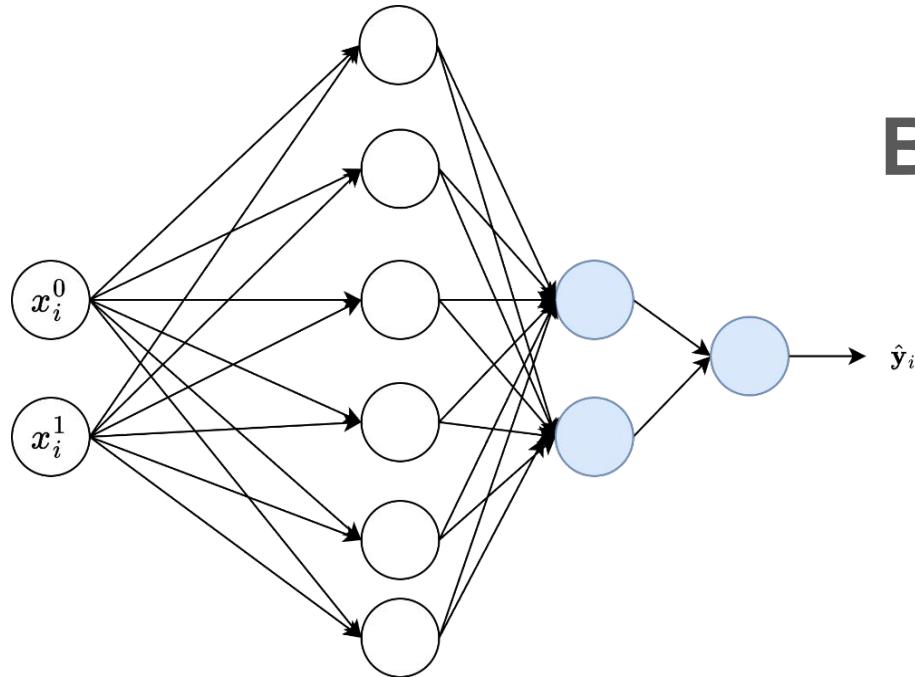
Look at recap quizzes 1,2

Discuss with your neighbors

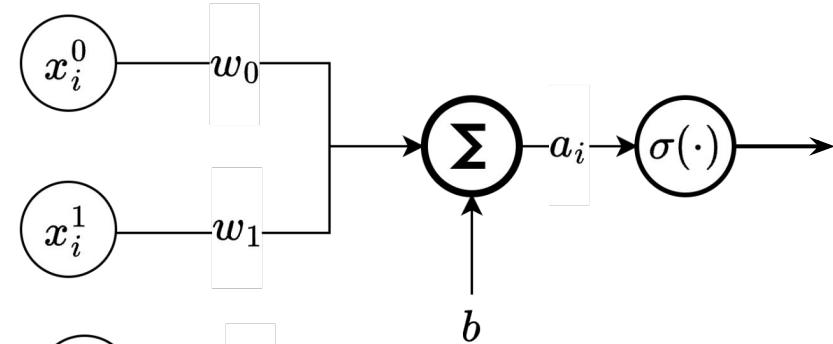
Choose option A, B, C

When poll is active respond at PollEv.com/weichiuma

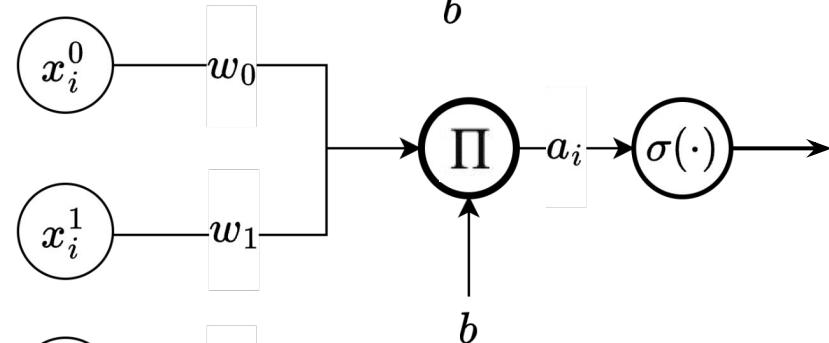
What's inside one of the circles?



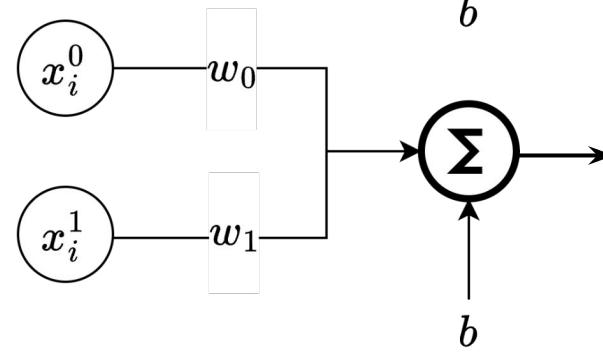
A.



B.



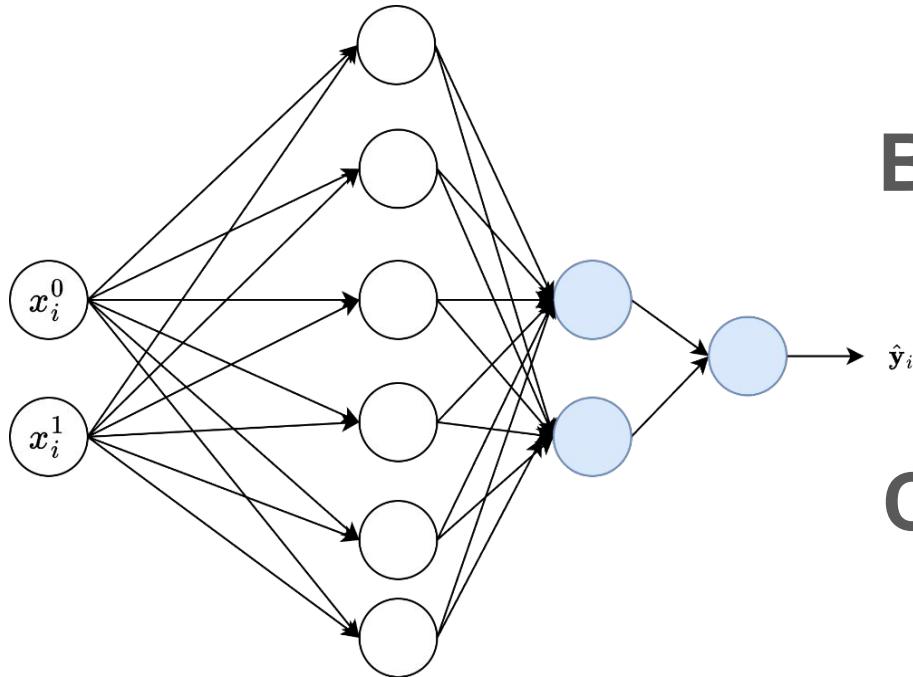
C.



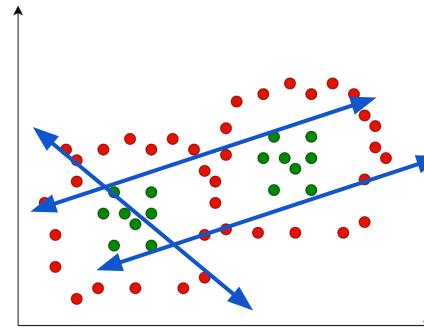
When poll is active respond at PollEv.com/weichiuma

A.

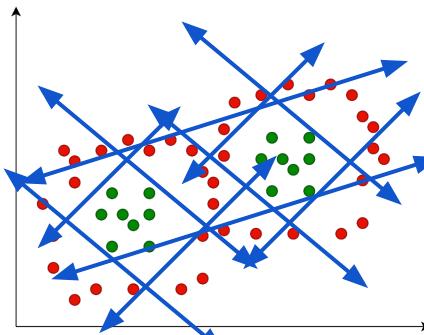
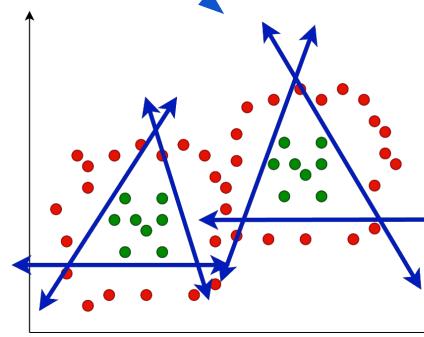
Which decision boundary CANNOT be learned by this network?



B.



C.

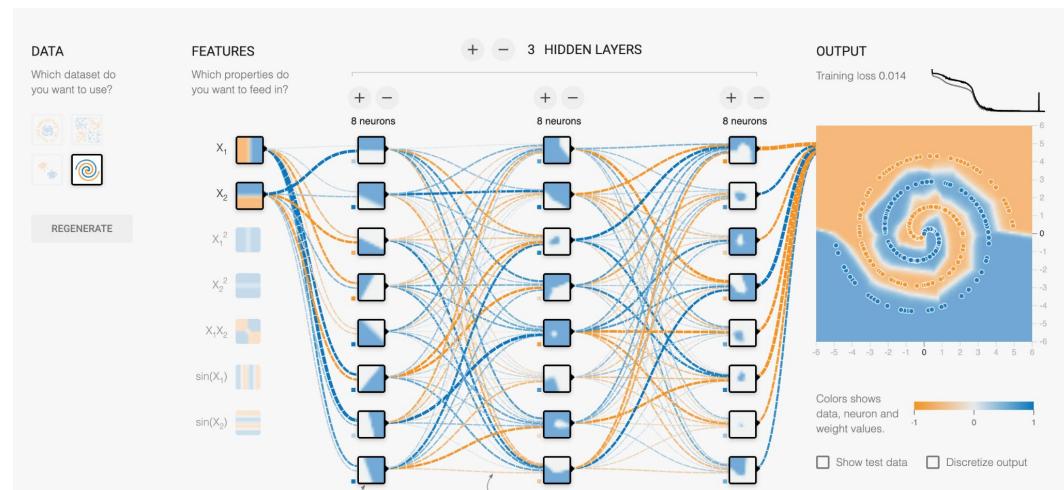


Course Announcement

- If you are in **5782**
 - Paper quizzes are mandatory (10%)
- If you are in **4782**
 - Paper quizzes are optional
 - If you do them, we will use the better grade with or without quizzes

Agenda

- Backpropagation
- Optimizers
 - Gradient Descent
 - Stochastic Gradient Descent
 - SGD w. Momentum
 - AdaGrad
 - RMSProp
 - Adam
- Learning rate scheduling



Calculus Review: The Chain Rule

Lagrange's Notation: If $h(x) = f(g(x))$, then $h' = f'(g(x))g'(x)$

Leibniz's Notation: If $z = h(y)$, $y = g(x)$, then $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$

Calculus Review: The Chain Rule

Lagrange's Notation: If $h(x) = f(g(x))$, then $h' = f'(g(x))g'(x)$

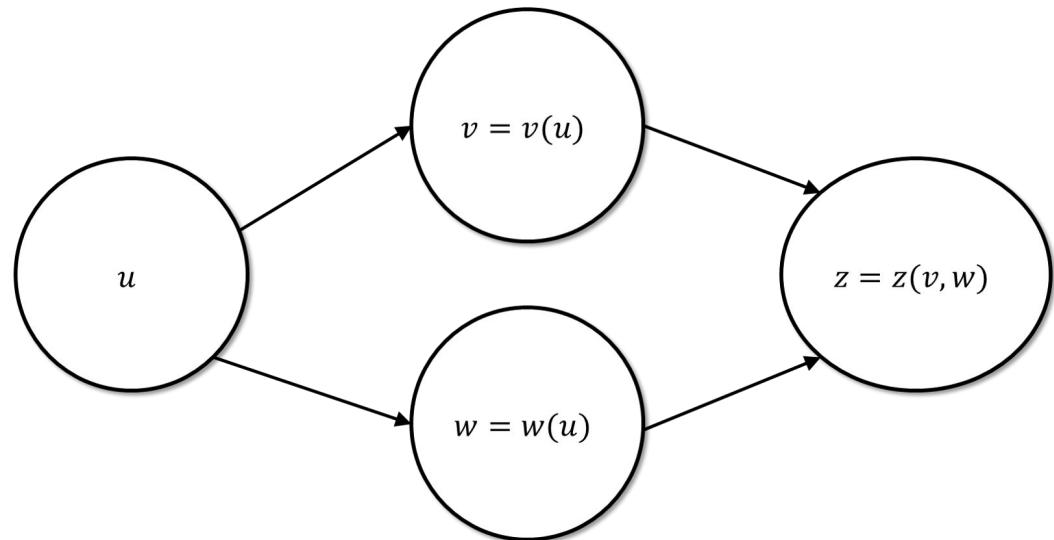
Leibniz's Notation: If $z = h(y)$, $y = g(x)$, then $\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$

Example: If $z = \ln(y)$, $y = x^2$, then

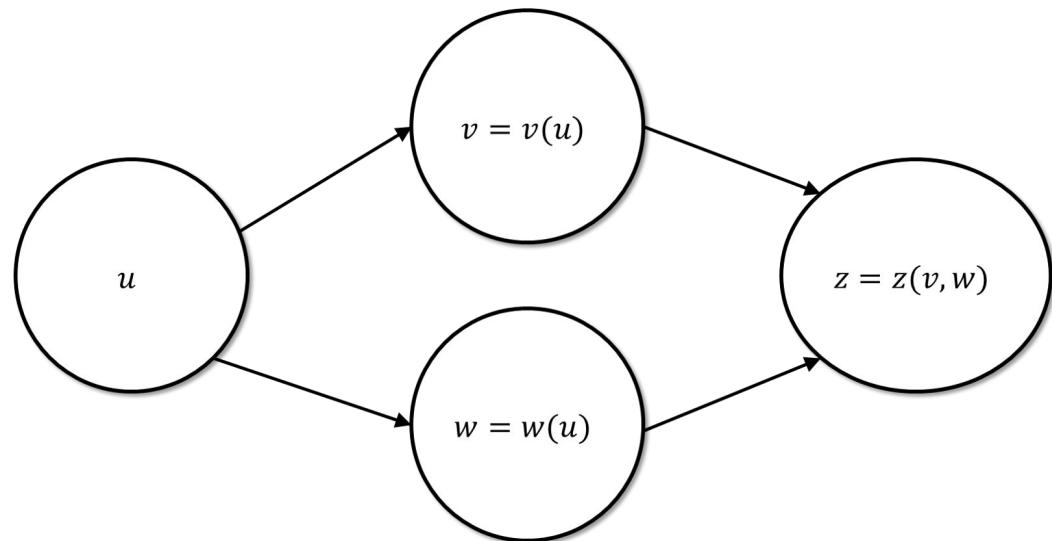
$$\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$$

$$= \left(\frac{1}{y}\right)(2x) = \left(\frac{1}{x^2}\right)(2x) = \frac{2}{x}$$

Multivariate Chain Rule



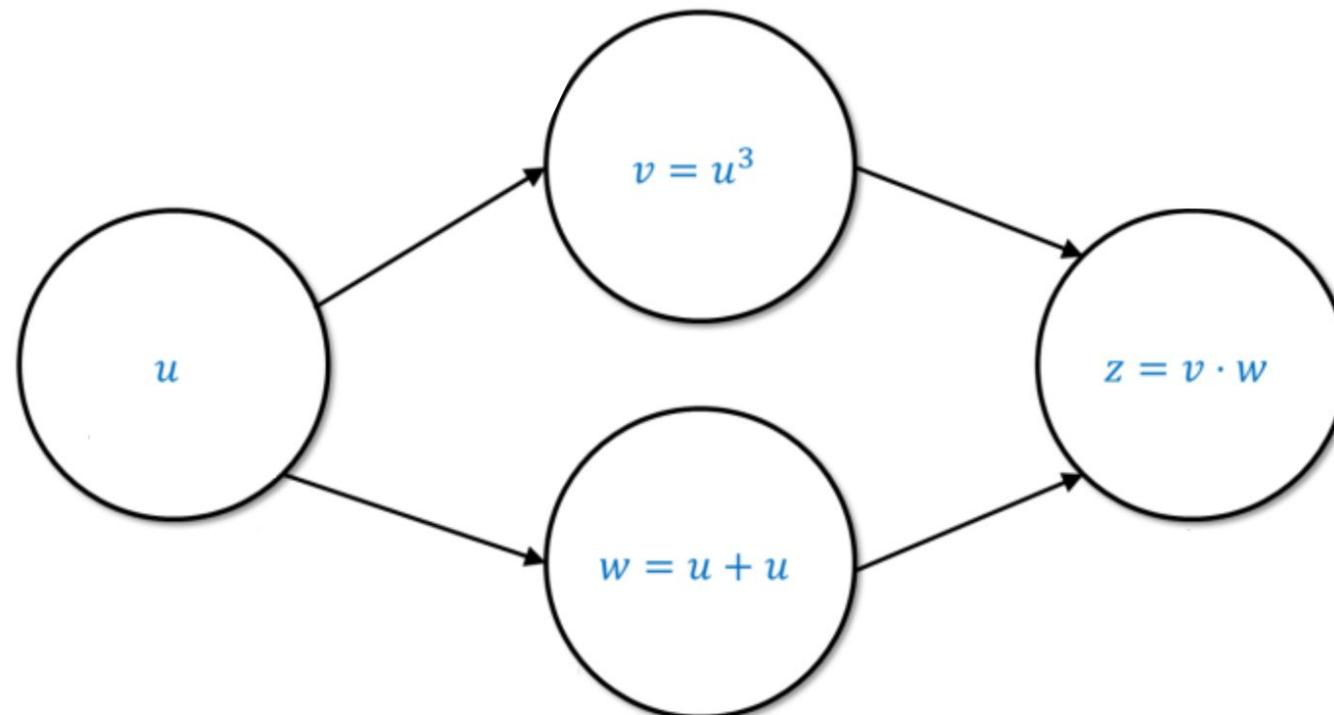
Multivariate Chain Rule



If $f(u)$ is $z = f(v(u), w(u))$, then

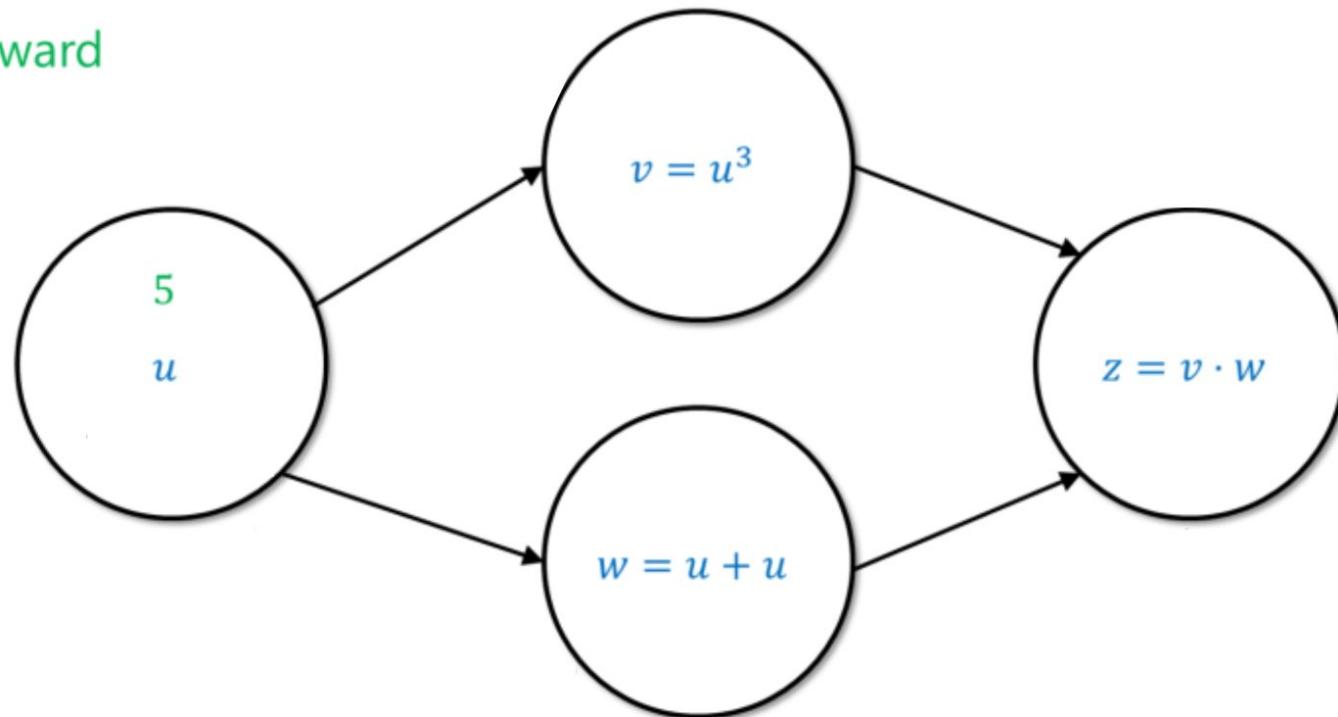
$$\frac{\partial f}{\partial u} = \left(\frac{\partial v}{\partial u} \frac{\partial z}{\partial v} + \frac{\partial w}{\partial u} \frac{\partial z}{\partial w} \right)$$

Backpropagation- An Example



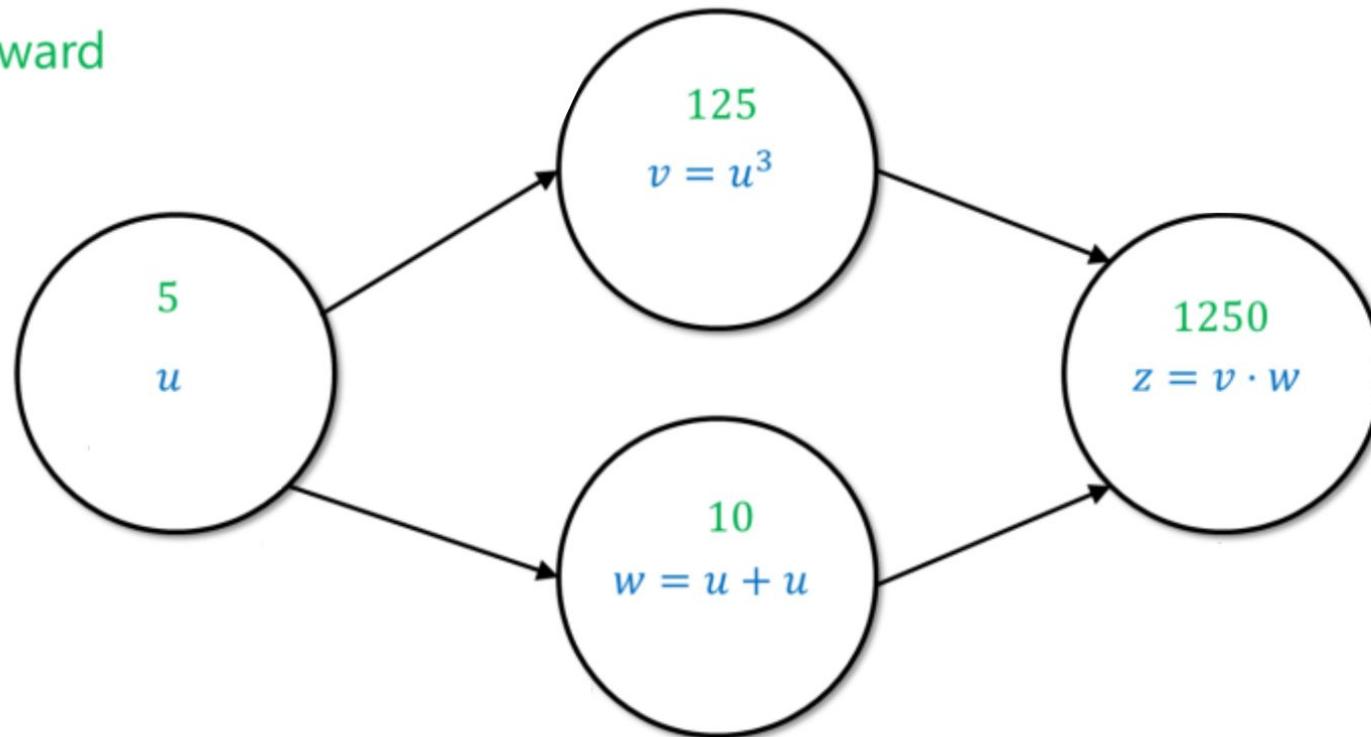
Backpropagation- An Example

Forward



Backpropagation- An Example

Forward

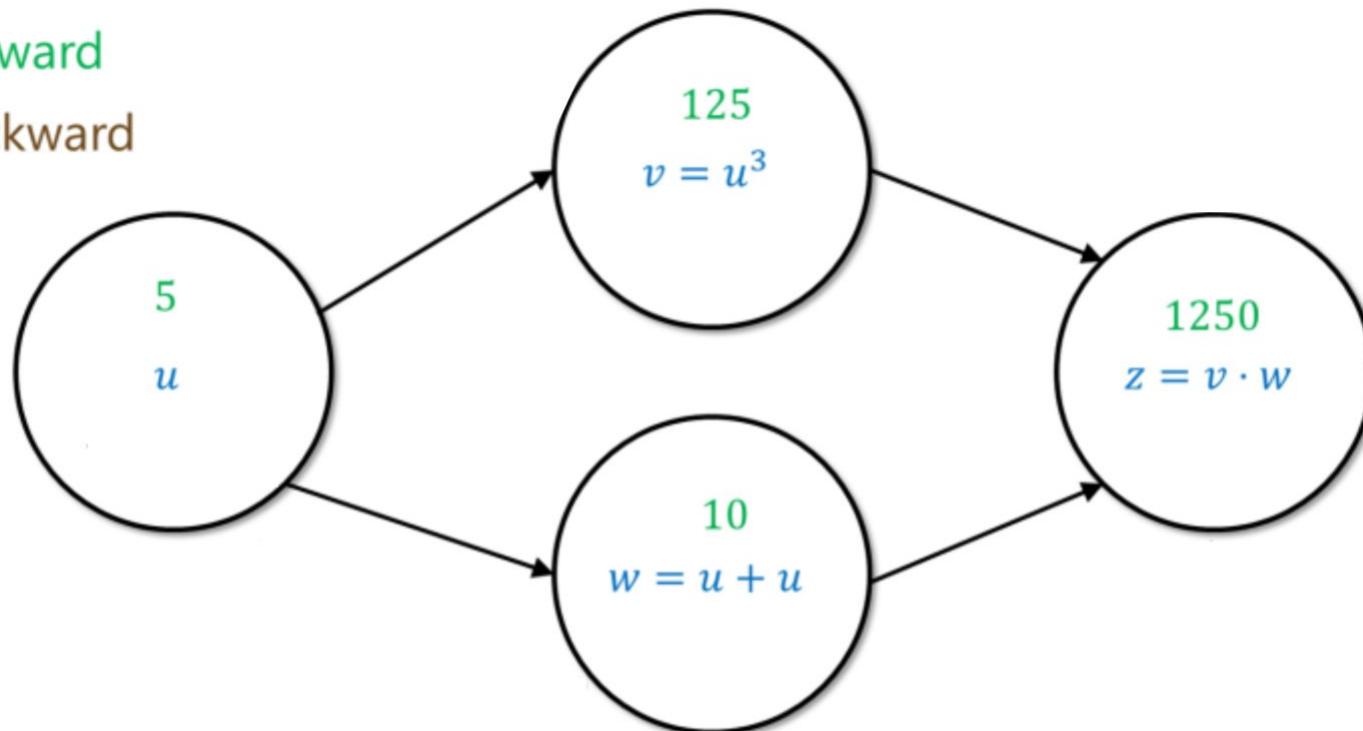


Backpropagation- An Example

$$\frac{\partial z}{\partial u} = \left(\frac{\partial v}{\partial u} \cdot \frac{\partial z}{\partial v} + \frac{\partial w}{\partial u} \cdot \frac{\partial z}{\partial w} \right)$$

Forward

Backward

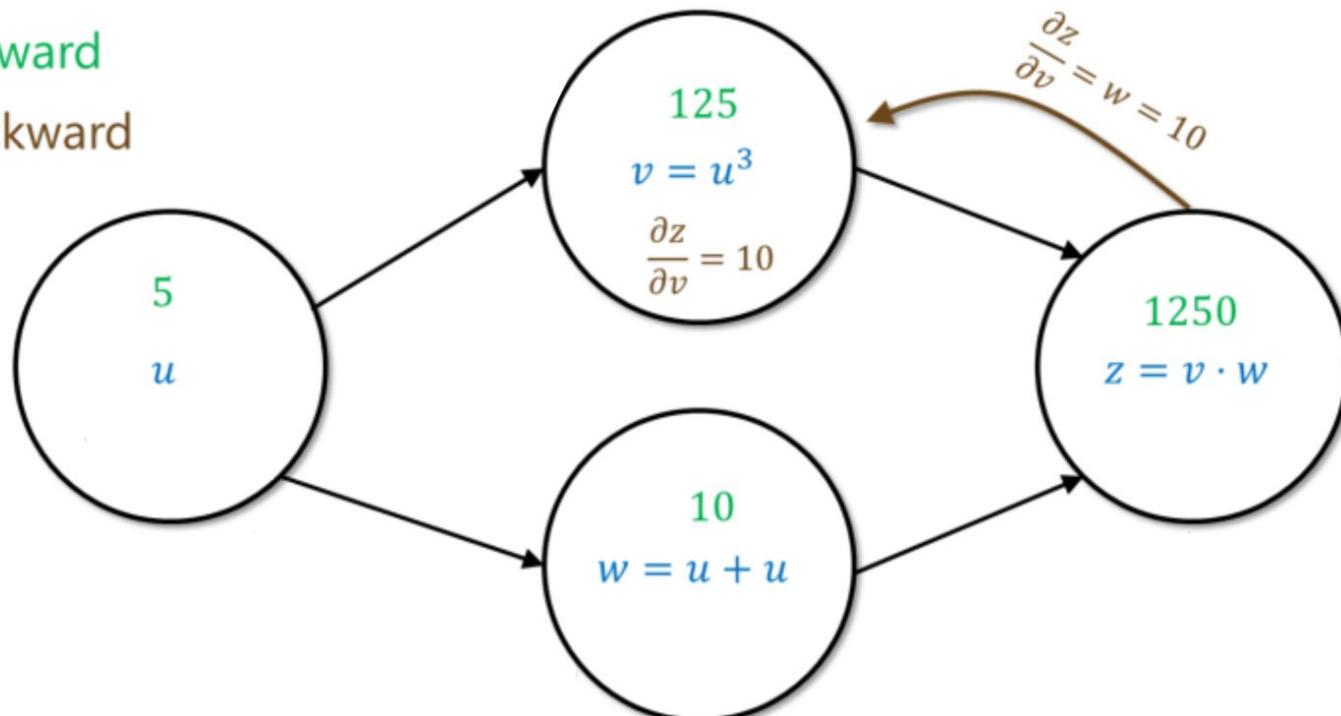


Backpropagation- An Example

$$\frac{\partial z}{\partial u} = \left(\frac{\partial v}{\partial u} \cdot \frac{\partial z}{\partial v} + \frac{\partial w}{\partial u} \cdot \frac{\partial z}{\partial w} \right)$$

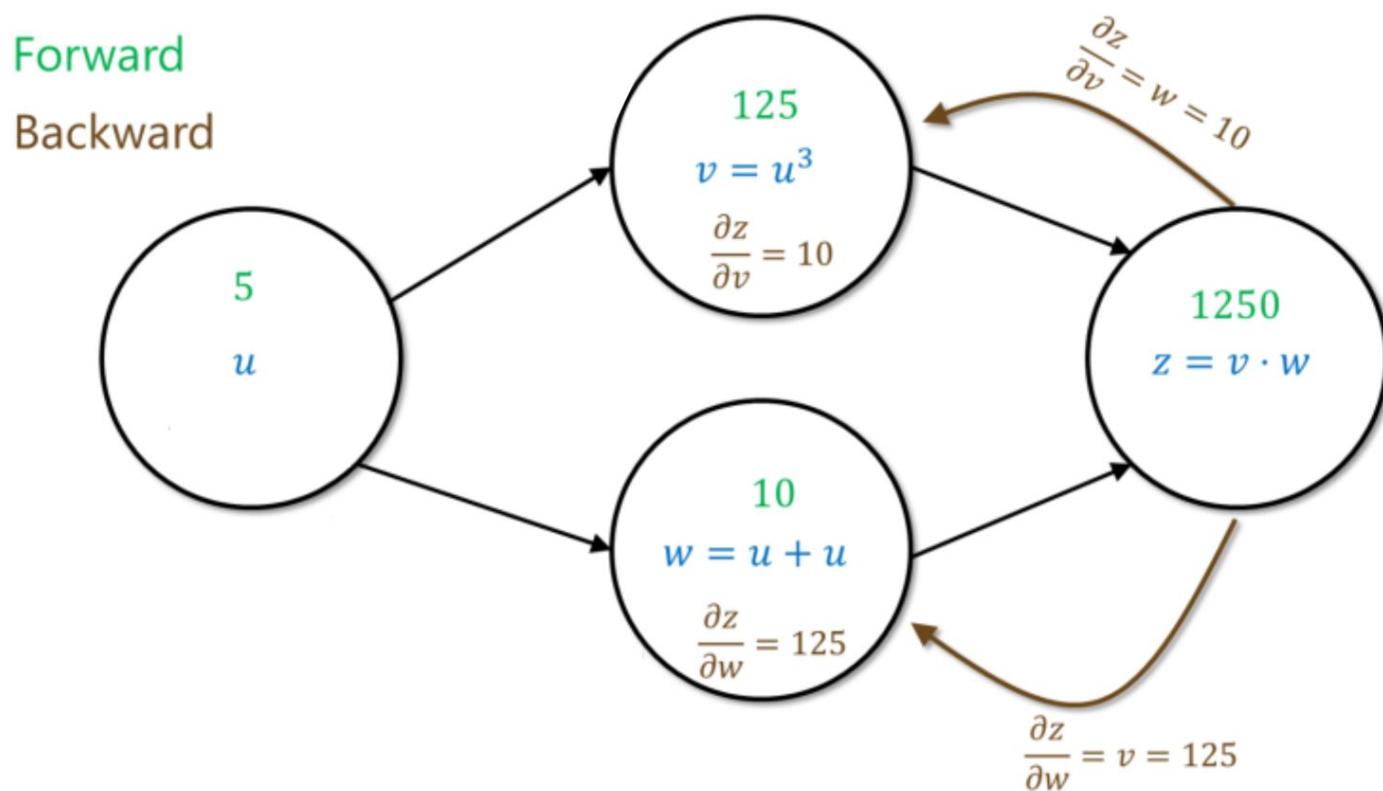
Forward

Backward



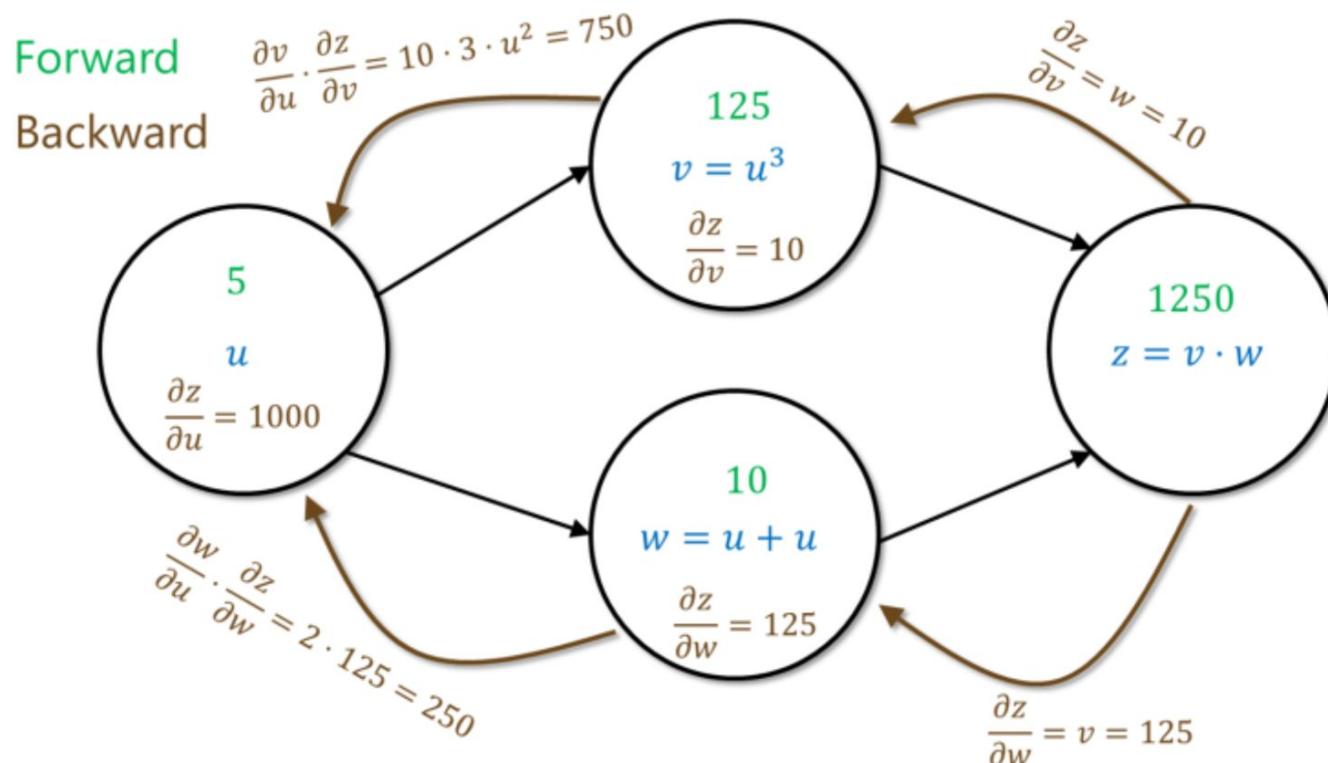
Backpropagation- An Example

$$\frac{\partial z}{\partial u} = \left(\frac{\partial v}{\partial u} \cdot \frac{\partial z}{\partial v} + \frac{\partial w}{\partial u} \cdot \frac{\partial z}{\partial w} \right)$$

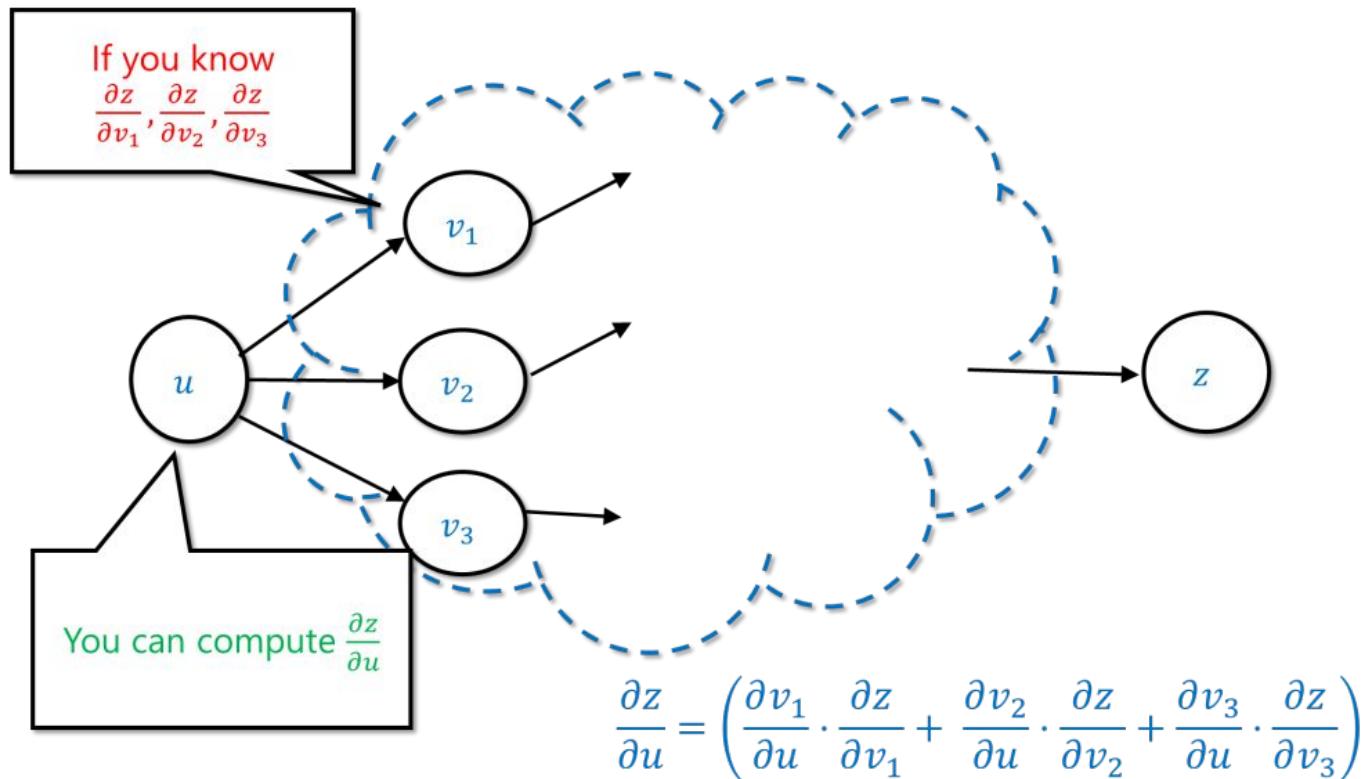


Backpropagation- An Example

$$\frac{\partial z}{\partial u} = \left(\frac{\partial v}{\partial u} \cdot \frac{\partial z}{\partial v} + \frac{\partial w}{\partial u} \cdot \frac{\partial z}{\partial w} \right)$$

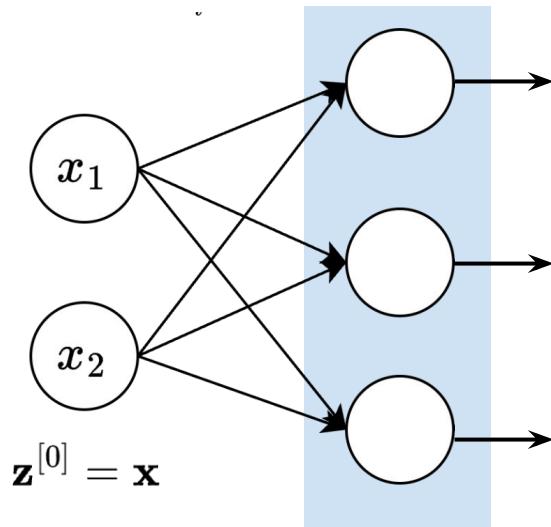


Backpropagation- Key Idea



Forward Pass - MLP

$$\mathbf{a}^{[1]} = \mathbf{W}^{[1]} \mathbf{z}^{[0]}$$

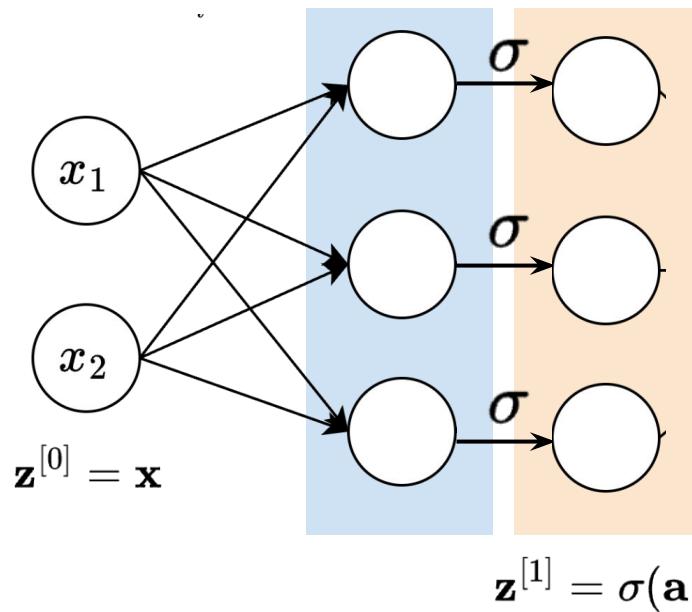


Algorithm Forward Pass through MLP

```
1: Input: input  $\mathbf{x}$ , weight matrices  $\mathbf{W}^{[1]}, \dots, \mathbf{W}^{[L]}$ , bias vectors  $\mathbf{b}^{[1]}, \dots, \mathbf{b}^{[L]}$ 
2:  $\mathbf{z}^{[0]} = \mathbf{x}$                                       $\triangleright$  Initialize input
3: for  $l = 1$  to  $L$  do
4:    $\mathbf{a}^{[l]} = \mathbf{W}^{[l]} \mathbf{z}^{[l-1]} + \mathbf{b}^{[l]}$             $\triangleright$  Linear transformation
5:    $\mathbf{z}^{[l]} = \sigma^{[l]}(\mathbf{a}^{[l]})$                        $\triangleright$  Nonlinear activation
6: end for
7: Output:  $\mathbf{z}^{[L]}$ 
```

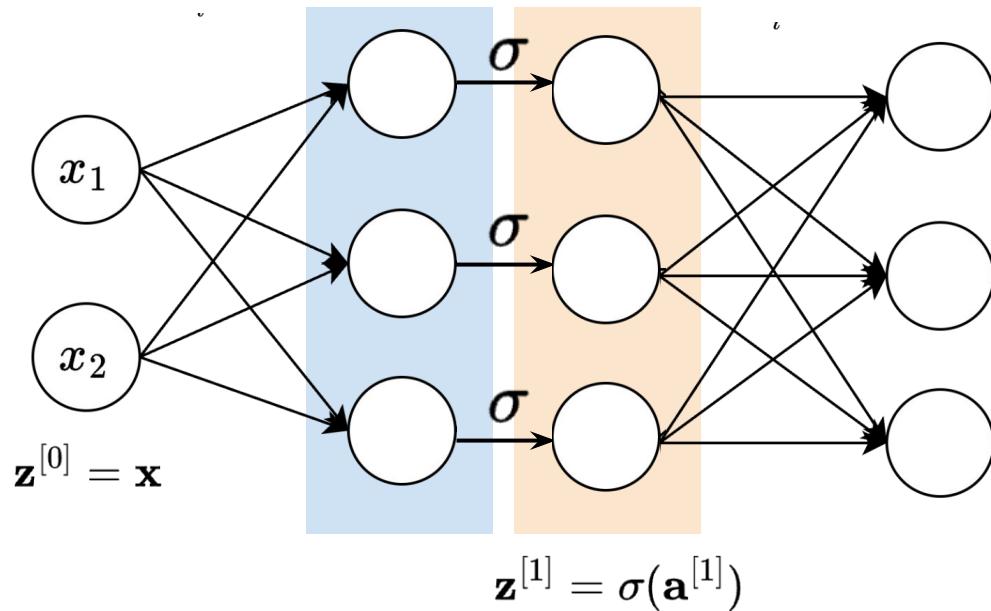
Forward Pass - MLP

$$\mathbf{a}^{[1]} = \mathbf{W}^{[1]} \mathbf{z}^{[0]}$$



Forward Pass - MLP

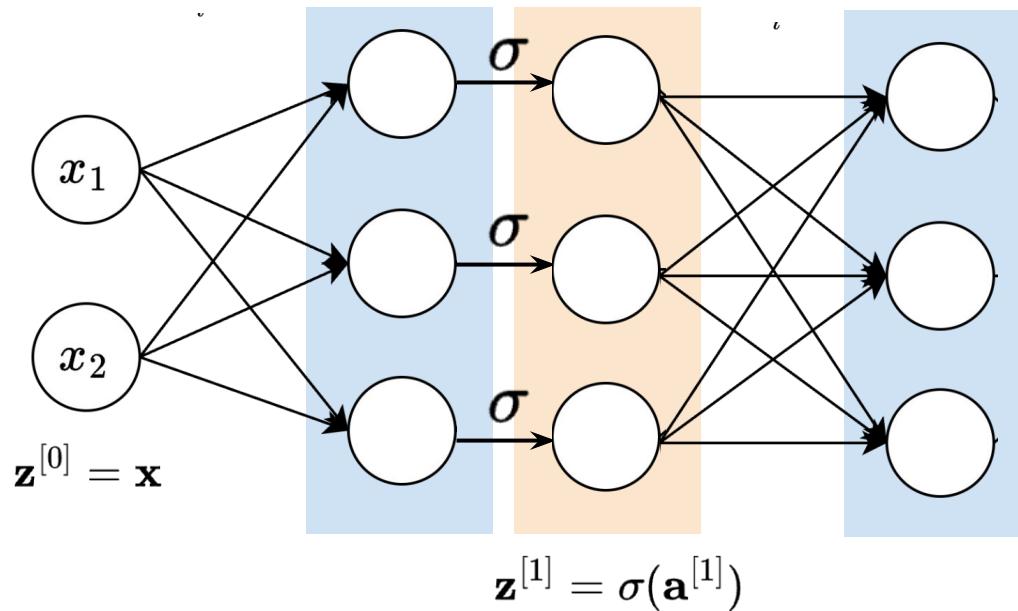
$$\mathbf{a}^{[1]} = \mathbf{W}^{[1]} \mathbf{z}^{[0]}$$



Forward Pass - MLP

$$\mathbf{a}^{[1]} = \mathbf{W}^{[1]} \mathbf{z}^{[0]}$$

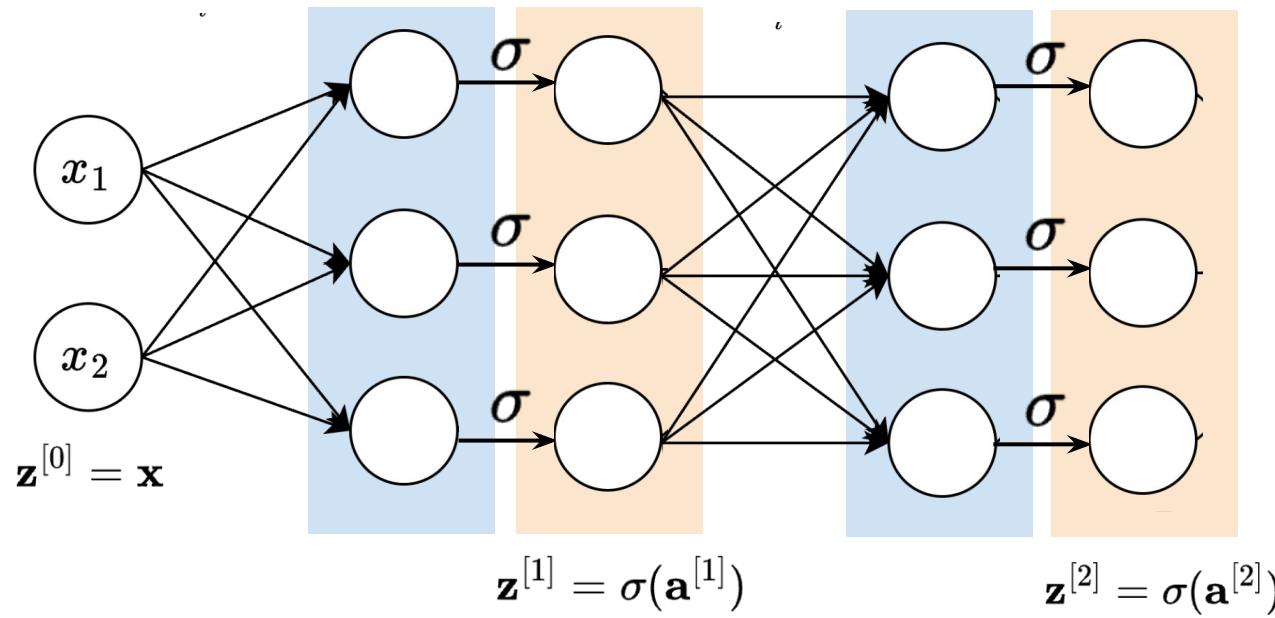
$$\mathbf{a}^{[2]} = \mathbf{W}^{[2]} \mathbf{z}^{[1]}$$



Forward Pass - MLP

$$\mathbf{a}^{[1]} = \mathbf{W}^{[1]} \mathbf{z}^{[0]}$$

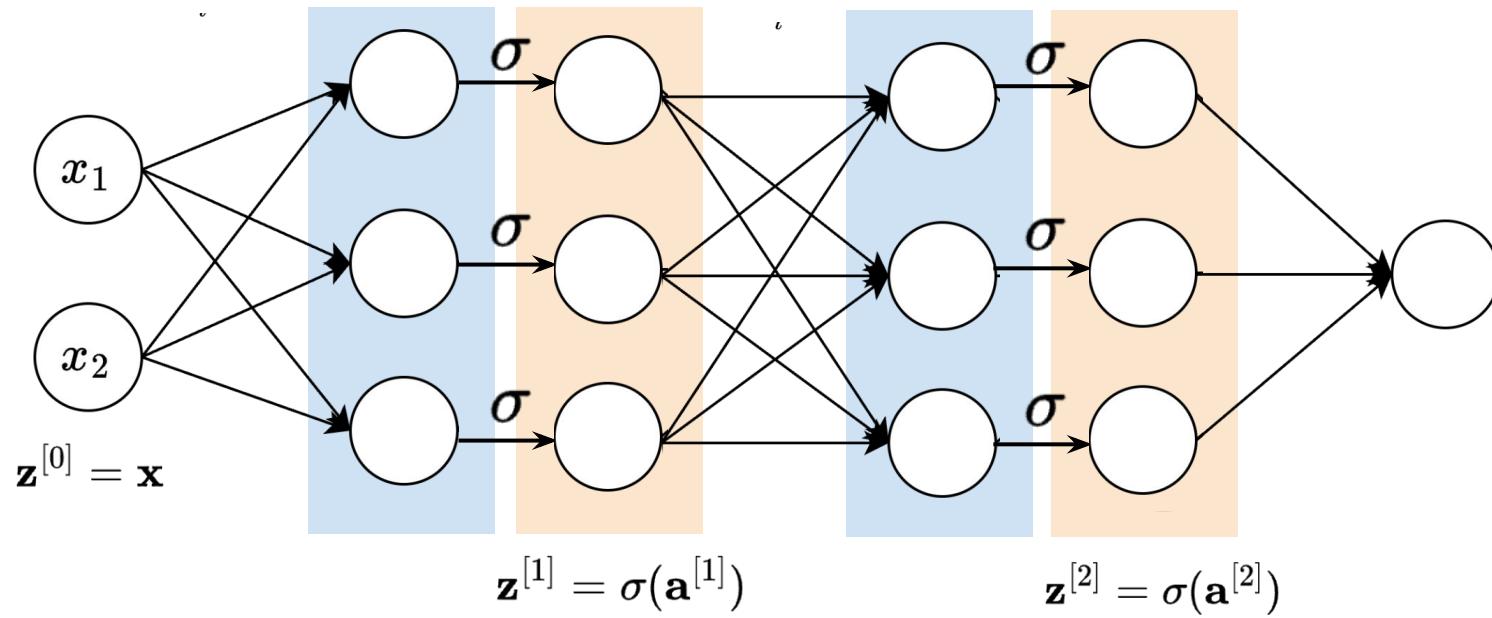
$$\mathbf{a}^{[2]} = \mathbf{W}^{[2]} \mathbf{z}^{[1]}$$



Forward Pass - MLP

$$\mathbf{a}^{[1]} = \mathbf{W}^{[1]} \mathbf{z}^{[0]}$$

$$\mathbf{a}^{[2]} = \mathbf{W}^{[2]} \mathbf{z}^{[1]}$$

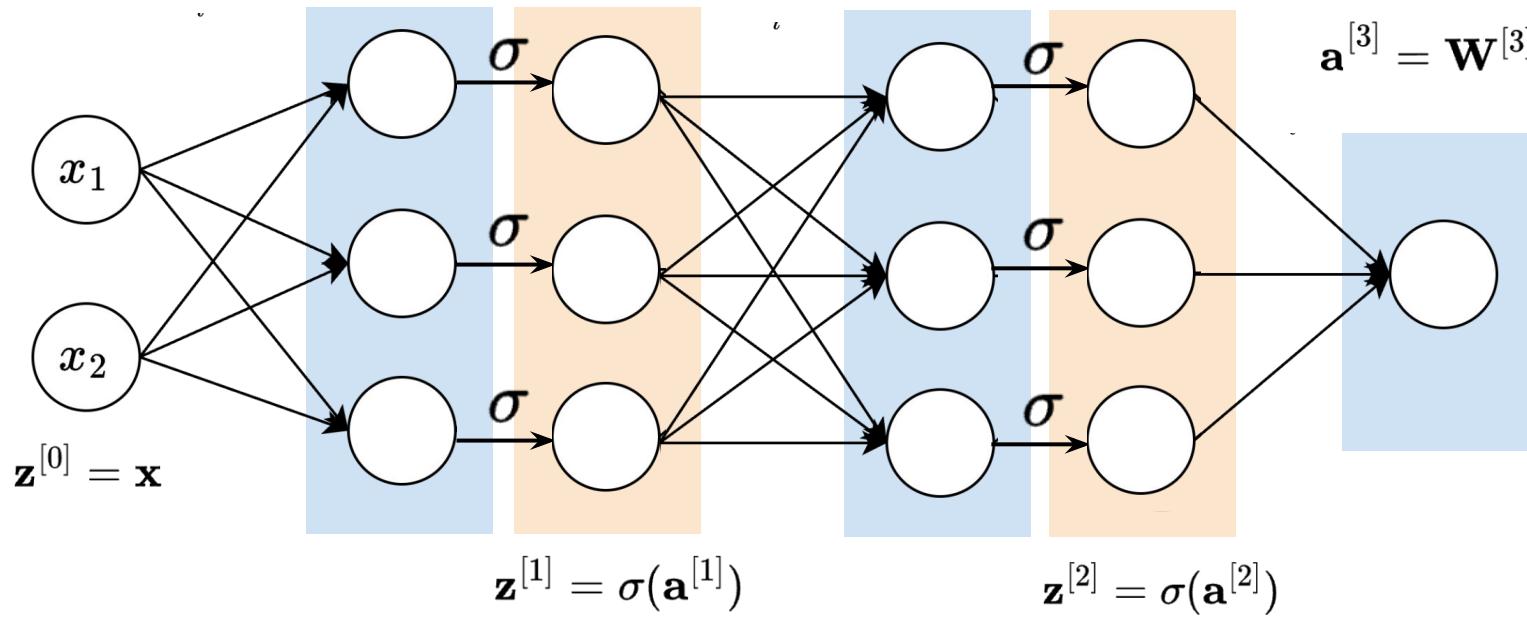


Forward Pass - MLP

$$\mathbf{a}^{[1]} = \mathbf{W}^{[1]} \mathbf{z}^{[0]}$$

$$\mathbf{a}^{[2]} = \mathbf{W}^{[2]} \mathbf{z}^{[1]}$$

$$\mathbf{a}^{[3]} = \mathbf{W}^{[3]} \mathbf{z}^{[2]}$$

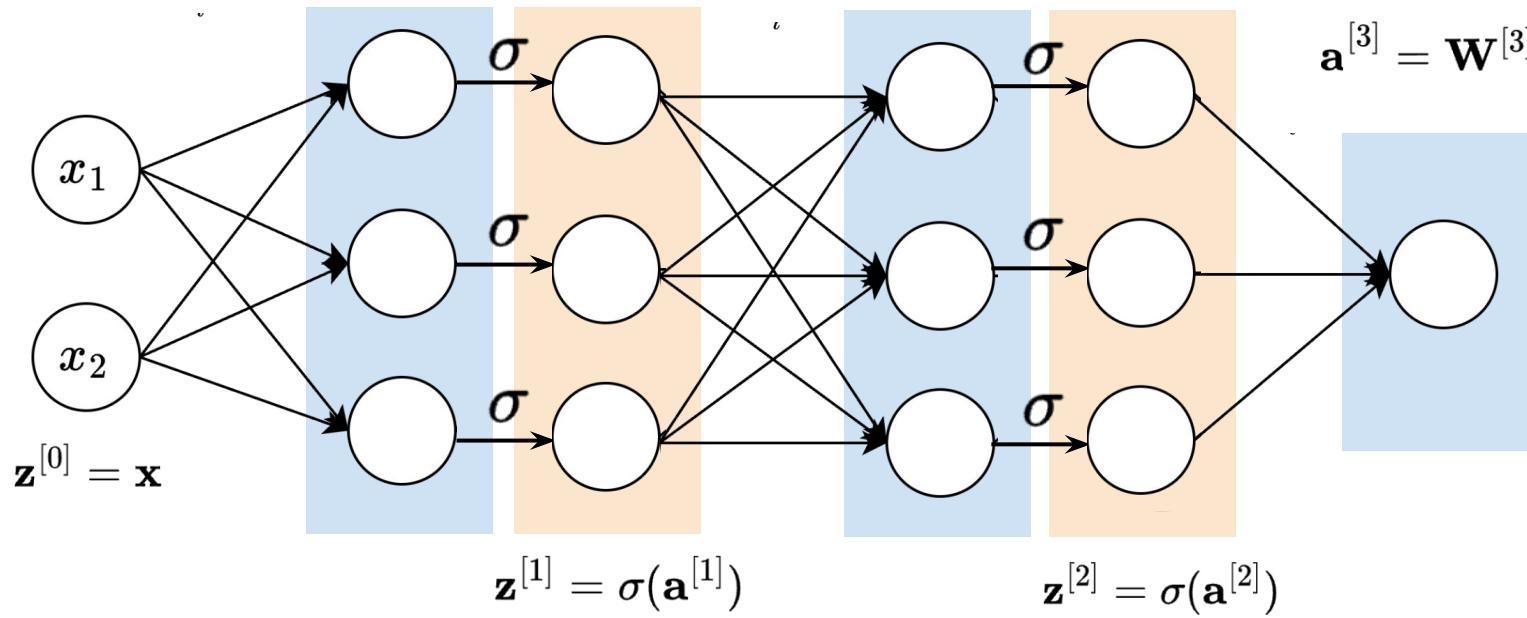


Forward Pass - MLP

$$\mathbf{a}^{[1]} = \mathbf{W}^{[1]} \mathbf{z}^{[0]}$$

$$\mathbf{a}^{[2]} = \mathbf{W}^{[2]} \mathbf{z}^{[1]}$$

$$\mathbf{a}^{[3]} = \mathbf{W}^{[3]} \mathbf{z}^{[2]}$$

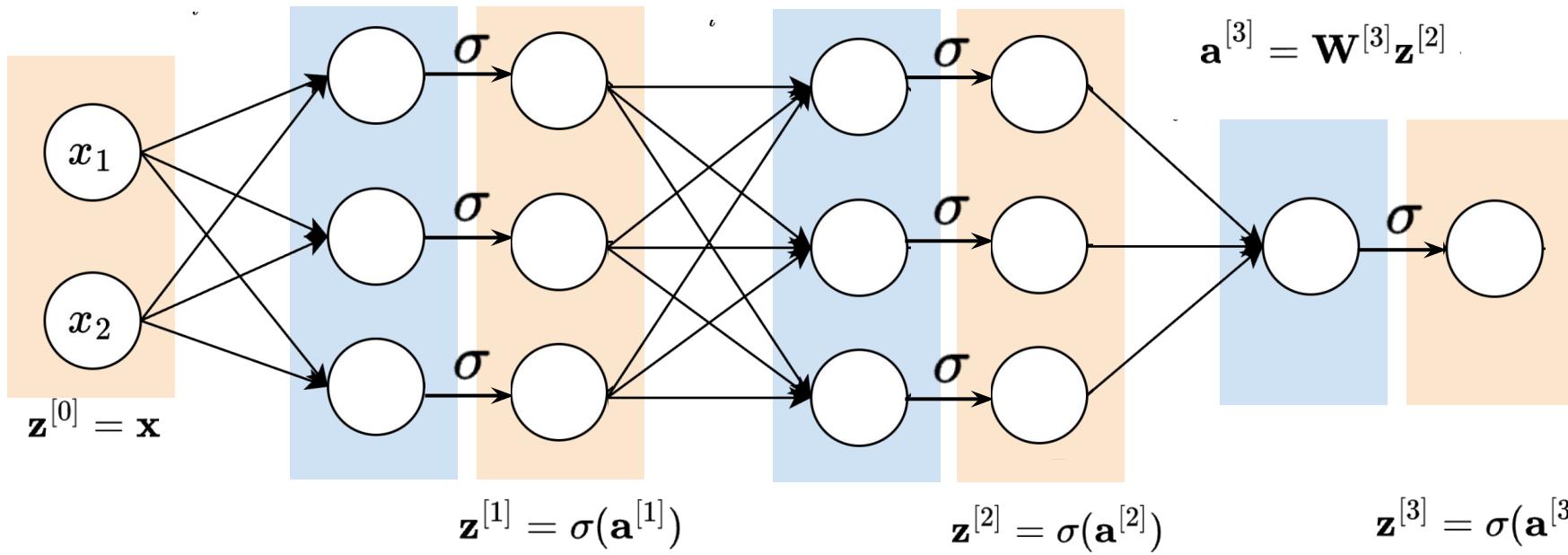


Forward Pass - MLP

$$\mathbf{a}^{[1]} = \mathbf{W}^{[1]} \mathbf{z}^{[0]}$$

$$\mathbf{a}^{[2]} = \mathbf{W}^{[2]} \mathbf{z}^{[1]}$$

$$\mathbf{a}^{[3]} = \mathbf{W}^{[3]} \mathbf{z}^{[2]}$$



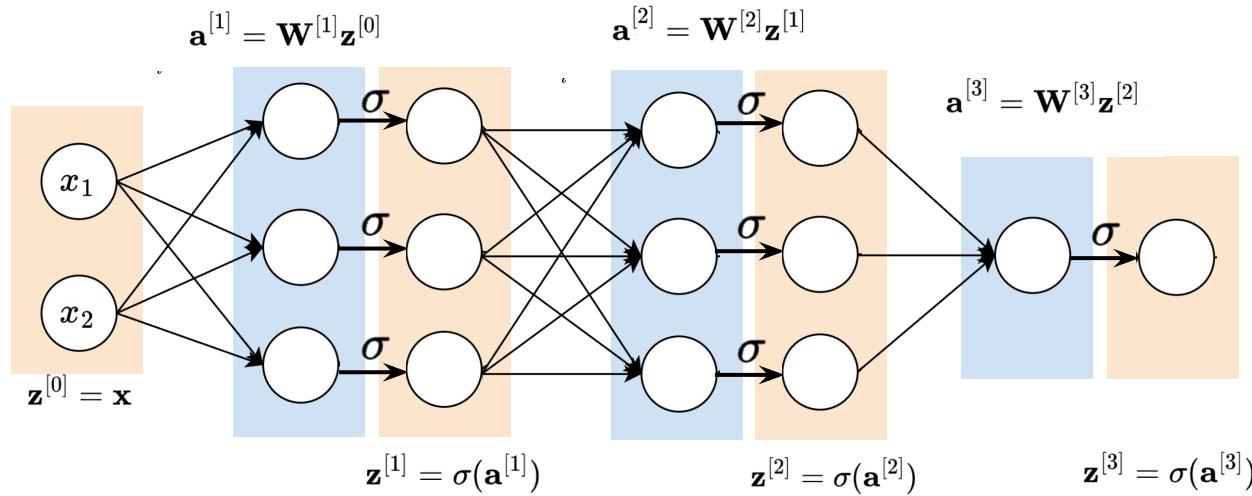
Forward Pass - MLP

Algorithm Forward Pass through MLP

```

1: Input: input  $\mathbf{x}$ , weight matrices  $\mathbf{W}^{[1]}, \dots, \mathbf{W}^{[L]}$ , bias vectors  $\mathbf{b}^{[1]}, \dots, \mathbf{b}^{[L]}$ 
2:  $\mathbf{z}^{[0]} = \mathbf{x}$  ▷ Initialize input
3: for  $l = 1$  to  $L$  do
4:    $\mathbf{a}^{[l]} = \mathbf{W}^{[l]} \mathbf{z}^{[l-1]} + \mathbf{b}^{[l]}$  ▷ Linear transformation
5:    $\mathbf{z}^{[l]} = \sigma^{[l]}(\mathbf{a}^{[l]})$  ▷ Nonlinear activation
6: end for
7: Output:  $\mathbf{z}^{[L]}$ 

```



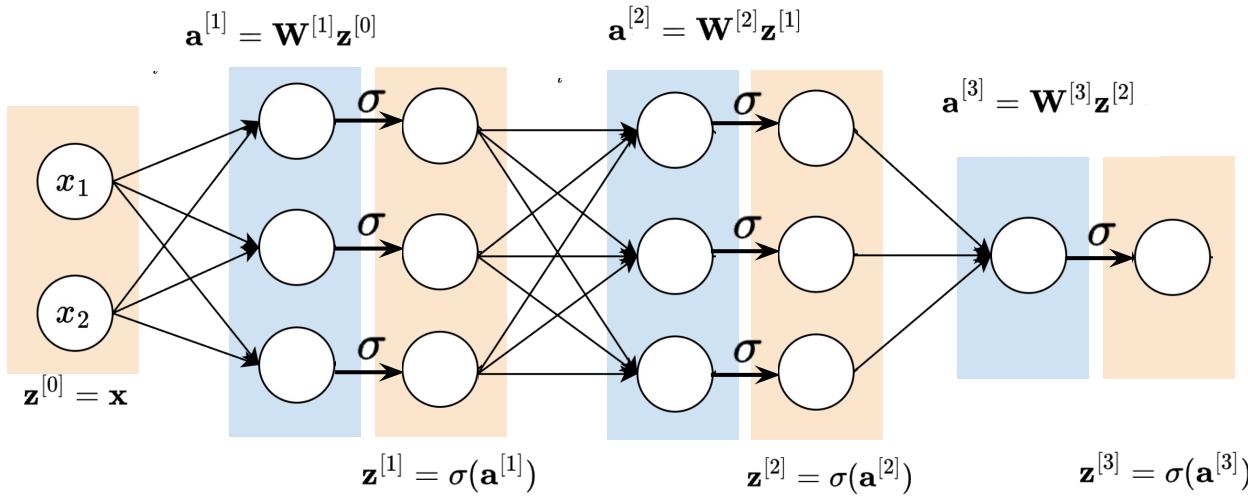
Forward Pass - MLP

Algorithm Forward Pass through MLP

```

1: Input: input  $\mathbf{x}$ , weight matrices  $\mathbf{W}^{[1]}, \dots, \mathbf{W}^{[L]}$ , bias vectors  $\mathbf{b}^{[1]}, \dots, \mathbf{b}^{[L]}$ 
2:  $\mathbf{z}^{[0]} = \mathbf{x}$  ▷ Initialize input
3: for  $l = 1$  to  $L$  do
4:    $\mathbf{a}^{[l]} = \mathbf{W}^{[l]} \mathbf{z}^{[l-1]} + \mathbf{b}^{[l]}$  ▷ Linear transformation
5:    $\mathbf{z}^{[l]} = \sigma^{[l]}(\mathbf{a}^{[l]})$  ▷ Nonlinear activation
6: end for
7: Output:  $\mathbf{z}^{[L]}$ 

```

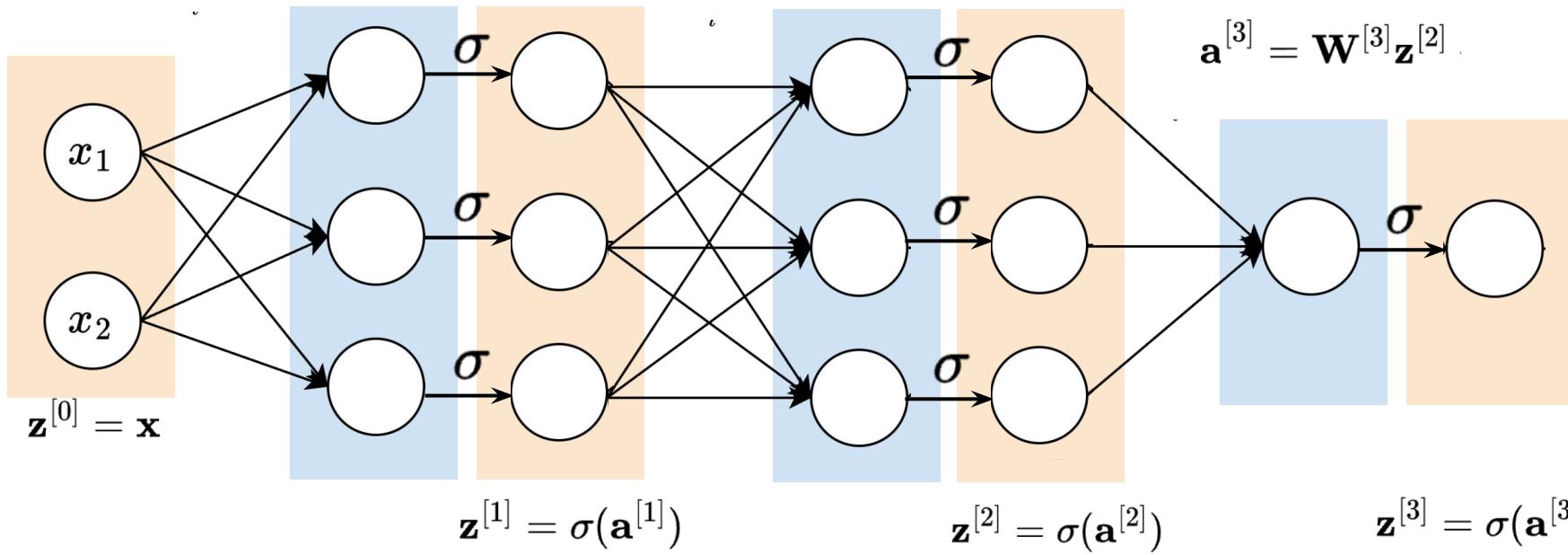


Backprop

$$\mathbf{a}^{[1]} = \mathbf{W}^{[1]} \mathbf{z}^{[0]}$$

$$\mathbf{a}^{[2]} = \mathbf{W}^{[2]} \mathbf{z}^{[1]}$$

$$\mathbf{a}^{[3]} = \mathbf{W}^{[3]} \mathbf{z}^{[2]}$$



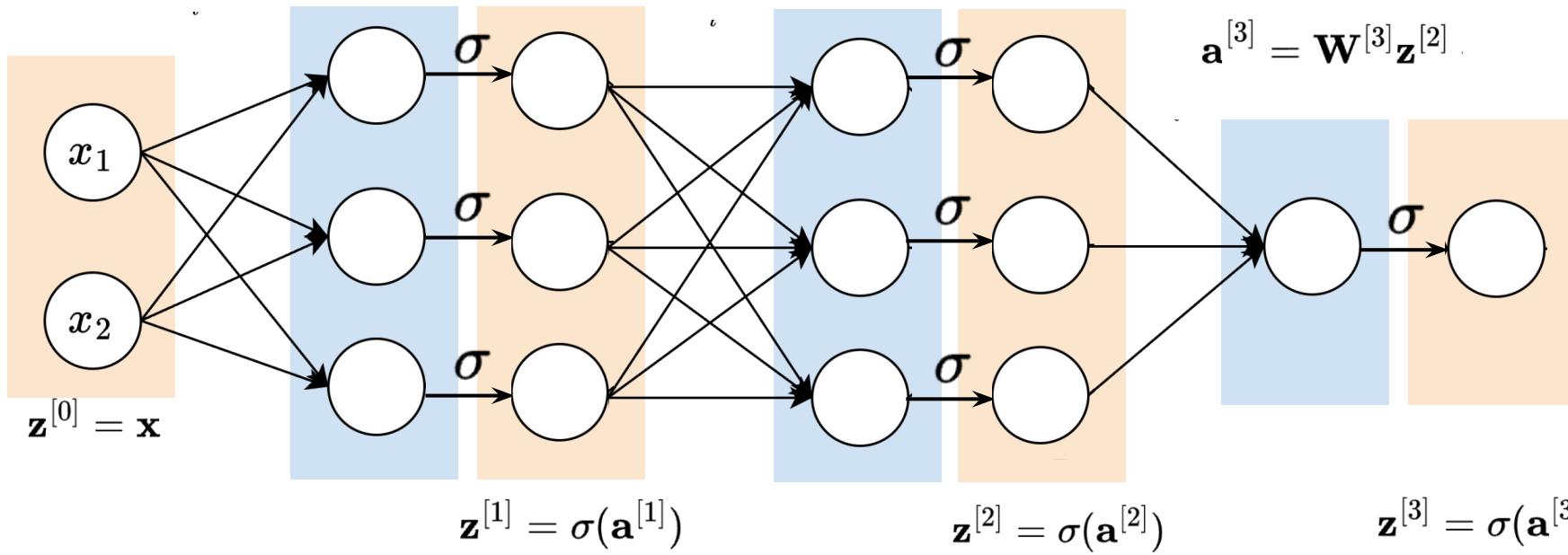
Backprop

We can directly compute $\frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[3]}}$!

$$\mathbf{a}^{[1]} = \mathbf{W}^{[1]} \mathbf{z}^{[0]}$$

$$\mathbf{a}^{[2]} = \mathbf{W}^{[2]} \mathbf{z}^{[1]}$$

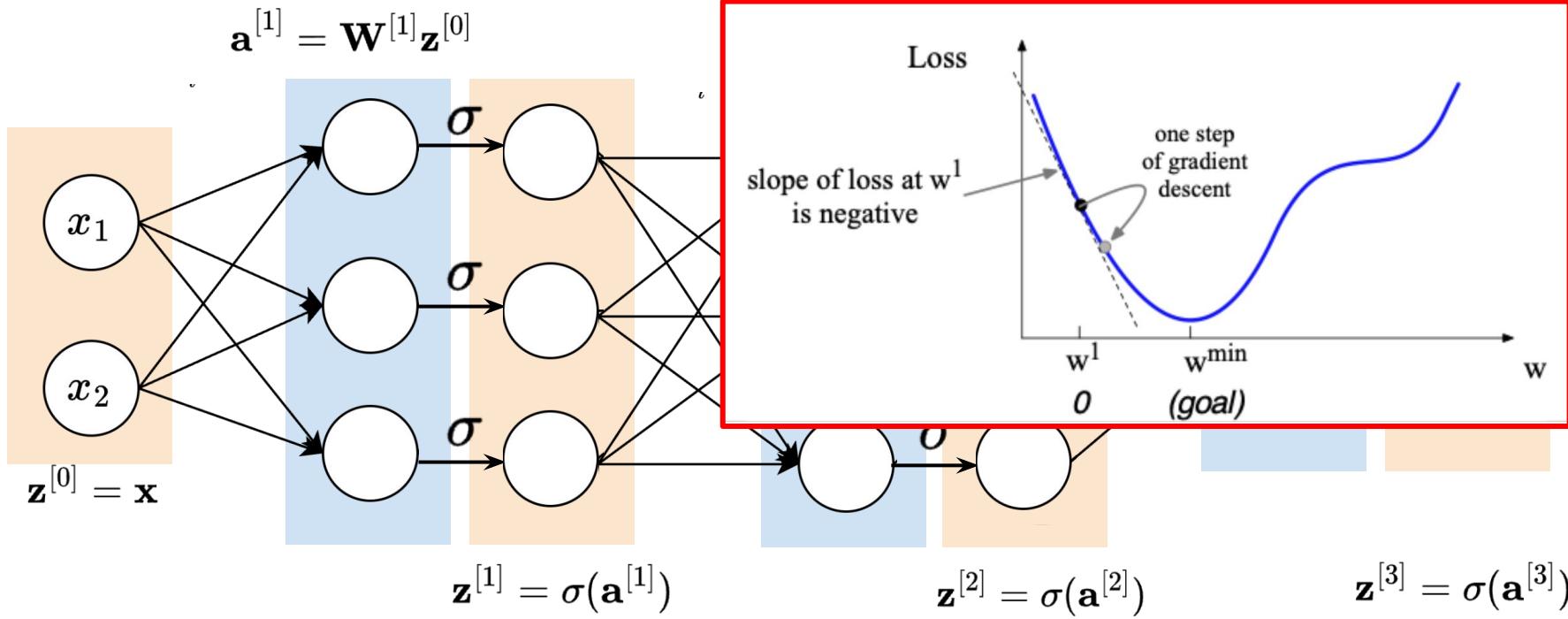
$$\mathbf{a}^{[3]} = \mathbf{W}^{[3]} \mathbf{z}^{[2]}$$



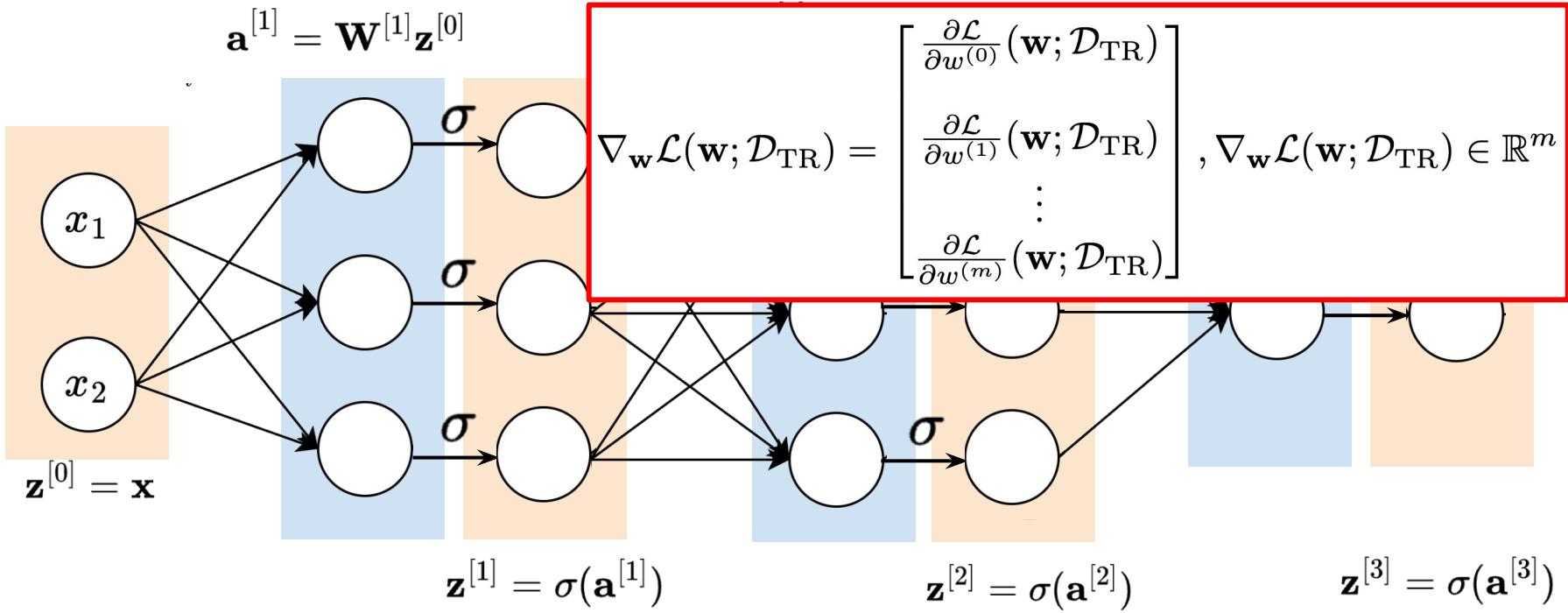
Backprop

$$\text{Loss} = \mathcal{L}(\mathbf{z}^{[3]}, \mathbf{y})$$

We can directly compute $\frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[3]}}$!



Backprop

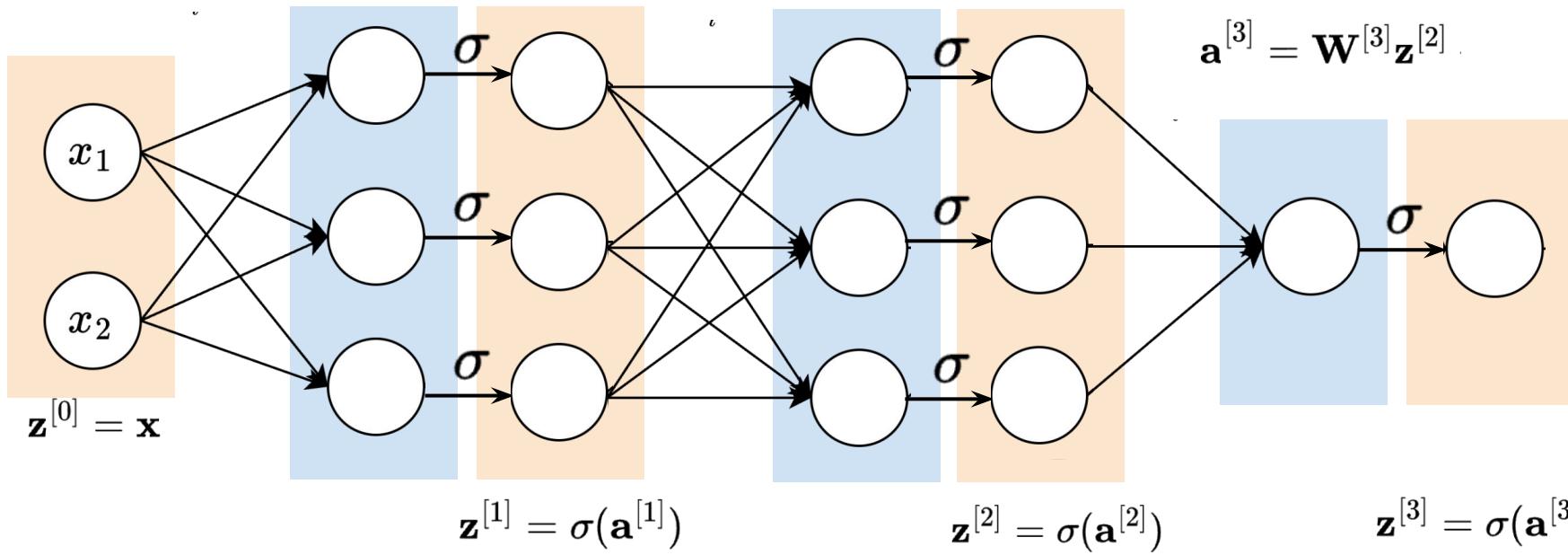
We can directly compute $\frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[3]}}!$ 

Backprop

$$\mathbf{a}^{[1]} = \mathbf{W}^{[1]} \mathbf{z}^{[0]}$$

$$\mathbf{a}^{[2]} = \mathbf{W}^{[2]} \mathbf{z}^{[1]}$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[3]}}$$



Backprop

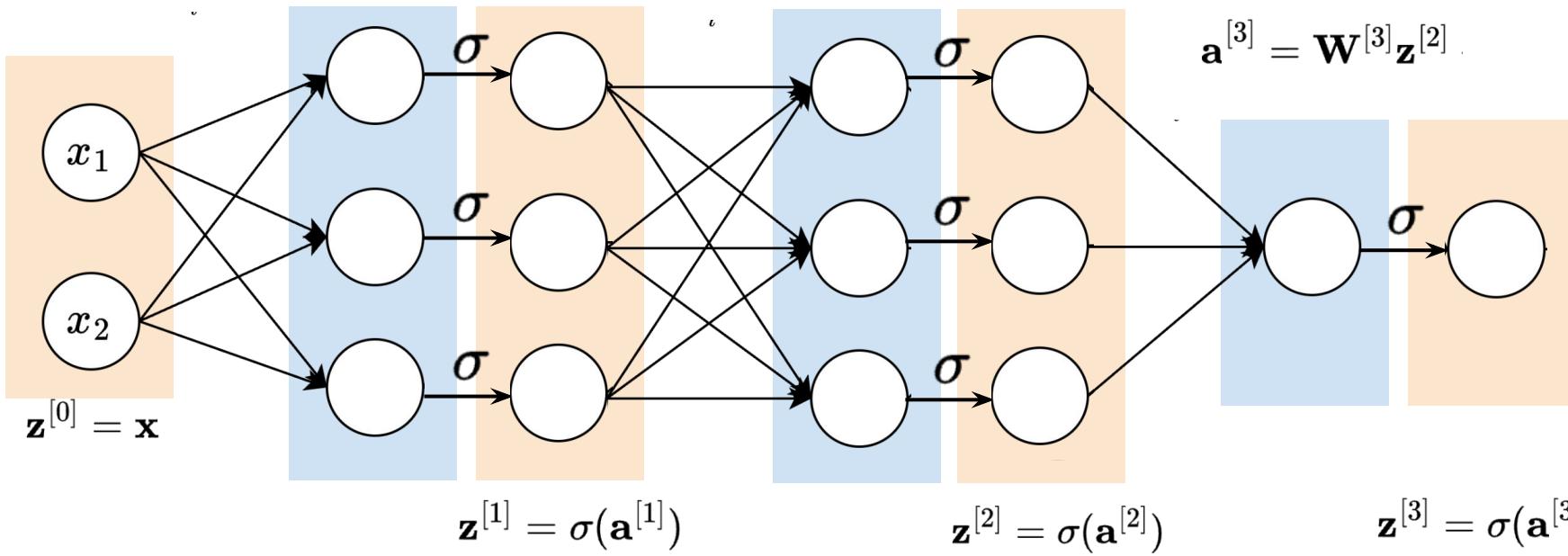
$$\text{Loss} = \mathcal{L}(\mathbf{z}^{[3]}, \mathbf{y})$$

$$\mathbf{a}^{[1]} = \mathbf{W}^{[1]} \mathbf{z}^{[0]}$$

$$\mathbf{a}^{[2]} = \mathbf{W}^{[2]} \mathbf{z}^{[1]}$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[3]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[3]}} \frac{\partial \mathbf{z}^{[3]}}{\partial \mathbf{a}^{[3]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[3]}}$$

$$\mathbf{a}^{[3]} = \mathbf{W}^{[3]} \mathbf{z}^{[2]}$$



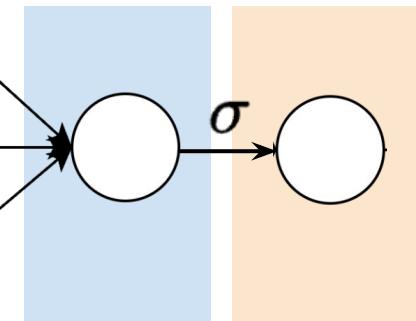
Backprop

Loss = $\mathcal{L}(\mathbf{z}^{[3]}, \mathbf{y})$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[3]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[3]}} \frac{\partial \mathbf{z}^{[3]}}{\partial \mathbf{a}^{[3]}}$$

$$= \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[3]}} \odot \sigma^{[3]}'$$

$$\mathbf{a}^{[3]} = \mathbf{W}^{[3]} \mathbf{z}^{[2]}$$

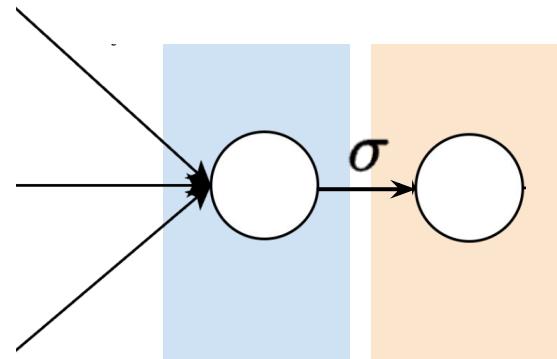


$$\mathbf{z}^{[3]} = \sigma(\mathbf{a}^{[3]})$$

Backprop

$$\text{Loss} = \mathcal{L}(\mathbf{z}^{[3]}, \mathbf{y})$$

$$\begin{aligned}
 \delta^{[3]} &= \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[3]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[3]}} \frac{\partial \mathbf{z}^{[3]}}{\partial \mathbf{a}^{[3]}} \\
 &= \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[3]}} \odot \sigma^{[3]}' \\
 \mathbf{a}^{[3]} &= \mathbf{W}^{[3]} \mathbf{z}^{[2]}
 \end{aligned}$$



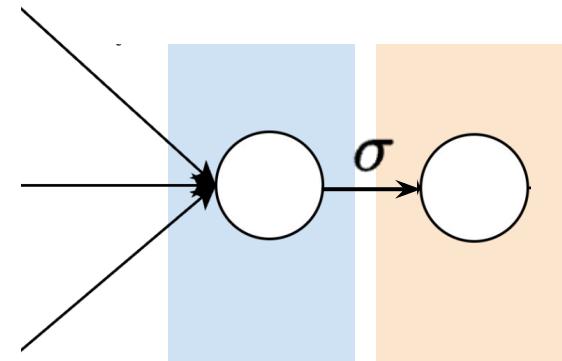
$$\mathbf{z}^{[3]} = \sigma(\mathbf{a}^{[3]})$$

Backprop

Loss = $\mathcal{L}(\mathbf{z}^{[3]}, \mathbf{y})$

$$\begin{aligned}
 \delta^{[3]} &= \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[3]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[3]}} \frac{\partial \mathbf{z}^{[3]}}{\partial \mathbf{a}^{[3]}} \\
 &= \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[3]}} \odot \sigma^{[3]}' \\
 \mathbf{a}^{[3]} &= \mathbf{W}^{[3]} \mathbf{z}^{[2]}
 \end{aligned}$$

$$\begin{aligned}
 \frac{\partial \mathcal{L}}{\partial \mathbf{W}^{[3]}} &= \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[3]}} \frac{\partial \mathbf{a}^{[3]}}{\partial \mathbf{W}^{[3]}} \\
 &= \delta^{[3]} (\mathbf{z}^{[2]})^T
 \end{aligned}$$



$$\mathbf{z}^{[3]} = \sigma(\mathbf{a}^{[3]})$$

Backprop

For propagation to next layer:

$$\delta^{[3]} = \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[3]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[3]}} \frac{\partial \mathbf{z}^{[3]}}{\partial \mathbf{a}^{[3]}}$$

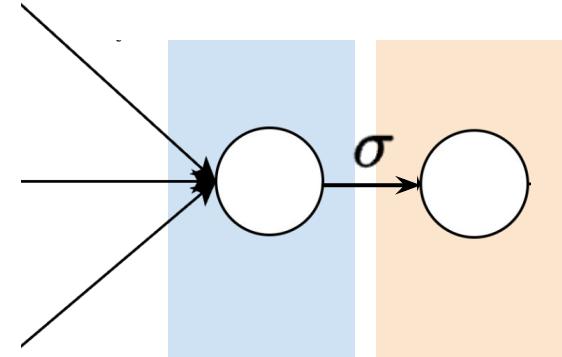
$$= \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[3]}} \odot \sigma^{[3]}'$$

$\frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[3]}}$

For weight updates:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{W}^{[3]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[3]}} \frac{\partial \mathbf{a}^{[3]}}{\partial \mathbf{W}^{[3]}}$$

$$= \delta^{[3]} (\mathbf{z}^{[2]})^T$$



$$\mathbf{z}^{[3]} = \sigma(\mathbf{a}^{[3]})$$

Backprop

For propagation to next layer:

$$\delta^{[3]} =$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[3]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[3]}} \frac{\partial \mathbf{z}^{[3]}}{\partial \mathbf{a}^{[3]}}$$

$$= \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[3]}} \odot \sigma^{[3]}'$$

$$\text{Loss} = \mathcal{L}(\mathbf{z}^{[3]}, \mathbf{y})$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[3]}}$$

$$\mathbf{a}^{[3]} = \mathbf{W}^{[3]} \mathbf{z}^{[2]}$$

For weight updates:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{W}^{[3]}} = \delta$$

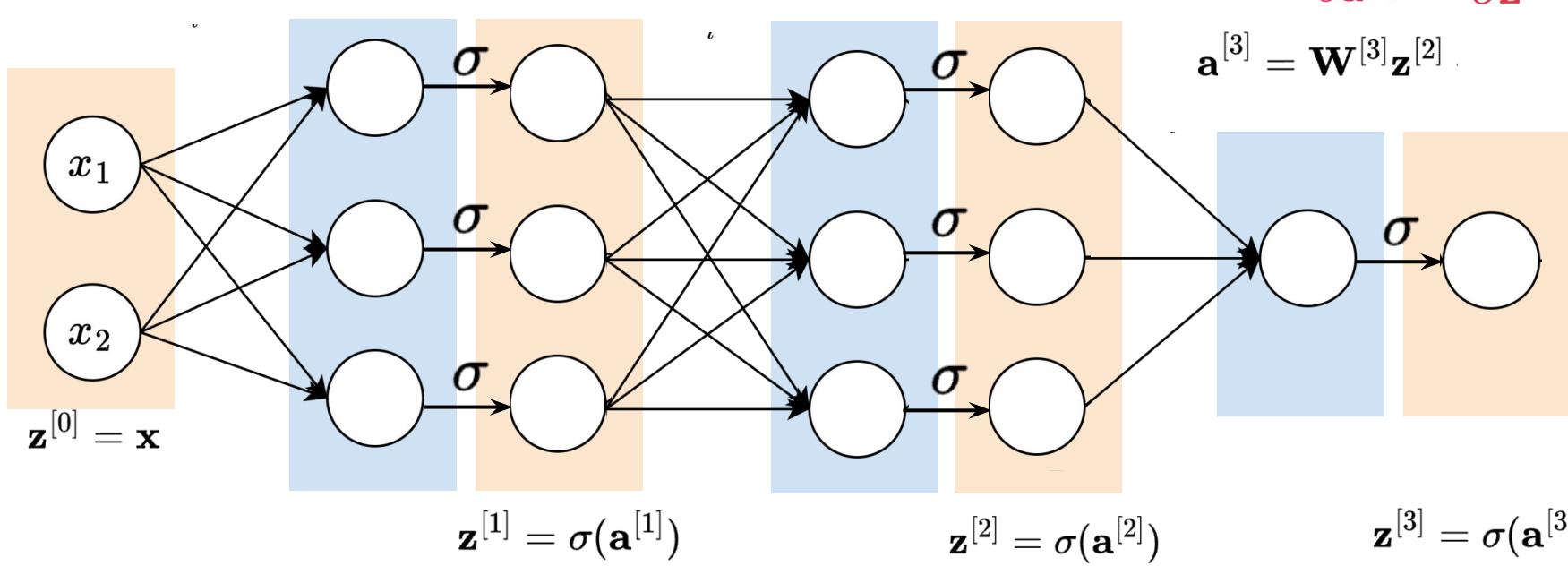
$$= \delta$$

Cornell Bowers CIS
Backpropagation- Key Idea

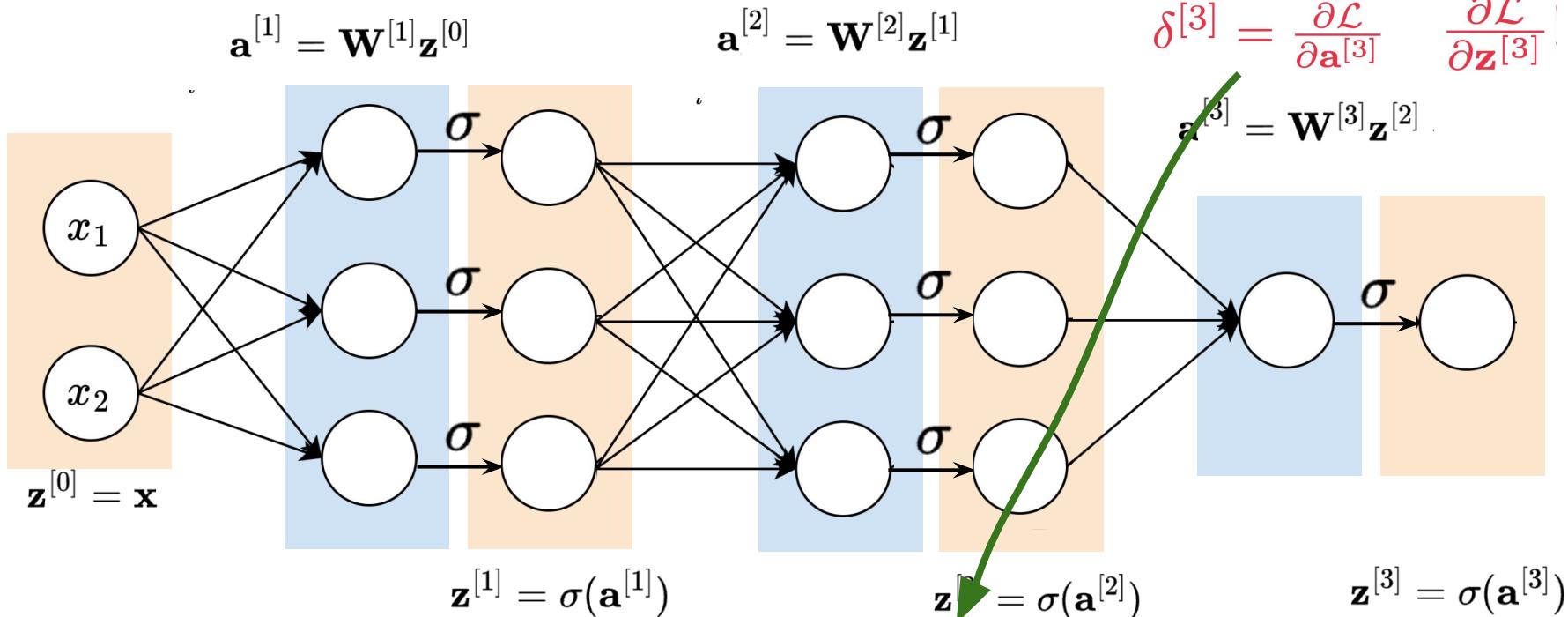
$$\frac{\partial z}{\partial u} = \left(\frac{\partial v_1}{\partial u} \cdot \frac{\partial z}{\partial v_1} + \frac{\partial v_2}{\partial u} \cdot \frac{\partial z}{\partial v_2} + \frac{\partial v_3}{\partial u} \cdot \frac{\partial z}{\partial v_3} \right)$$

<https://windowsonthetheory.org/2020/11/03/yet-another-backpropagation-tutorial/>

Backprop

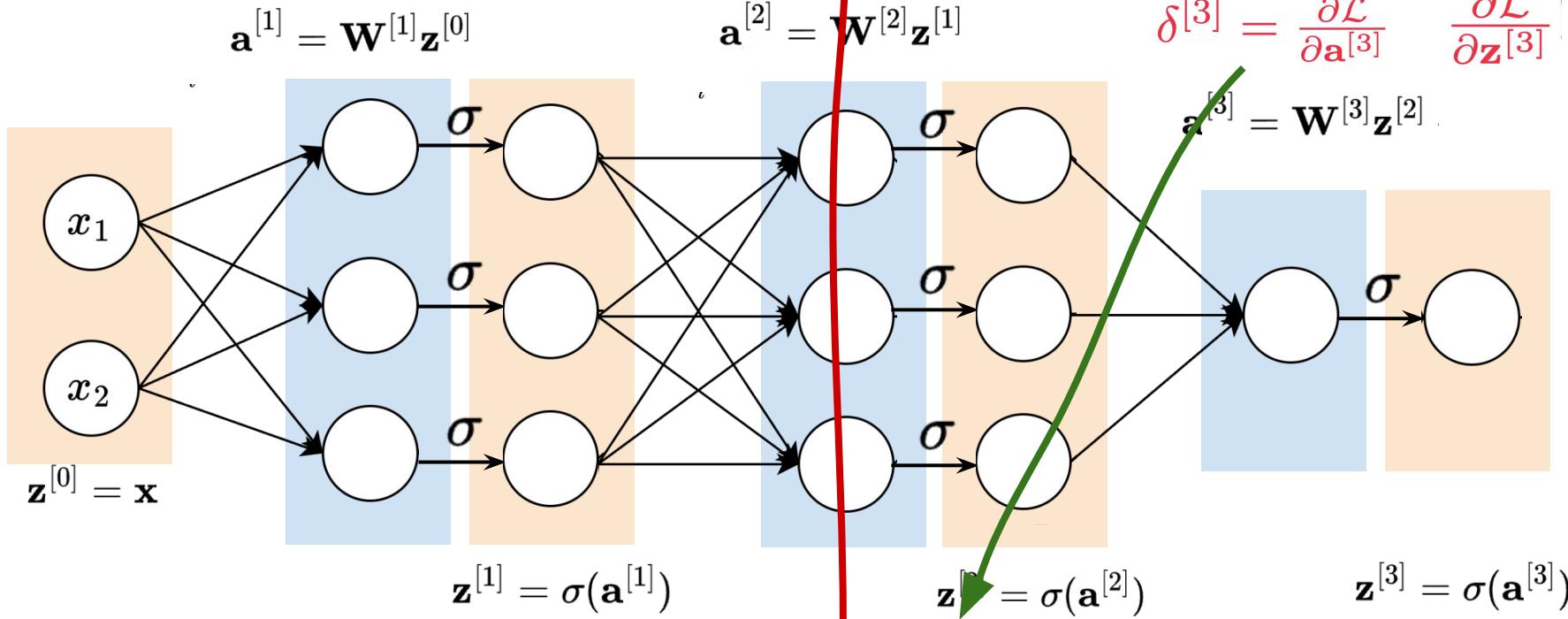


Backprop



$$\frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[2]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[3]}} \frac{\partial \mathbf{a}^{[3]}}{\partial \mathbf{z}^{[2]}} = (\mathbf{W}^{[3]})^T \delta^{[3]}$$

Backprop



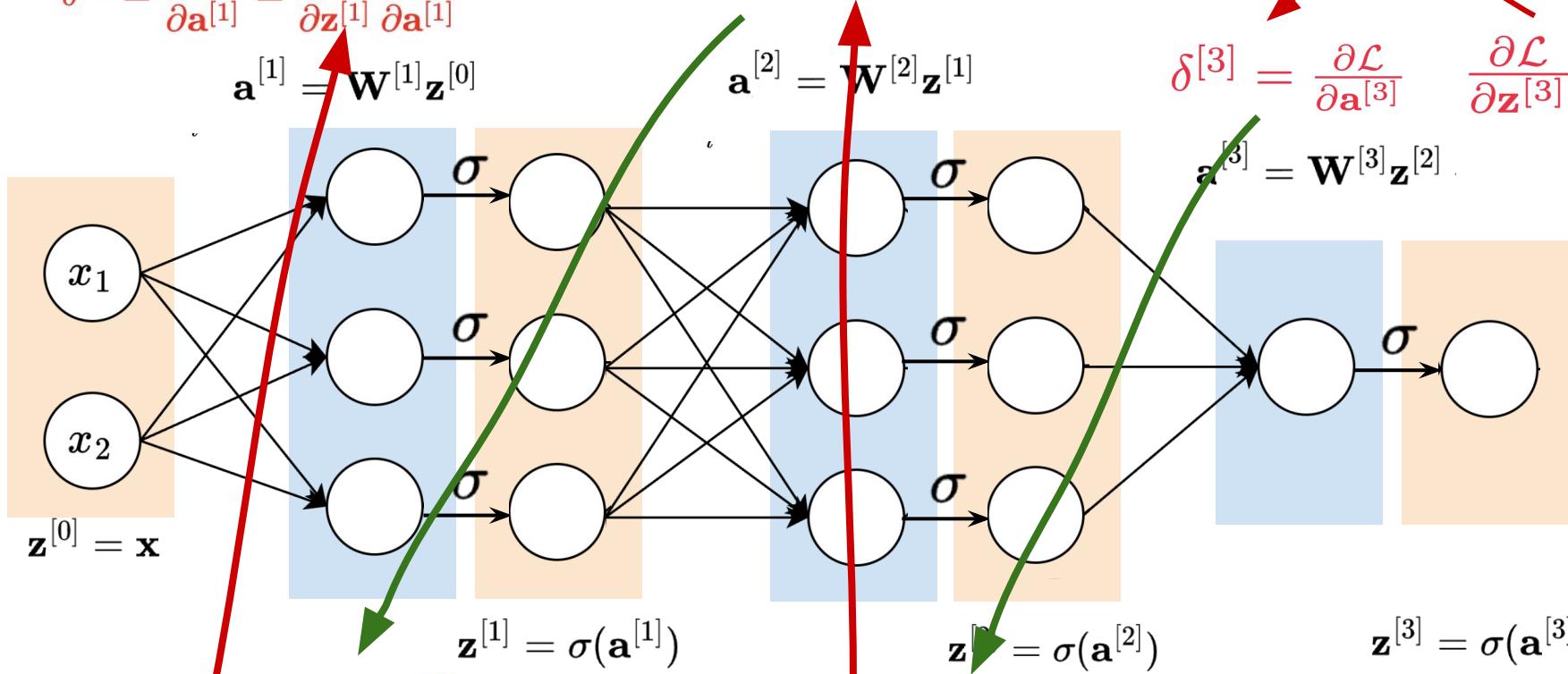
$$\frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[2]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[3]}} \frac{\partial \mathbf{a}^{[3]}}{\partial \mathbf{z}^{[2]}} = (\mathbf{W}^{[3]})^T \delta^{[3]}$$

Cornell Bowers CIS

$$\delta^{[1]} = \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[1]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[1]}} \frac{\partial \mathbf{z}^{[1]}}{\partial \mathbf{a}^{[1]}}$$

$$\delta^{[2]} = \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[2]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[2]}} \frac{\partial \mathbf{z}^{[2]}}{\partial \mathbf{a}^{[2]}}$$

$$\text{Loss} = \mathcal{L}(\mathbf{z}^{[3]}, \mathbf{y})$$



$$\frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[1]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[2]}} \frac{\partial \mathbf{a}^{[2]}}{\partial \mathbf{z}^{[1]}} = (\mathbf{W}^{[2]})^T \delta^{[2]}$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[2]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[3]}} \frac{\partial \mathbf{a}^{[3]}}{\partial \mathbf{z}^{[2]}} = (\mathbf{W}^{[3]})^T \delta^{[3]}$$

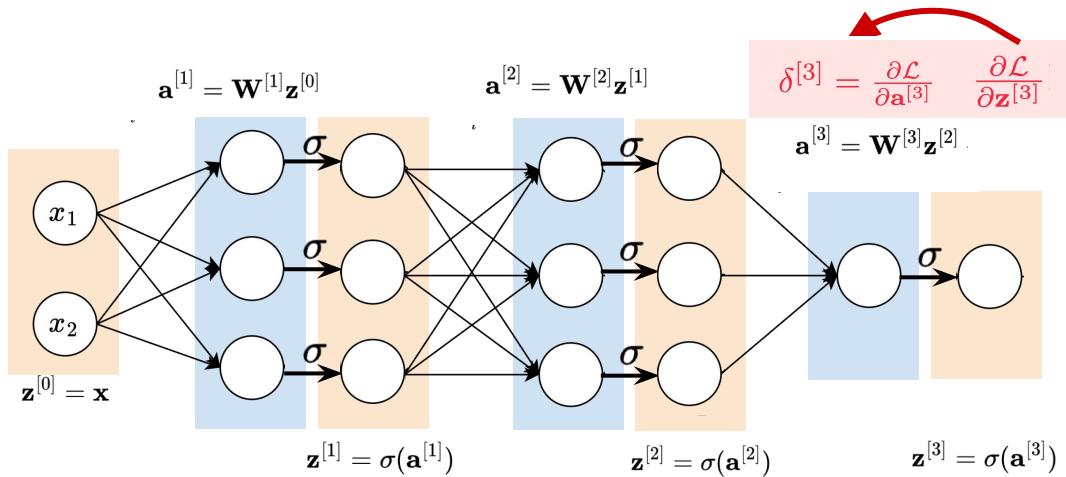
Backpropagation

Algorithm Backward Pass through MLP (Detailed)

```

1: Input:  $\{\mathbf{z}^{[1]}, \dots, \mathbf{z}^{[L]}\}$ ,  $\{\mathbf{a}^{[1]}, \dots, \mathbf{a}^{[L]}\}$ , loss gradient  $\frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[L]}}$ 
2:  $\delta^{[L]} = \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[L]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[L]}} \frac{\partial \mathbf{z}^{[L]}}{\partial \mathbf{a}^{[L]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[L]}} \odot \sigma^{[L]}'(\mathbf{a}^{[L]})$   $\triangleright$  Error term
3: for  $l = L$  to 1 do
4:    $\frac{\partial \mathcal{L}}{\partial \mathbf{W}^{[l]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[l]}} \frac{\partial \mathbf{a}^{[l]}}{\partial \mathbf{W}^{[l]}} = \delta^{[l]}(\mathbf{z}^{[l-1]})^T$   $\triangleright$  Gradient of weights
5:    $\frac{\partial \mathcal{L}}{\partial \mathbf{b}^{[l]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[l]}} \frac{\partial \mathbf{a}^{[l]}}{\partial \mathbf{b}^{[l]}} = \delta^{[l]}$   $\triangleright$  Gradient of biases
6:    $\frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[l-1]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[l]}} \frac{\partial \mathbf{a}^{[l]}}{\partial \mathbf{z}^{[l-1]}} = (\mathbf{W}^{[l]})^T \delta^{[l]}$ 
7:    $\delta^{[l-1]} = \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[l-1]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[l-1]}} \frac{\partial \mathbf{z}^{[l-1]}}{\partial \mathbf{a}^{[l-1]}} = ((\mathbf{W}^{[l]})^T \delta^{[l]}) \odot \sigma^{[l-1]}'(\mathbf{a}^{[l-1]})$ 
8: end for
9: Output:  $\frac{\partial \mathcal{L}}{\partial \mathbf{W}^{[1:L]}}$ ,  $\frac{\partial \mathcal{L}}{\partial \mathbf{b}^{[1:L]}}$ 

```

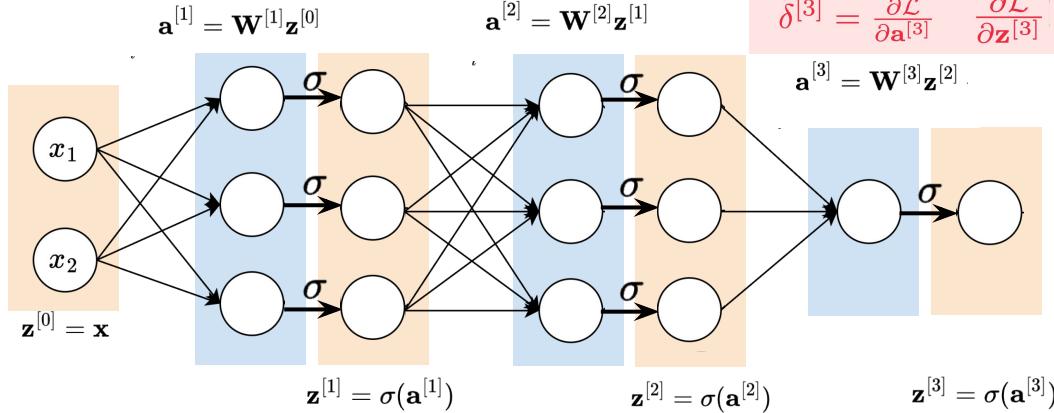


$$\mathcal{L}(\mathbf{z}^{[3]}, \mathbf{y})$$

We can directly compute $\frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[3]}}$!

Backpropagation

$$\begin{aligned}\frac{\partial \mathcal{L}}{\partial \mathbf{W}^{[3]}} &= \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[3]}} \frac{\partial \mathbf{a}^{[3]}}{\partial \mathbf{W}^{[3]}} \\ &= \delta^{[3]} (\mathbf{z}^{[2]})^T\end{aligned}$$



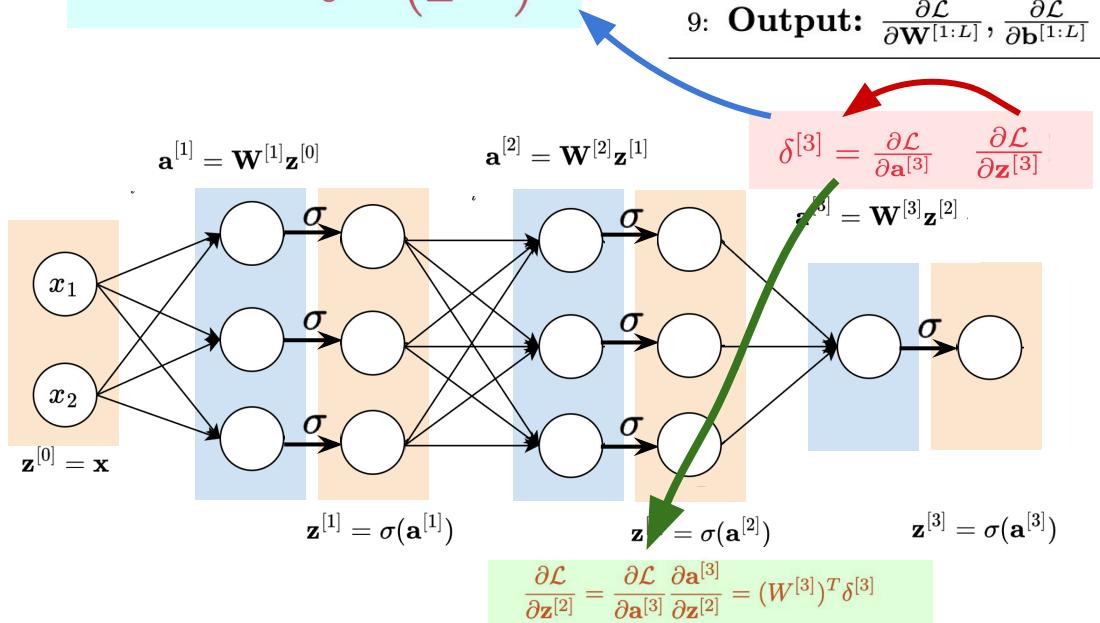
Algorithm Backward Pass through MLP (Detailed)

- 1: **Input:** $\{\mathbf{z}^{[1]}, \dots, \mathbf{z}^{[L]}\}$, $\{\mathbf{a}^{[1]}, \dots, \mathbf{a}^{[L]}\}$, loss gradient $\frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[L]}}$
- 2: $\delta^{[L]} = \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[L]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[L]}} \frac{\partial \mathbf{z}^{[L]}}{\partial \mathbf{a}^{[L]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[L]}} \odot \sigma^{[L]}'(\mathbf{a}^{[L]})$ ▷ Error term
- 3: **for** $l = L$ **to** 1 **do**
- 4: $\frac{\partial \mathcal{L}}{\partial \mathbf{W}^{[l]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[l]}} \frac{\partial \mathbf{a}^{[l]}}{\partial \mathbf{W}^{[l]}} = \delta^{[l]} (\mathbf{z}^{[l-1]})^T$ ▷ Gradient of weights
- 5: $\frac{\partial \mathcal{L}}{\partial \mathbf{b}^{[l]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[l]}} \frac{\partial \mathbf{a}^{[l]}}{\partial \mathbf{b}^{[l]}} = \delta^{[l]}$ ▷ Gradient of biases
- 6: $\frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[l-1]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[l]}} \frac{\partial \mathbf{a}^{[l]}}{\partial \mathbf{z}^{[l-1]}} = (\mathbf{W}^{[l]})^T \delta^{[l]}$
- 7: $\delta^{[l-1]} = \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[l-1]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[l-1]}} \frac{\partial \mathbf{z}^{[l-1]}}{\partial \mathbf{a}^{[l-1]}} = ((\mathbf{W}^{[l]})^T \delta^{[l]}) \odot \sigma^{[l-1]}'(\mathbf{a}^{[l-1]})$
- 8: **end for**
- 9: **Output:** $\frac{\partial \mathcal{L}}{\partial \mathbf{W}^{[1:L]}}$, $\frac{\partial \mathcal{L}}{\partial \mathbf{b}^{[1:L]}}$

We can directly compute $\frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[3]}}$!

Backpropagation

$$\begin{aligned}\frac{\partial \mathcal{L}}{\partial \mathbf{W}^{[3]}} &= \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[3]}} \frac{\partial \mathbf{a}^{[3]}}{\partial \mathbf{W}^{[3]}} \\ &= \delta^{[3]} (\mathbf{z}^{[2]})^T\end{aligned}$$



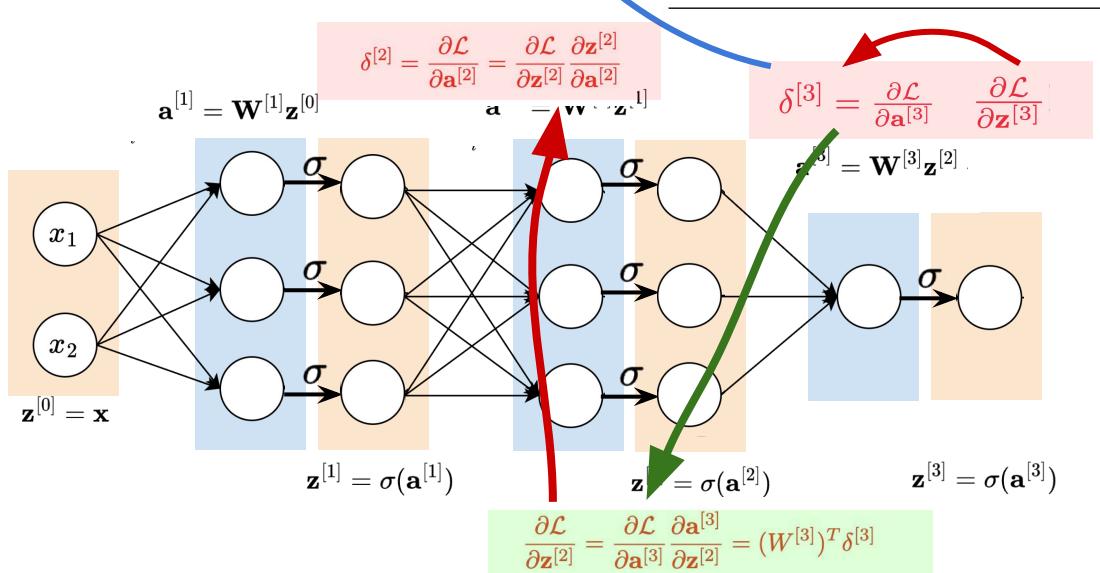
Algorithm Backward Pass through MLP (Detailed)

- 1: **Input:** $\{\mathbf{z}^{[1]}, \dots, \mathbf{z}^{[L]}\}$, $\{\mathbf{a}^{[1]}, \dots, \mathbf{a}^{[L]}\}$, loss gradient $\frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[L]}}$
- 2: $\delta^{[L]} = \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[L]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[L]}} \frac{\partial \mathbf{z}^{[L]}}{\partial \mathbf{a}^{[L]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[L]}} \odot \sigma^{[L]}'(\mathbf{a}^{[L]})$ ▷ Error term
- 3: **for** $l = L$ **to** 1 **do**
- 4: $\frac{\partial \mathcal{L}}{\partial \mathbf{W}^{[l]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[l]}} \frac{\partial \mathbf{a}^{[l]}}{\partial \mathbf{W}^{[l]}} = \delta^{[l]} (\mathbf{z}^{[l-1]})^T$ ▷ Gradient of weights
- 5: $\frac{\partial \mathcal{L}}{\partial \mathbf{b}^{[l]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[l]}} \frac{\partial \mathbf{a}^{[l]}}{\partial \mathbf{b}^{[l]}} = \delta^{[l]}$ ▷ Gradient of biases
- 6: $\frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[l-1]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[l]}} \frac{\partial \mathbf{a}^{[l]}}{\partial \mathbf{z}^{[l-1]}} = (\mathbf{W}^{[l]})^T \delta^{[l]}$
- 7: $\delta^{[l-1]} = \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[l-1]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[l-1]}} \frac{\partial \mathbf{z}^{[l-1]}}{\partial \mathbf{a}^{[l-1]}} = ((\mathbf{W}^{[l]})^T \delta^{[l]}) \odot \sigma^{[l-1]}'(\mathbf{a}^{[l-1]})$
- 8: **end for**
- 9: **Output:** $\frac{\partial \mathcal{L}}{\partial \mathbf{W}^{[1:L]}}$, $\frac{\partial \mathcal{L}}{\partial \mathbf{b}^{[1:L]}}$

We can directly compute $\frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[3]}}$!

Backpropagation

$$\begin{aligned}\frac{\partial \mathcal{L}}{\partial \mathbf{W}^{[3]}} &= \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[3]}} \frac{\partial \mathbf{a}^{[3]}}{\partial \mathbf{W}^{[3]}} \\ &= \delta^{[3]} (\mathbf{z}^{[2]})^T\end{aligned}$$



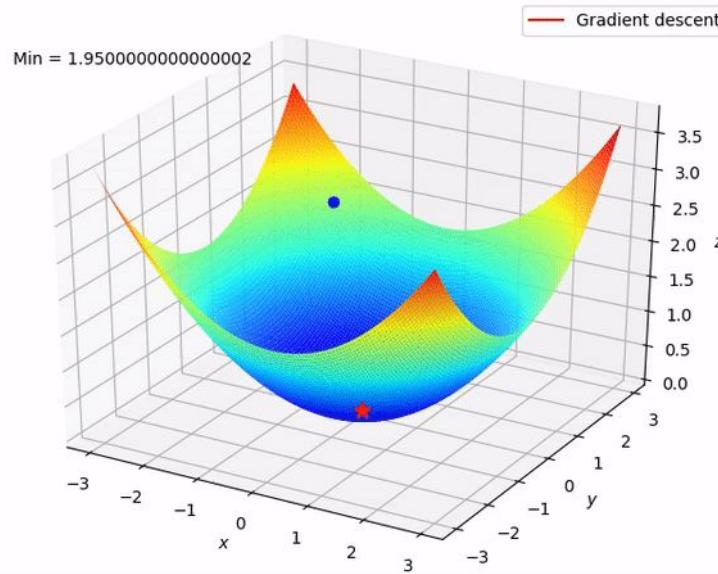
Algorithm Backward Pass through MLP (Detailed)

- 1: **Input:** $\{\mathbf{z}^{[1]}, \dots, \mathbf{z}^{[L]}\}$, $\{\mathbf{a}^{[1]}, \dots, \mathbf{a}^{[L]}\}$, loss gradient $\frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[L]}}$
- 2: $\delta^{[L]} = \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[L]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[L]}} \frac{\partial \mathbf{z}^{[L]}}{\partial \mathbf{a}^{[L]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[L]}} \odot \sigma^{[L]}'(\mathbf{a}^{[L]})$ ▷ Error term
- 3: **for** $l = L$ **to** 1 **do**
- 4: $\frac{\partial \mathcal{L}}{\partial \mathbf{W}^{[l]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[l]}} \frac{\partial \mathbf{a}^{[l]}}{\partial \mathbf{W}^{[l]}} = \delta^{[l]} (\mathbf{z}^{[l-1]})^T$ ▷ Gradient of weights
- 5: $\frac{\partial \mathcal{L}}{\partial \mathbf{b}^{[l]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[l]}} \frac{\partial \mathbf{a}^{[l]}}{\partial \mathbf{b}^{[l]}} = \delta^{[l]}$ ▷ Gradient of biases
- 6: $\frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[l-1]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[l]}} \frac{\partial \mathbf{a}^{[l]}}{\partial \mathbf{z}^{[l-1]}} = (\mathbf{W}^{[l]})^T \delta^{[l]}$
- 7: $\delta^{[l-1]} = \frac{\partial \mathcal{L}}{\partial \mathbf{a}^{[l-1]}} = \frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[l-1]}} \frac{\partial \mathbf{z}^{[l-1]}}{\partial \mathbf{a}^{[l-1]}} = ((\mathbf{W}^{[l]})^T \delta^{[l]}) \odot \sigma^{[l-1]}'(\mathbf{a}^{[l-1]})$
- 8: **end for**
- 9: **Output:** $\frac{\partial \mathcal{L}}{\partial \mathbf{W}^{[1:L]}}$, $\frac{\partial \mathcal{L}}{\partial \mathbf{b}^{[1:L]}}$

$$\mathcal{L}(\mathbf{z}^{[3]}, \mathbf{y})$$

We can directly compute $\frac{\partial \mathcal{L}}{\partial \mathbf{z}^{[3]}}!$

What is Optimization?



In deep learning, optimization methods attempt to find model weights that **minimize the loss function**.

Loss function

Empirical Risk:

$$\mathcal{L}(\mathbf{w}_t) = \frac{1}{n} \sum_{i=1, \dots, n} \ell(\mathbf{w}_t, \mathbf{x}_i)$$

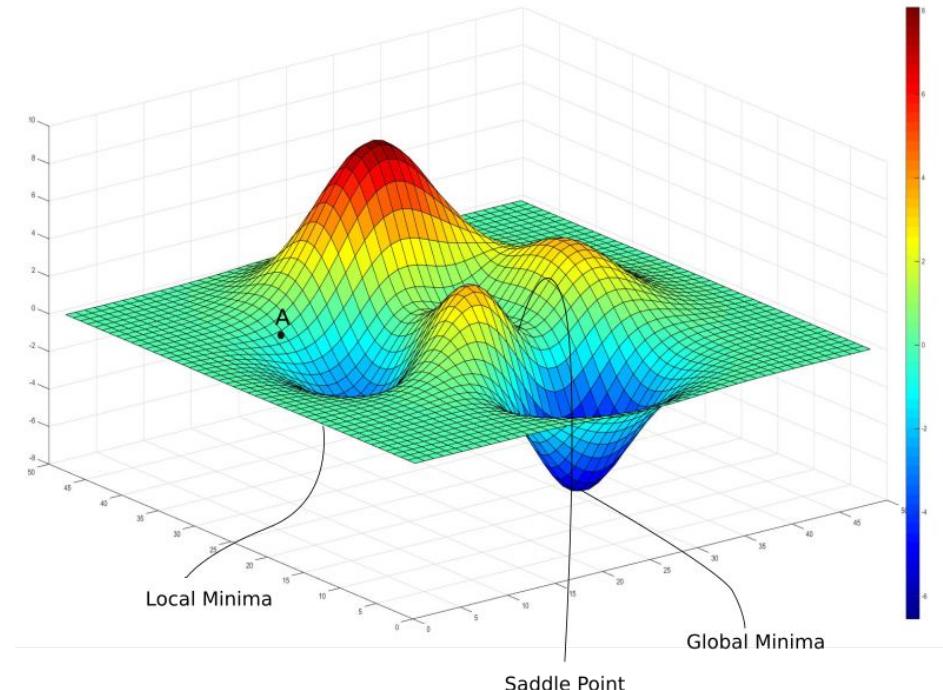
t : at time step t

\mathbf{w}_t : Model weights (parameters) at time t

\mathbf{x}_i : The i -th input training data

\mathcal{L} : the Loss function (optimization target)

ℓ : per-sample loss

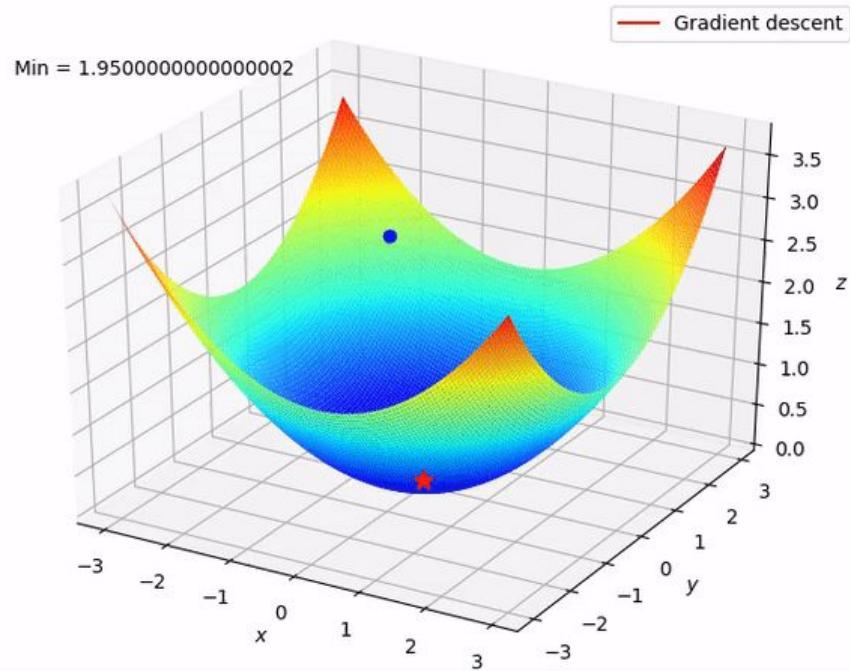


Gradient Descent (GD)

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \nabla \mathcal{L}(\mathbf{w}_t)$$

α : the learning rate

$\nabla \mathcal{L}(\mathbf{w}_t)$: the gradient of Loss w.r.t. \mathbf{w}_t



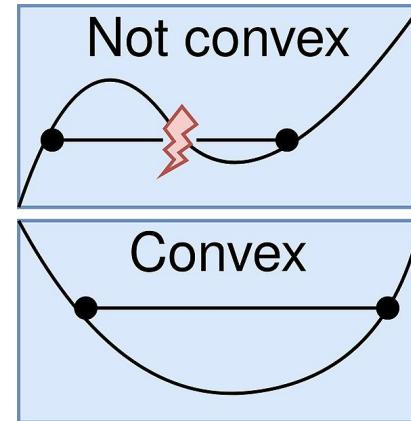
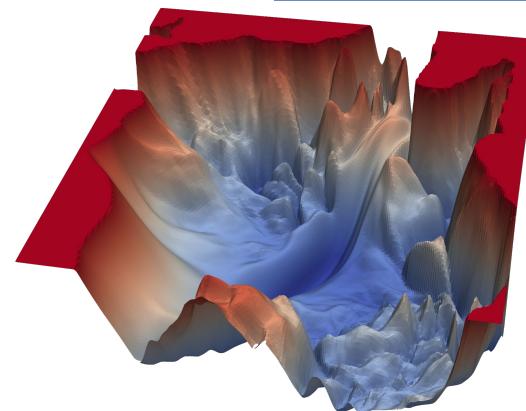
Demo

Gradient descent with global minimum

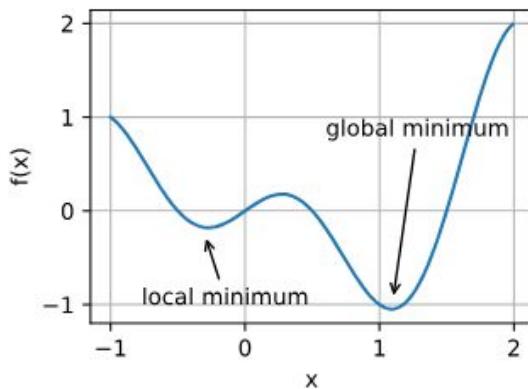
What are some potential problems with gradient descent?

Convexity

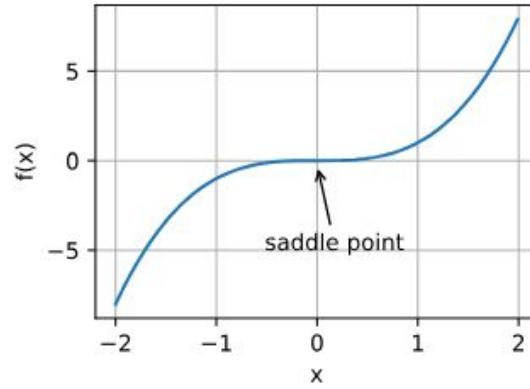
- A function on a graph is **convex** if a line segment drawn through any two points on the line of the function, then it never lies below the curved line segment
- Convexity implies that every local minimum is **global minimum**.
- Neural networks are **not** convex!



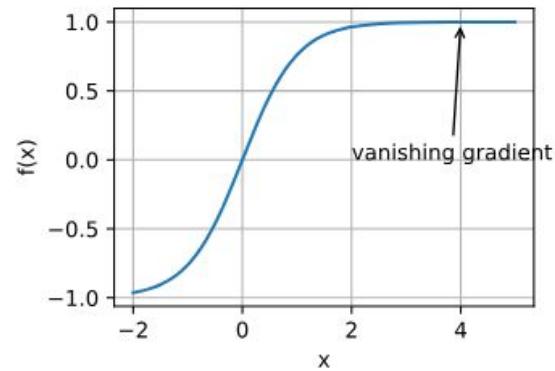
Challenges in Non-Convex Optimization



Local Minima vs. Global Minima



Saddle Points



Vanishing gradient

Demo

Gradient descent with local minimum

Gradient Descent (GD)

$$\mathcal{L}(\mathbf{w}_t) = \frac{1}{n} \sum_{i=1}^n \ell(\mathbf{w}_t, \mathbf{x}_i)$$

$$\nabla \mathcal{L}(\mathbf{w}_t) = \frac{1}{n} \sum_{i=1}^n \nabla \ell(\mathbf{w}_t, \mathbf{x}_i)$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \nabla \mathcal{L}(\mathbf{w}_t)$$

Full gradient: $\mathcal{O}(n)$ time => **Too expensive!**

- *Statistically, why don't we use 1 or a few samples from the training dataset to approximate the full gradient?*

Gradient Descent (GD)

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \nabla \mathcal{L}(\mathbf{w}_t)$$

Gradient Descent (GD)

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \nabla \mathcal{L}(\mathbf{w}_t)$$

Select **1** example randomly each time

Gradient Descent (GD)

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \nabla \mathcal{L}(\mathbf{w}_t)$$

↓
Select **1** example randomly each time

Per-sample gradient is equivalent to full gradient in expectation!

$$\mathbb{E}[\nabla \ell(\mathbf{w}_t, \mathbf{x}_i)] = \frac{1}{n} \sum_{i=1}^n \nabla \ell(\mathbf{w}_t, \mathbf{x}_i) = \nabla \mathcal{L}(\mathbf{w}_t)$$

Stochastic Gradient Descent (SGD)

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \nabla \mathcal{L}(\mathbf{w}_t)$$

↓
Select **1** example randomly each time

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \nabla \ell(\mathbf{w}_t, \mathbf{x}_i)$$

Per-sample gradient is equivalent to full gradient in expectation!

$$\mathbb{E}[\nabla \ell(\mathbf{w}_t, \mathbf{x}_i)] = \frac{1}{n} \sum_{i=1}^n \nabla \ell(\mathbf{w}_t, \mathbf{x}_i) = \nabla \mathcal{L}(\mathbf{w}_t)$$

Stochastic Gradient Descent (SGD)

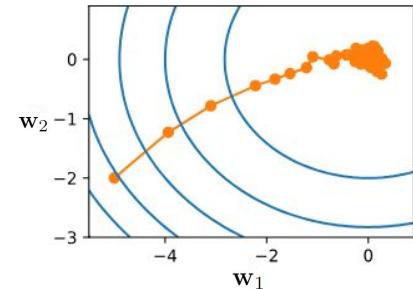
$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \nabla \mathcal{L}(\mathbf{w}_t)$$

Select **1** example randomly each time

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \nabla \ell(\mathbf{w}_t, \mathbf{x}_i)$$

Trade off convergence!

Per-sample gradients not necessarily points to the local minimum, introducing a noise ball...



Stochastic Gradient Descent (SGD)

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \nabla \mathcal{L}(\mathbf{w}_t)$$

Select **1** example randomly each time

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \nabla \ell(\mathbf{w}_t, \mathbf{x}_i)$$

Select a batch \mathcal{B}_t of examples
randomly each time, with *batch size* b

Minibatch SGD

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \nabla \mathcal{L}(\mathbf{w}_t)$$

Select **1** example randomly each time

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \nabla \ell(\mathbf{w}_t, \mathbf{x}_i)$$

Select a batch \mathcal{B}_t of examples randomly each time, with *batch size* b

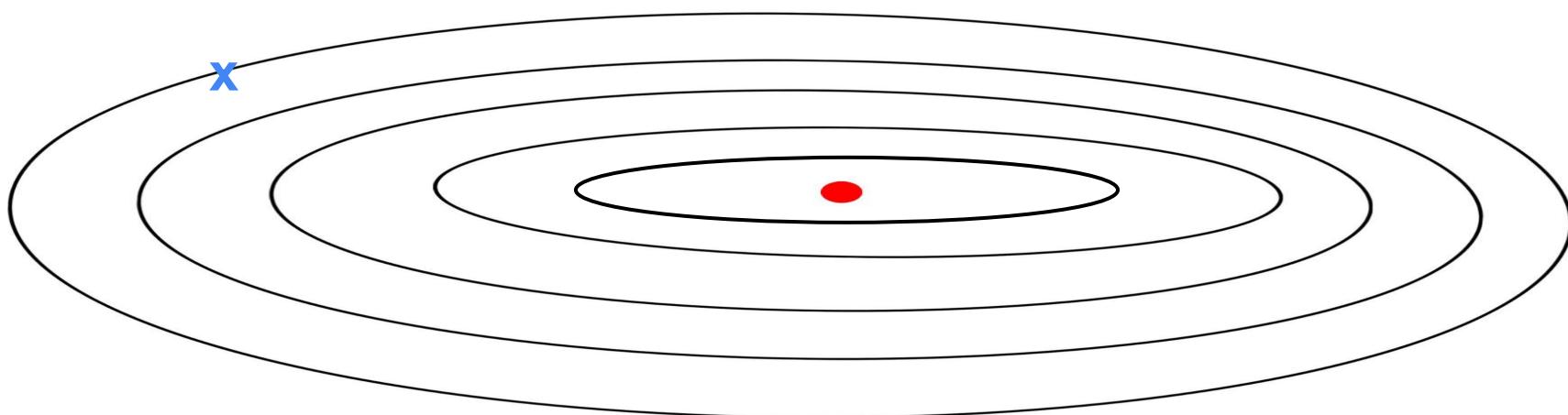
$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \cdot \frac{1}{b} \sum_{i \in \mathcal{B}_t} \nabla \ell(\mathbf{w}_t, \mathbf{x}_i)$$

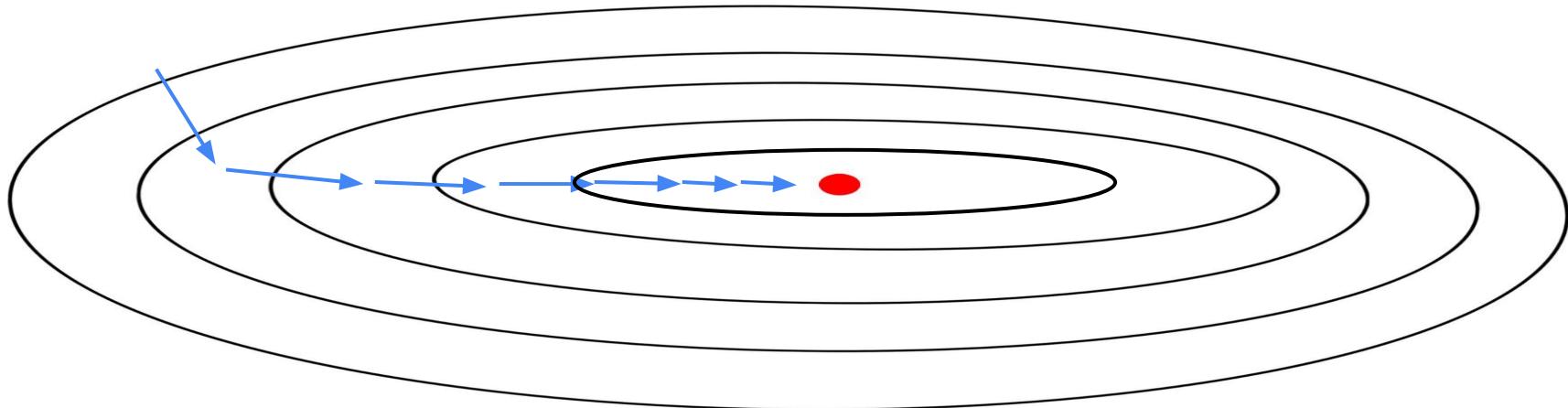
Let's look at an example!

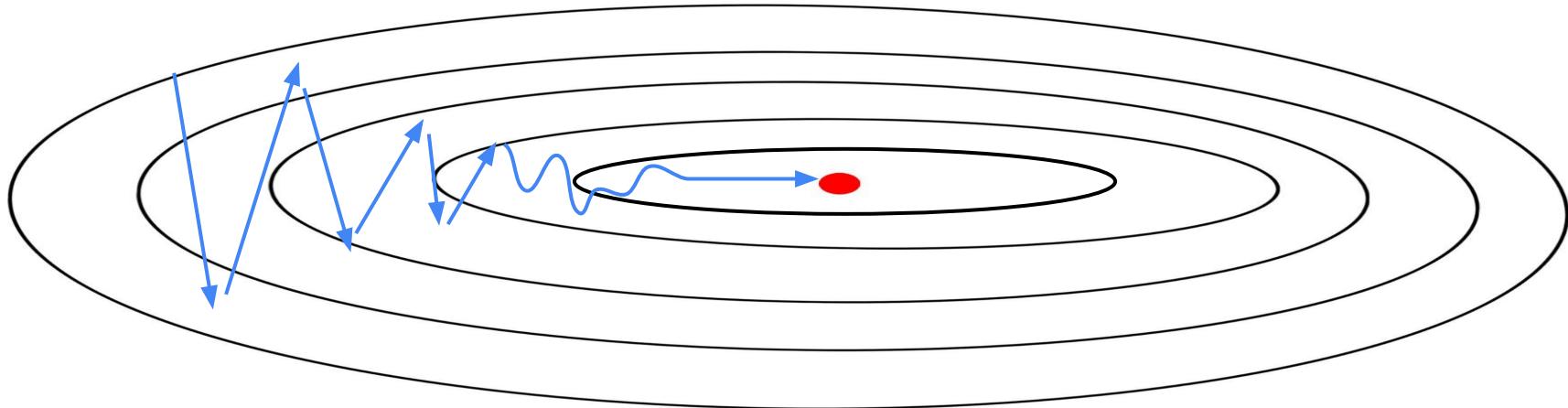
Draw the gradients:

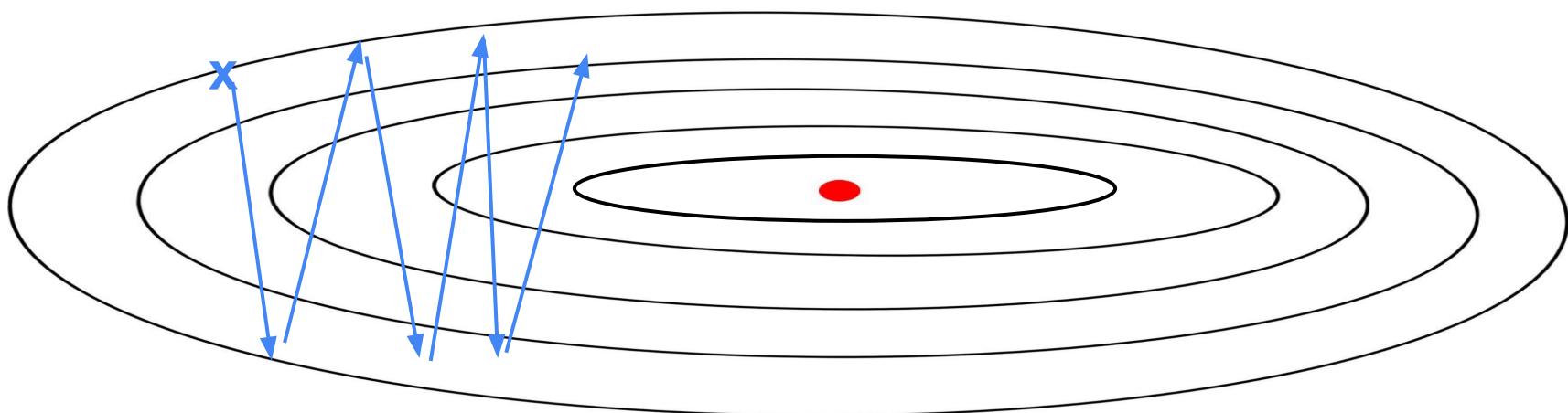
- Smaller learning rate
- Larger learning rate

Local Minimum

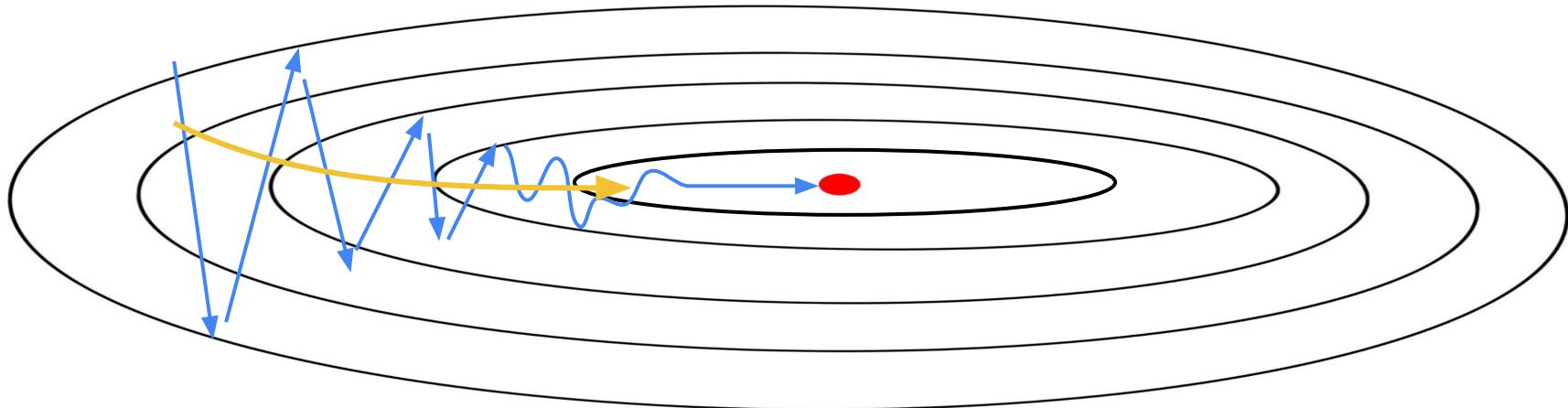








Local Minimum
Minibatch SGD
Momentum



SGD with Momentum (Polyak, 1964)

*Compute an **Exponentially Weighted Moving Average (EWMA)** of the gradients as **momentum** and use that to update the weight instead.*

SGD with Momentum (Polyak, 1964)

Compute an **Exponentially Weighted Moving Average (EWMA)** of the gradients as **momentum** and use that to update the weight instead.

SGD with Momentum (Polyak, 1964)

Compute an **Exponentially Weighted Moving Average (EWMA)** of the gradients as **momentum** and use that to update the weight instead.

SGD Update Rule

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \nabla \ell(\mathbf{w}_t, \mathbf{x}_i)$$

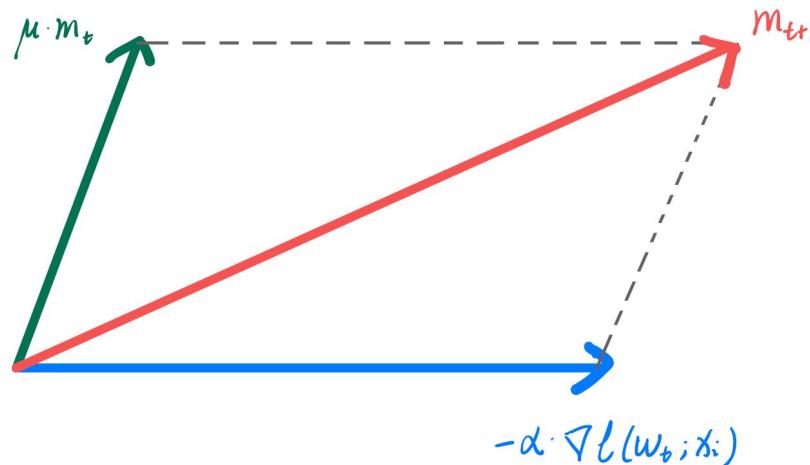
$$\mathbf{m}_{t+1} = \mu \mathbf{m}_t - \alpha \nabla \ell(\mathbf{w}_t; \mathbf{x}_i)$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \mathbf{m}_{t+1}$$

where $\mu \in [0, 1]$ is the momentum coefficient.

SGD with Momentum (Polyak, 1964)

Compute an **Exponentially Weighted Moving Average (EWMA)** of the gradients as **momentum** and use that to update the weight instead.



$$\mathbf{m}_{t+1} = \mu \mathbf{m}_t - \alpha \nabla l(\mathbf{w}_t; \mathbf{x}_i)$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \mathbf{m}_{t+1}$$

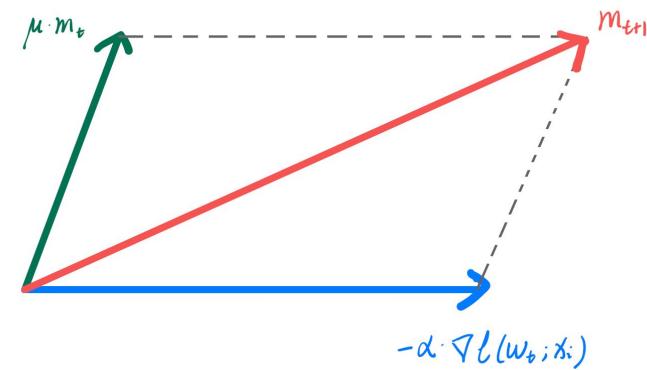
where $\mu \in [0, 1]$ is the momentum coefficient.

SGD with Momentum

Compute an **Exponentially Weighted Moving Average (EWMA)** of the gradients as **momentum** and use that to update the weight instead.

$$\mathbf{m}_{t+1} = \mu \mathbf{m}_t - \alpha \nabla l(\mathbf{w}_t; \mathbf{x}_i)$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \mathbf{m}_{t+1}$$



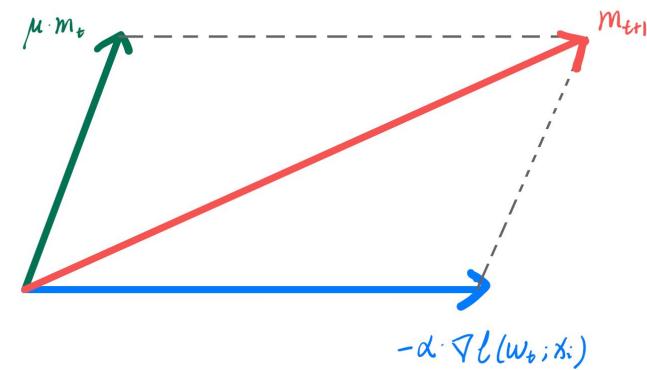
SGD with Momentum

Compute an **Exponentially Weighted Moving Average (EWMA)** of the gradients as **momentum** and use that to update the weight instead.

$$\mathbf{g}_t = \nabla l(\mathbf{w}_t; \mathbf{x}_i)$$

$$\mathbf{m}_{t+1} = \mu \mathbf{m}_t - \alpha \mathbf{g}_t$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \mathbf{m}_{t+1}$$



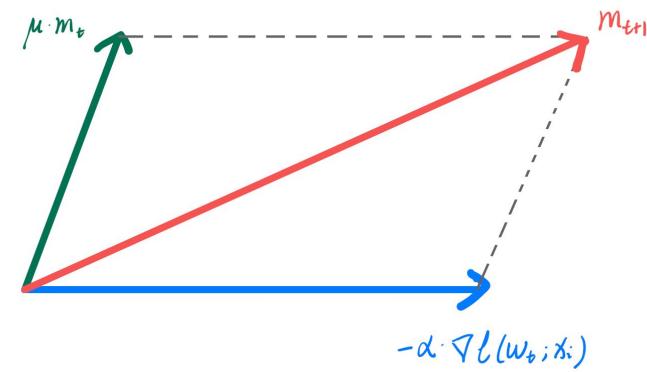
SGD with Momentum

Compute an **Exponentially Weighted Moving Average (EWMA)** of the gradients as **momentum** and use that to update the weight instead.

$$\mathbf{g}_t = \nabla l(\mathbf{w}_t; \mathbf{x}_i)$$

$$\mathbf{m}_{t+1} = \mu \mathbf{m}_t - \alpha \mathbf{g}_t$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \mu \mathbf{m}_t - \alpha \mathbf{g}_t$$



SGD with Momentum

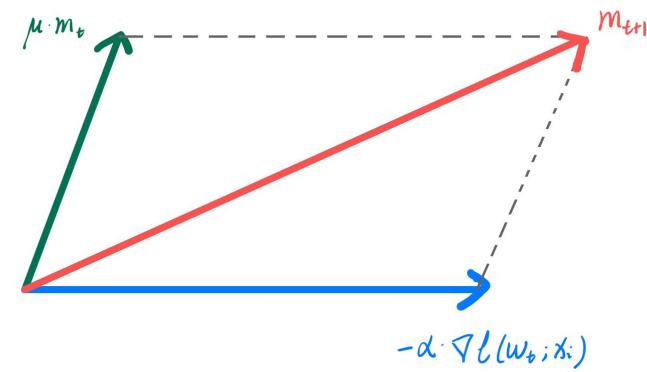
Compute an **Exponentially Weighted Moving Average (EWMA)** of the gradients as **momentum** and use that to update the weight instead.

$$\mathbf{g}_t = \nabla l(\mathbf{w}_t; \mathbf{x}_i)$$

$$\mathbf{m}_{t+1} = \mu \mathbf{m}_t - \alpha \mathbf{g}_t$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \mu \mathbf{m}_t - \alpha \mathbf{g}_t$$

$$= \mathbf{w}_t + \mu(\mu \mathbf{m}_{t-1} - \alpha \mathbf{g}_{t-1}) - \alpha \mathbf{g}_t$$



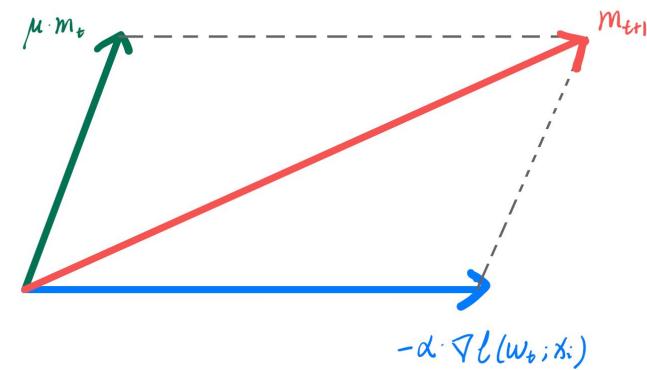
SGD with Momentum

Compute an **Exponentially Weighted Moving Average (EWMA)** of the gradients as **momentum** and use that to update the weight instead.

$$\mathbf{g}_t = \nabla l(\mathbf{w}_t; \mathbf{x}_i)$$

$$\mathbf{m}_{t+1} = \mu \mathbf{m}_t - \alpha \mathbf{g}_t$$

$$\begin{aligned} \mathbf{w}_{t+1} &= \mathbf{w}_t + \mu \mathbf{m}_t - \alpha \mathbf{g}_t \\ &= \mathbf{w}_t + \mu(\mu \mathbf{m}_{t-1} - \alpha \mathbf{g}_{t-1}) - \alpha \mathbf{g}_t \\ &= \mathbf{w}_t + \mu(\mu(\mu \mathbf{m}_{t-2} - \alpha \mathbf{g}_{t-2}) - \alpha \mathbf{g}_{t-1}) - \alpha \mathbf{g}_t \\ &= \mathbf{w}_t - \alpha \mathbf{g}_t - \mu \alpha \mathbf{g}_{t-1} - \mu^2 \alpha \mathbf{g}_{t-2} - \mu^3 \alpha \mathbf{g}_{t-3} - \dots \end{aligned}$$



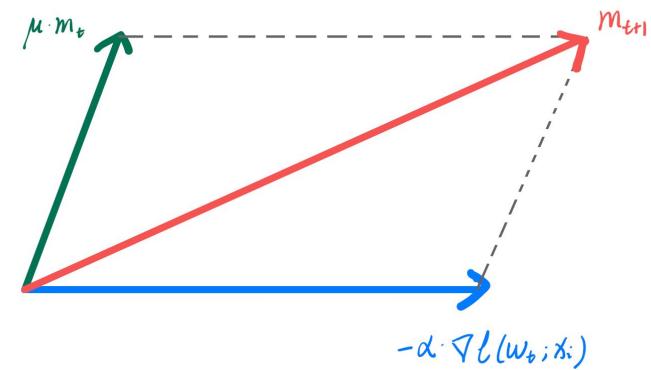
SGD with Momentum

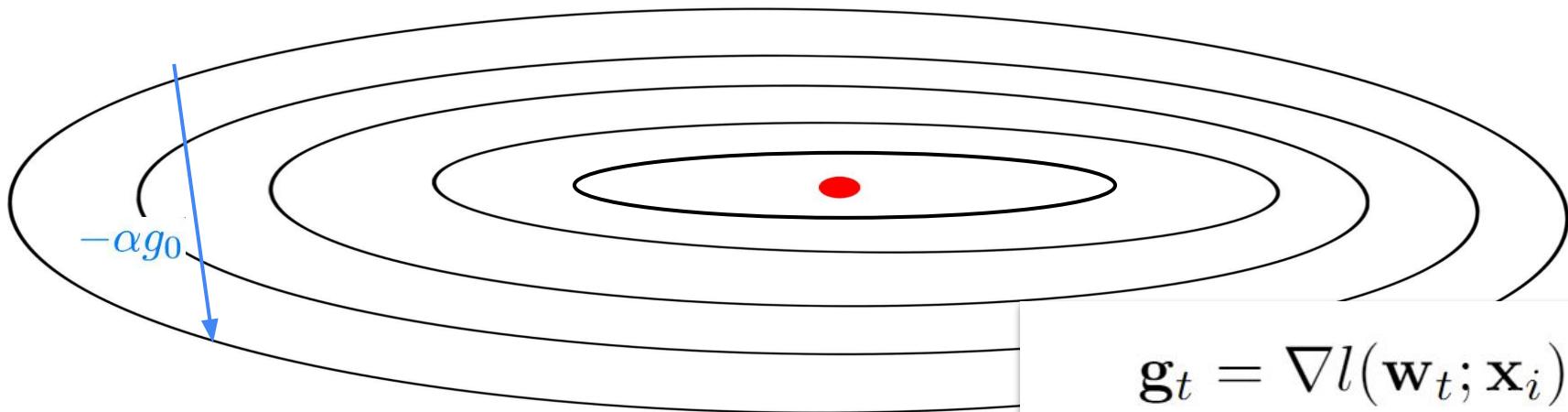
Compute an **Exponentially Weighted Moving Average (EWMA)** of the gradients as **momentum** and use that to update the weight instead.

$$\mathbf{g}_t = \nabla l(\mathbf{w}_t; \mathbf{x}_i)$$

$$\mathbf{m}_{t+1} = \mu \mathbf{m}_t - \alpha \mathbf{g}_t$$

$$\begin{aligned} \mathbf{w}_{t+1} &= \mathbf{w}_t + \mu \mathbf{m}_t - \alpha \mathbf{g}_t \\ &= \mathbf{w}_t + \mu(\mu \mathbf{m}_{t-1} - \alpha \mathbf{g}_{t-1}) - \alpha \mathbf{g}_t \\ &= \mathbf{w}_t + \mu(\mu(\mu \mathbf{m}_{t-2} - \alpha \mathbf{g}_{t-2}) - \alpha \mathbf{g}_{t-1}) - \alpha \mathbf{g}_t \\ &= \mathbf{w}_t - \alpha \mathbf{g}_t - \mu \alpha \mathbf{g}_{t-1} - \mu^2 \alpha \mathbf{g}_{t-2} - \mu^3 \alpha \mathbf{g}_{t-3} - \dots \\ &= \mathbf{w}_t - \alpha \sum_{i=0}^t \mu^i \mathbf{g}_{t-i} \end{aligned}$$



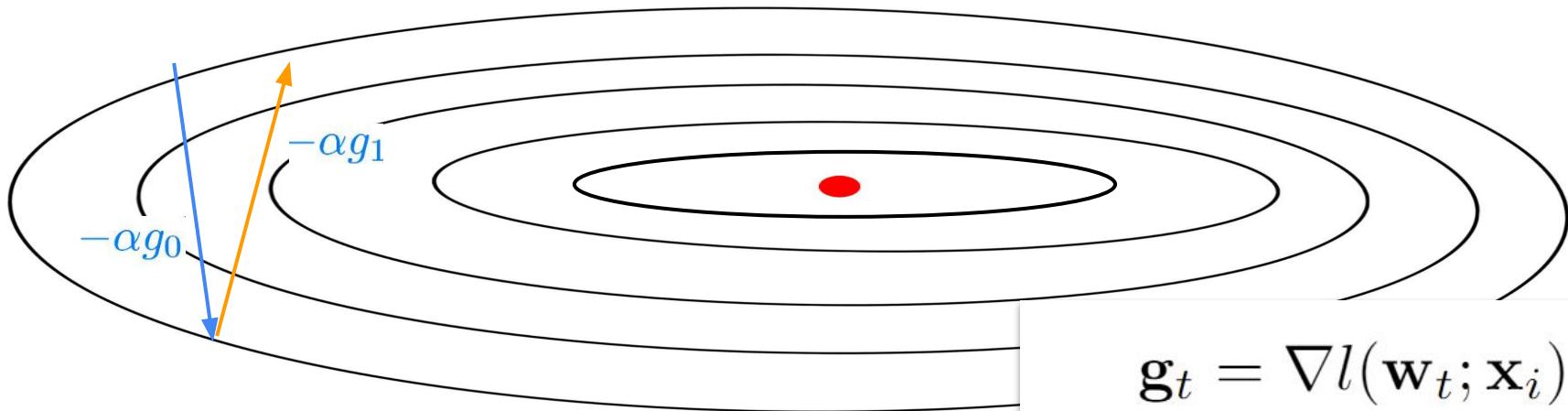


$$\mathbf{g}_t = \nabla l(\mathbf{w}_t; \mathbf{x}_i)$$

$$\mathbf{m}_{t+1} = \mu \mathbf{m}_t - \alpha \mathbf{g}_t$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \mathbf{m}_{t+1}$$

$$\mathbf{m}_2 = \mu \mathbf{m}_1 - \alpha \mathbf{g}_1$$

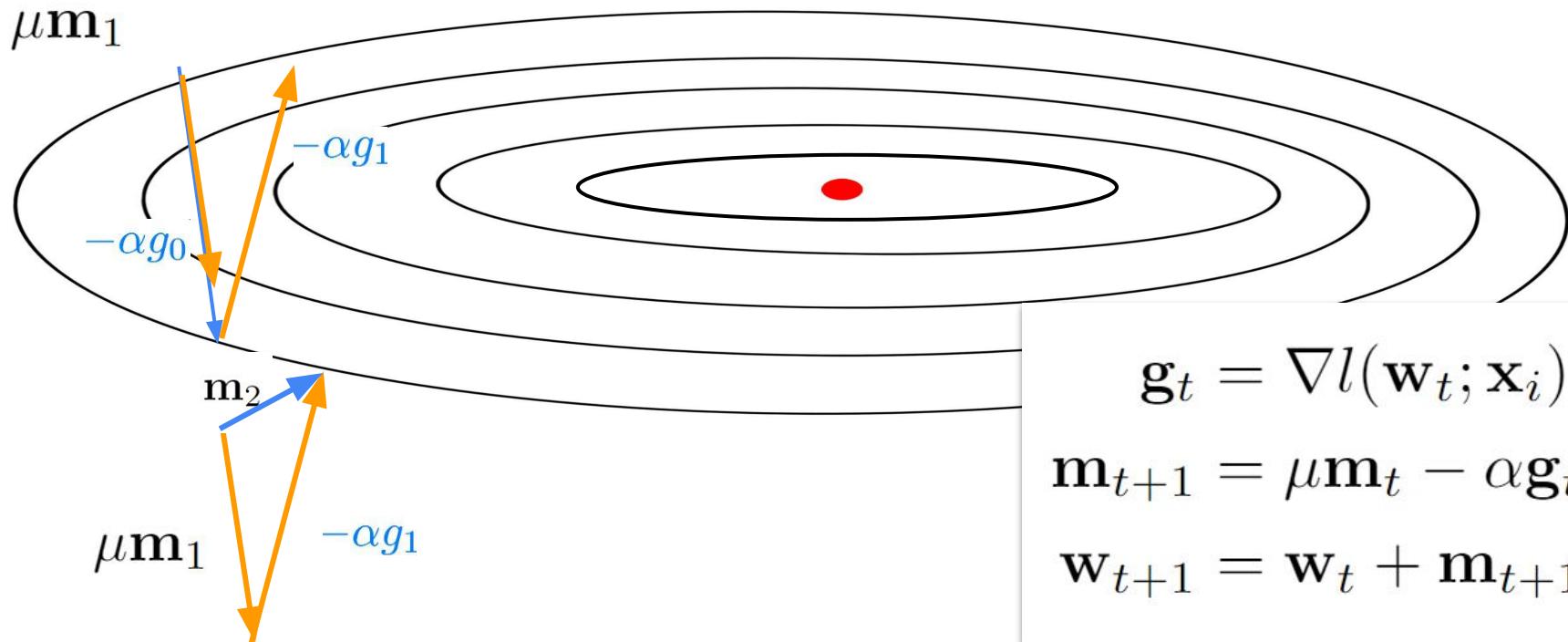


$$\mathbf{g}_t = \nabla l(\mathbf{w}_t; \mathbf{x}_i)$$

$$\mathbf{m}_{t+1} = \mu \mathbf{m}_t - \alpha \mathbf{g}_t$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \mathbf{m}_{t+1}$$

$$\mathbf{m}_2 = \mu \mathbf{m}_1 - \alpha \mathbf{g}_1$$

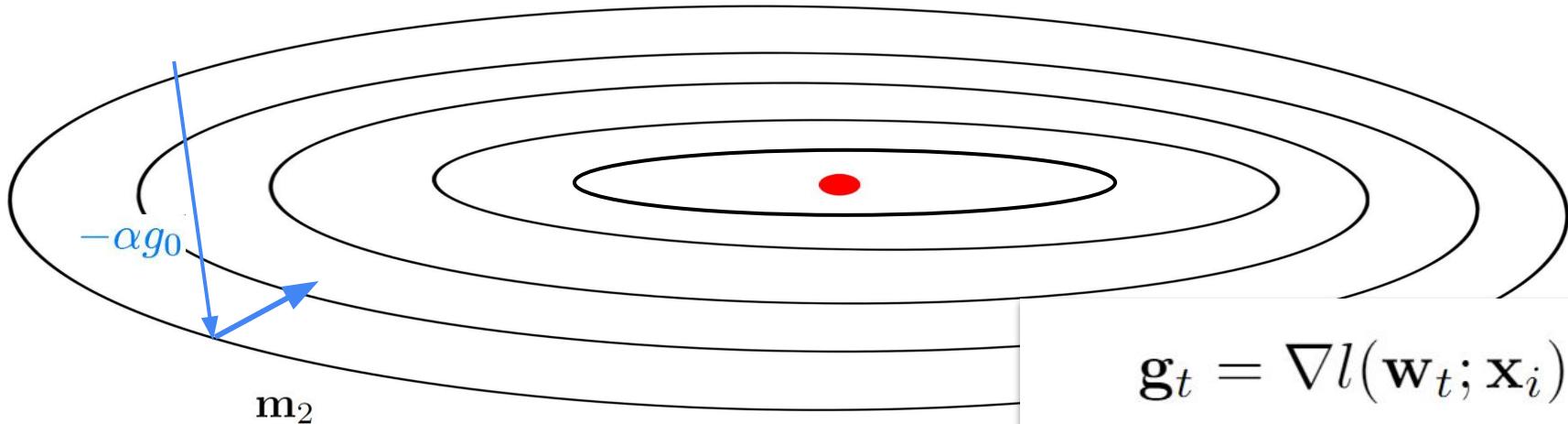


$$\mathbf{g}_t = \nabla l(\mathbf{w}_t; \mathbf{x}_i)$$

$$\mathbf{m}_{t+1} = \mu \mathbf{m}_t - \alpha \mathbf{g}_t$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \mathbf{m}_{t+1}$$

$$\mathbf{m}_2 = \mu \mathbf{m}_1 - \alpha \mathbf{g}_1$$

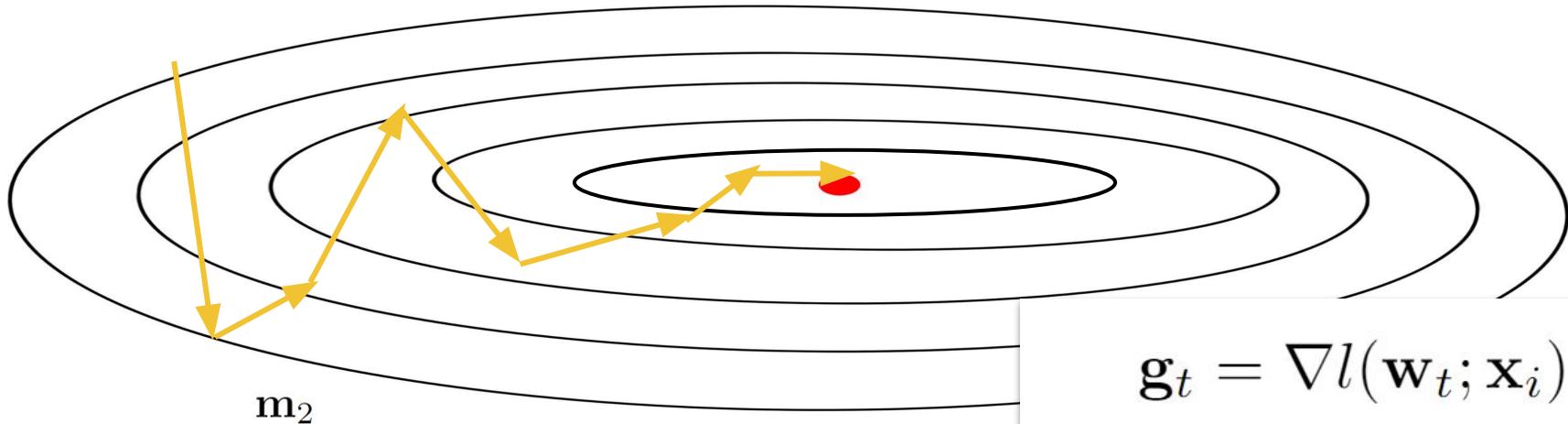


$$\mathbf{g}_t = \nabla l(\mathbf{w}_t; \mathbf{x}_i)$$

$$\mathbf{m}_{t+1} = \mu \mathbf{m}_t - \alpha \mathbf{g}_t$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \mathbf{m}_{t+1}$$

$$\mathbf{m}_2 = \mu \mathbf{m}_1 - \alpha \mathbf{g}_1$$



$$\mathbf{g}_t = \nabla l(\mathbf{w}_t; \mathbf{x}_i)$$

$$\mathbf{m}_{t+1} = \mu \mathbf{m}_t - \alpha \mathbf{g}_t$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \mathbf{m}_{t+1}$$

$$\mathbf{m}_2 = \mu \mathbf{m}_1 - \alpha \mathbf{g}_1$$

 \mathbf{m}_2

$$\mathbf{g}_t = \nabla l(\mathbf{w}_t; \mathbf{x}_i)$$

$$\mathbf{m}_{t+1} = \mu \mathbf{m}_t - \alpha \mathbf{g}_t$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \mathbf{m}_{t+1}$$

Quick Recap

Gradient Descent

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \cdot \frac{1}{n} \sum_{i=1}^n \nabla \ell(\mathbf{w}_t, \mathbf{x}_i)$$

Stochastic Gradient Descent

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \nabla \ell(\mathbf{w}_t, \mathbf{x}_i)$$

Minibatch SGD

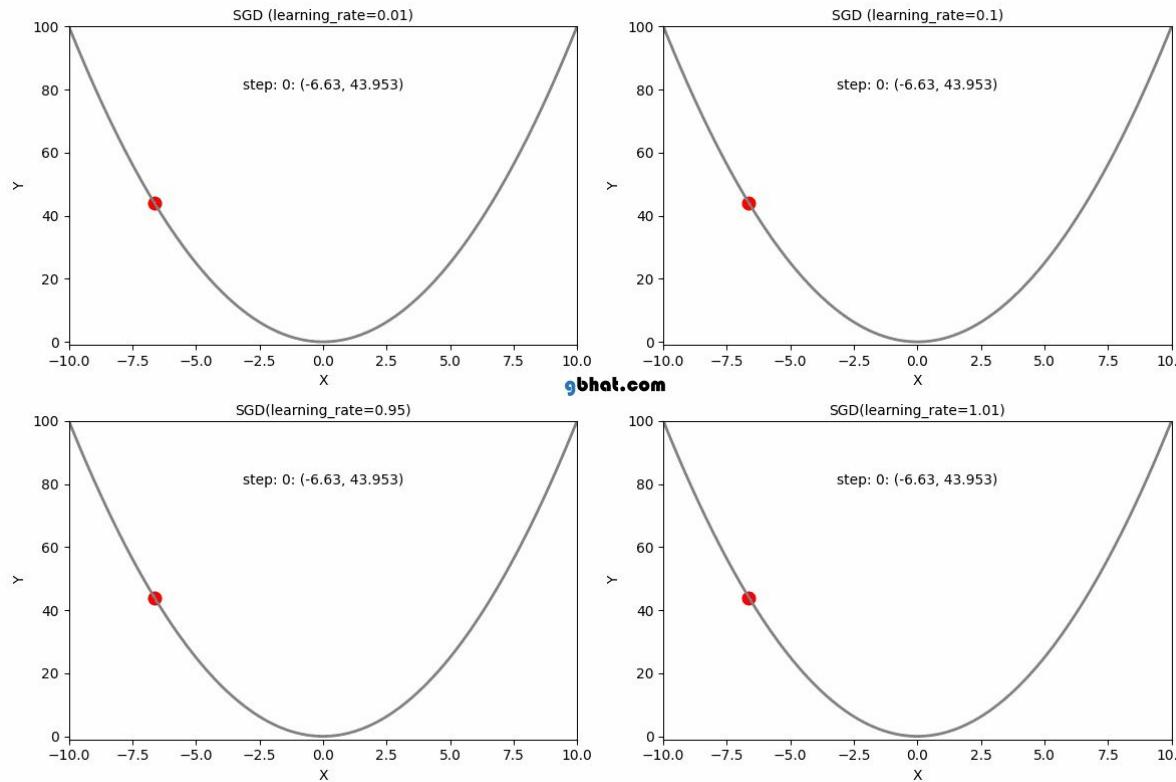
$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \cdot \frac{1}{b} \sum_{i \in \mathcal{B}_t} \nabla \ell(\mathbf{w}_t, \mathbf{x}_i)$$

SGD w. Momentum

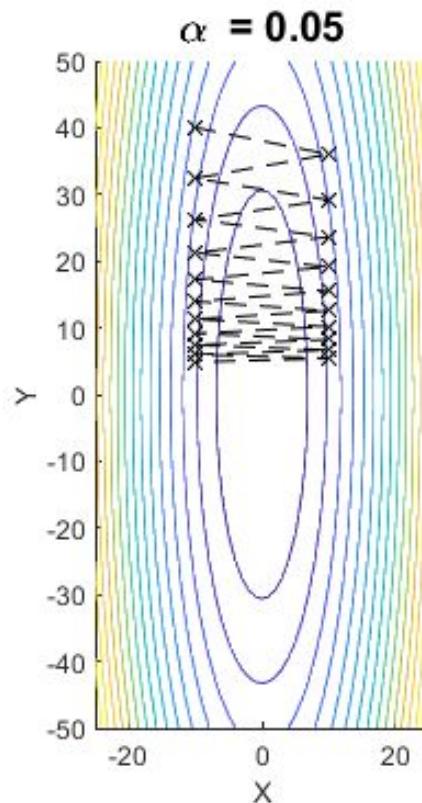
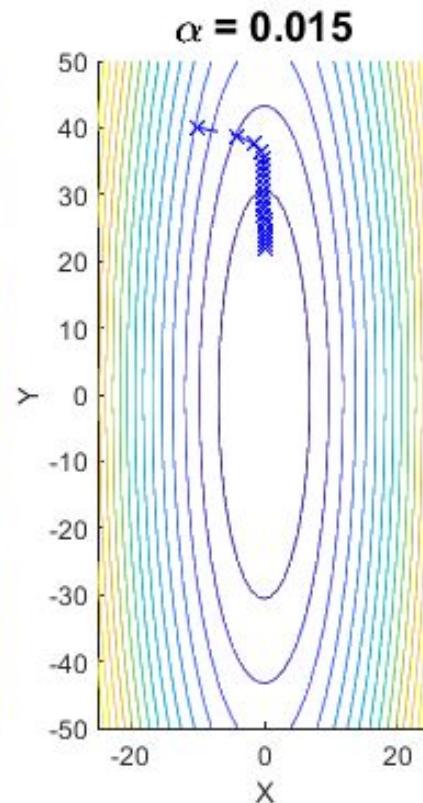
$$m_{t+1} = \mu m_t - \alpha \nabla l(w_t; x_i)$$

$$w_{t+1} = w_t + m_{t+1}$$

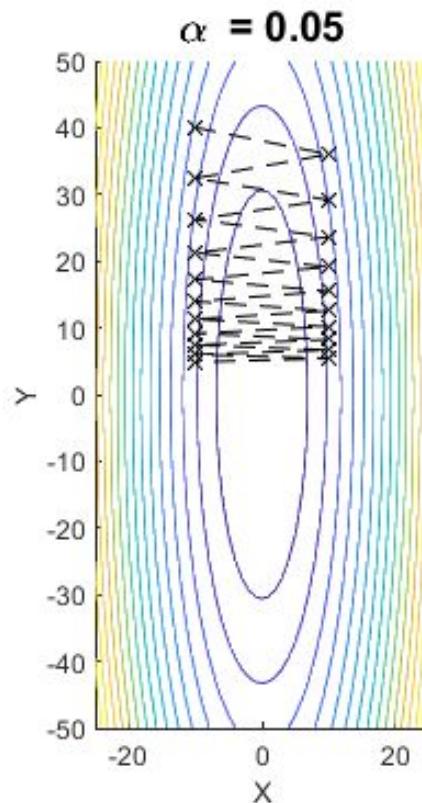
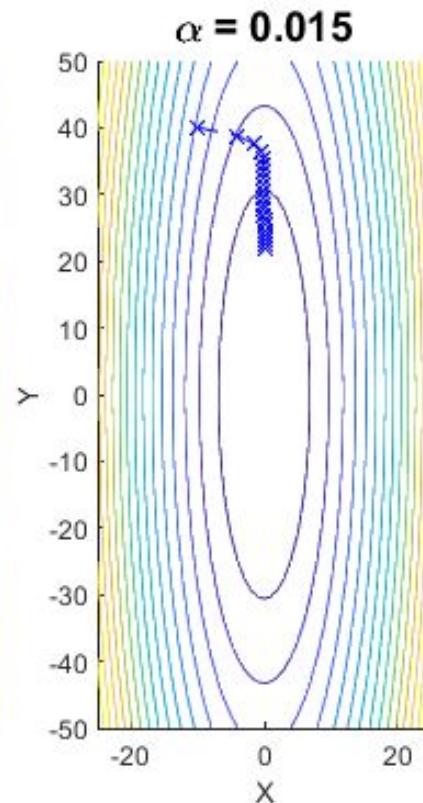
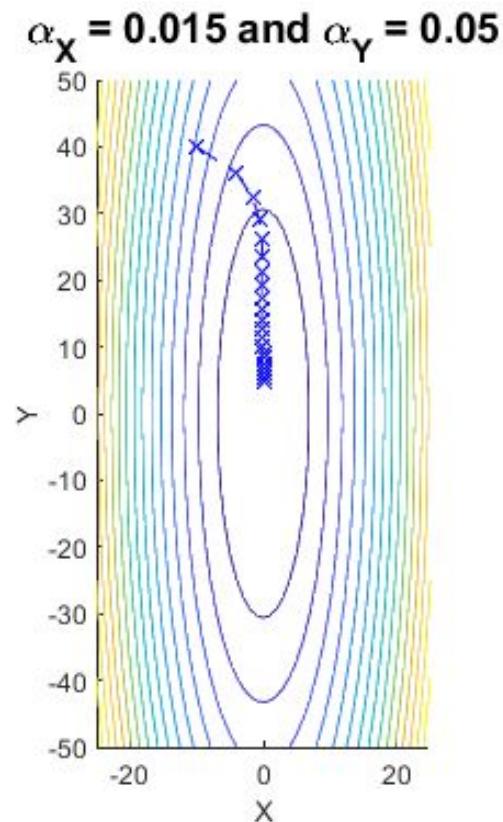
Importance of Learning Rate



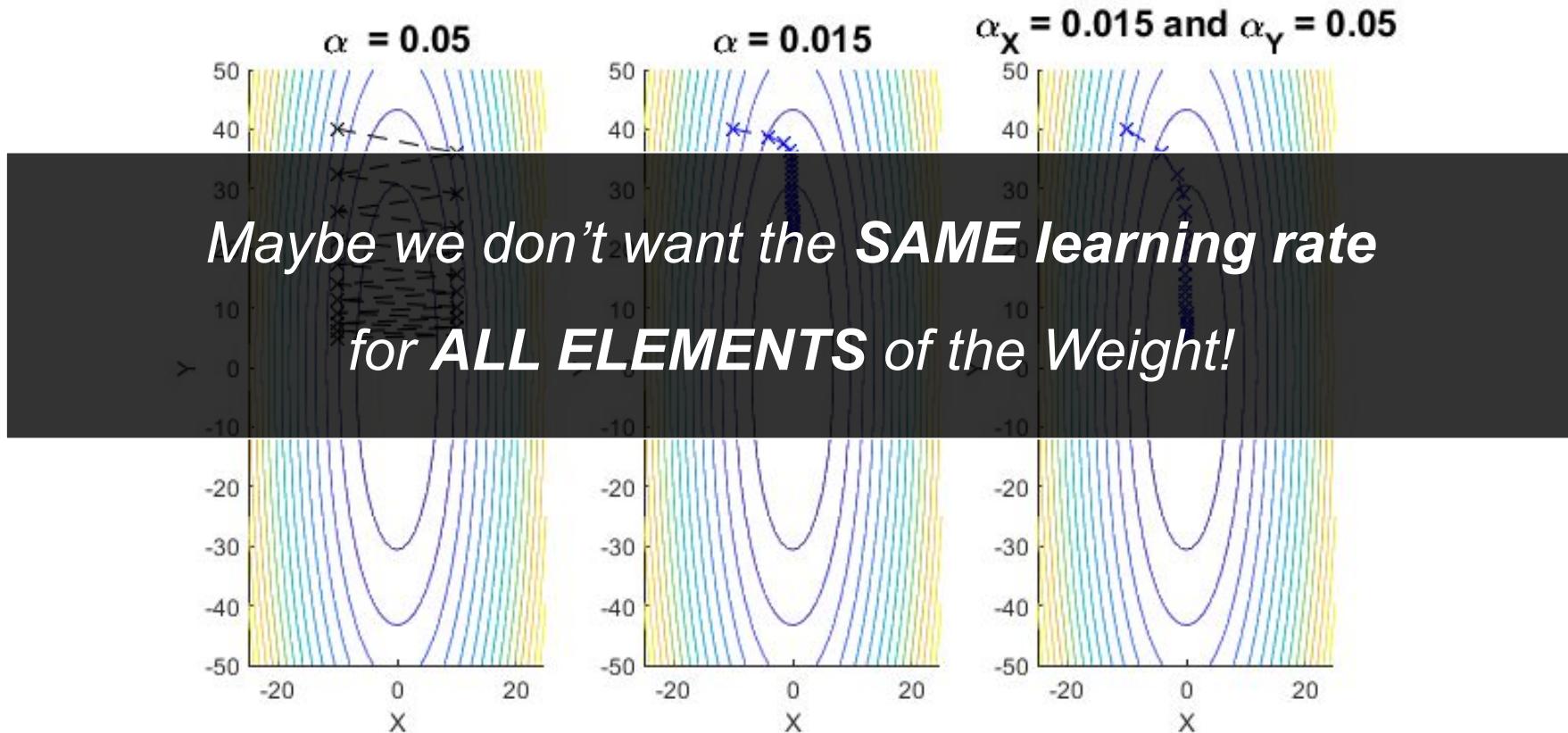
Another example



Another example



Adaptive Learning Rate



Adaptive Optimizers

Different Learning Rate for each element of the Model Weights!

AdaGrad (Duchi et al. 2011)

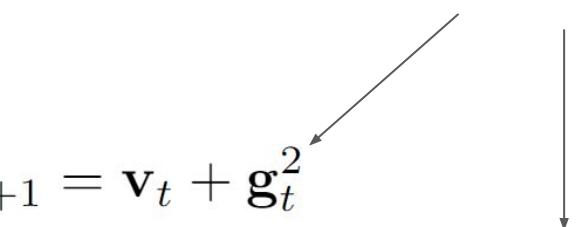
More updates \rightarrow more decay

- Handle sparse gradients well
 - Sparse: The vector has 0 in most of the entries*

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \nabla \mathcal{L}(\mathbf{w}_t)$$

SGD

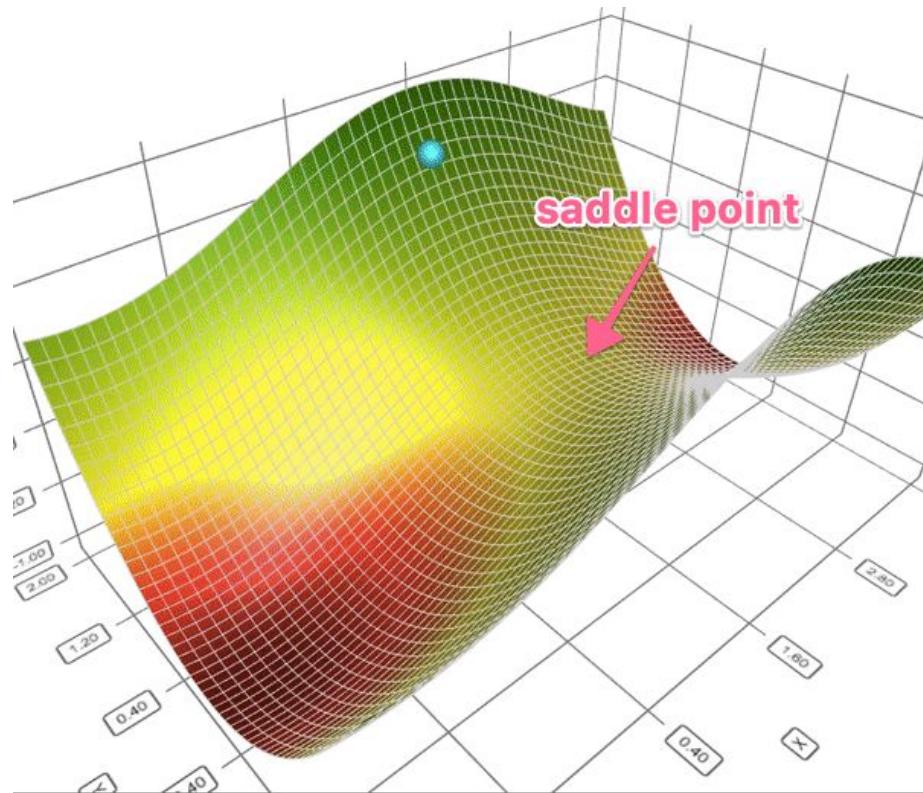
Element-wise product



$$\mathbf{v}_{t+1} = \mathbf{v}_t + \mathbf{g}_t^2$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \frac{\alpha}{\sqrt{\mathbf{v}_{t+1} + \epsilon}} \odot \mathbf{g}_t$$

Adagrad



Gradient Descent
AdaGrad

AdaGrad (Duchi et al. 2011)

More updates → more decay

- Handle sparse gradients well
 - Sparse: The vector has 0 in most of the entries*

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \nabla \mathcal{L}(\mathbf{w}_t)$$

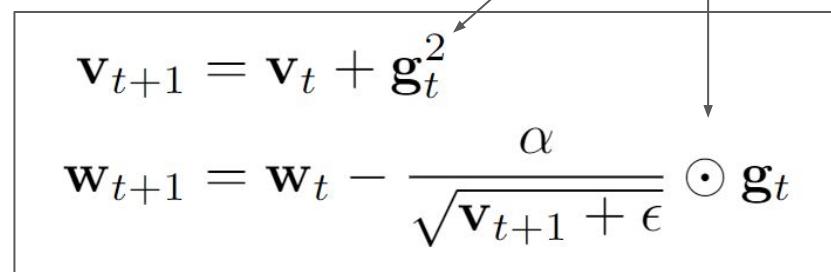
SGD

$$\mathbf{v}_{t+1} = \mathbf{v}_t + \mathbf{g}_t^2$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \frac{\alpha}{\sqrt{\mathbf{v}_{t+1} + \epsilon}} \odot \mathbf{g}_t$$

Adagrad

Element-wise product



Exercise:
 What's could be wrong with this optimizator?
 (What would happen to the denominator.)

AdaGrad (Duchi et al. 2011)

More updates → more decay

- Handle sparse gradients well
 - Sparse: The vector has 0 in most of the entries*

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \alpha \nabla \mathcal{L}(\mathbf{w}_t)$$

SGD

$$\mathbf{v}_{t+1}$$

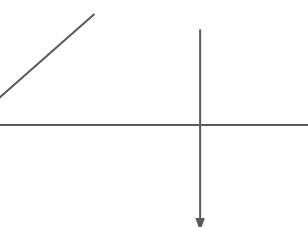
$$\mathbf{w}_{t+1}$$

$$= \mathbf{v}_t + \mathbf{g}_t^2$$

$$= \mathbf{w}_t - \frac{\alpha}{\sqrt{\mathbf{v}_{t+1} + \epsilon}} \odot \mathbf{g}_t$$

Adagrad

Element-wise product



Issue: decays too aggressively!

RMSProp (Graves, 2013)

Keep an **exponential moving average** of the squared gradient for each element

$$\mathbf{v}_{t+1} = \mathbf{v}_t + \mathbf{g}_t^2$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \frac{\alpha}{\sqrt{\mathbf{v}_{t+1} + \epsilon}} \odot \mathbf{g}_t$$

Adagrad

$$\mathbf{v}_{t+1} = \boxed{\beta} \mathbf{v}_t + \boxed{(1 - \beta)} \mathbf{g}_t^2$$

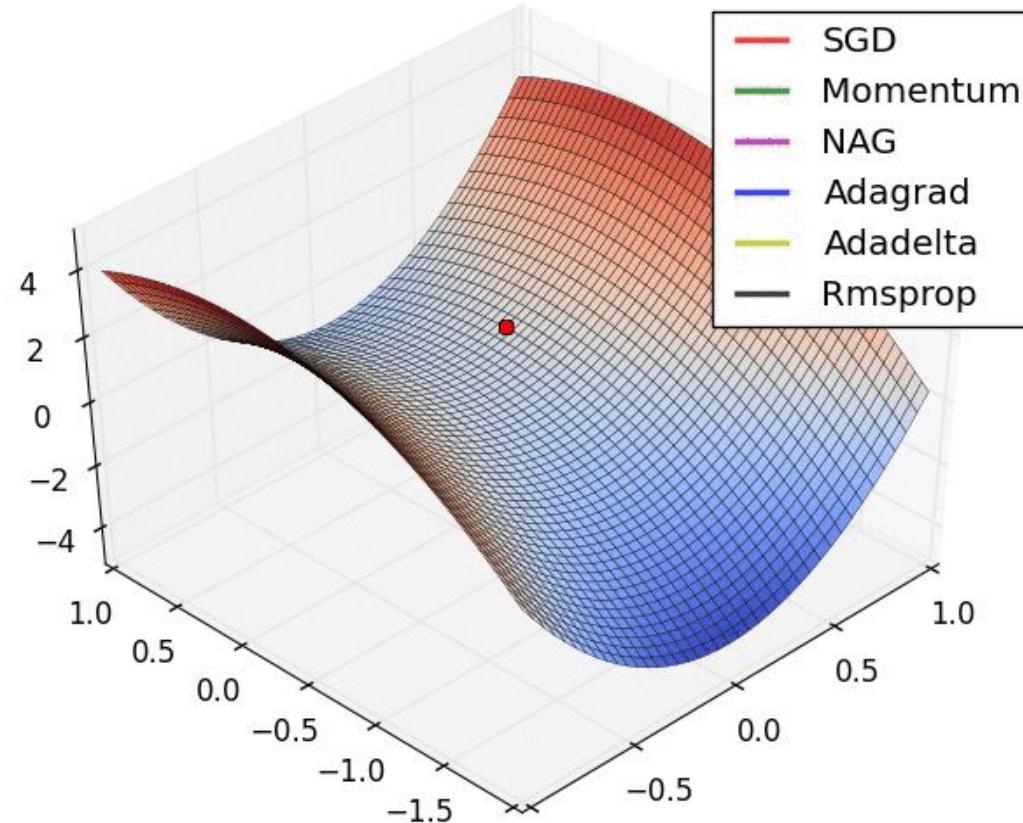
$$\mathbf{w}_{t+1} = \mathbf{w}_t - \frac{\alpha}{\sqrt{\mathbf{v}_{t+1} + \epsilon}} \odot \mathbf{g}_t$$

RmsProp

where $\beta \in [0, 1]$ the exponential moving average constant.

Demo

Adagrad & RMSprop



$$\mathbf{m}_{t+1} = \mu \mathbf{m}_t - \alpha \nabla l(\mathbf{w}_t; \mathbf{x}_i)$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \mathbf{m}_{t+1}$$

Momentum

$$\mathbf{v}_{t+1} = \beta \mathbf{v}_t + (1 - \beta) \mathbf{g}_t^2$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \frac{\alpha}{\sqrt{\mathbf{v}_{t+1} + \epsilon}} \odot \mathbf{g}_t$$

RMSProp

$$\mathbf{v}_{t+1} = \beta \mathbf{v}_t + (1 - \beta) \mathbf{g}_t^2$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \frac{\alpha}{\sqrt{\mathbf{v}_{t+1} + \epsilon}} \odot \mathbf{g}_t$$

RMSProp

ADAM
(Adaptive Moment Estimate)

$$\mathbf{v}_{t+1} = \beta \mathbf{v}_t + (1 - \beta) \mathbf{g}_t^2$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \frac{\alpha}{\sqrt{\mathbf{v}_{t+1} + \epsilon}} \odot \mathbf{g}_t$$

RMSProp

$$\mathbf{v}_{t+1} = \beta_2 \mathbf{v}_t + (1 - \beta_2) \mathbf{g}_t^2$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \frac{\alpha}{\sqrt{\widehat{\mathbf{v}}_{t+1} + \epsilon}} \odot \widehat{\mathbf{m}}_{t+1}$$

ADAM
(Adaptive Moment Estimate)

$$\mathbf{m}_{t+1} = \mu \mathbf{m}_t - \alpha \nabla l(\mathbf{w}_t; \mathbf{x}_i)$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \mathbf{m}_{t+1}$$

Momentum

$$\mathbf{v}_{t+1} = \beta \mathbf{v}_t + (1 - \beta) \mathbf{g}_t^2$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \frac{\alpha}{\sqrt{\mathbf{v}_{t+1} + \epsilon}} \odot \mathbf{g}_t$$

RMSProp

$$\mathbf{m}_{t+1} = \beta_1 \mathbf{m}_t + (1 - \beta_1) \mathbf{g}_t$$

$$\mathbf{v}_{t+1} = \beta_2 \mathbf{v}_t + (1 - \beta_2) \mathbf{g}_t^2$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \frac{\alpha}{\sqrt{\widehat{\mathbf{v}}_{t+1} + \epsilon}} \odot \widehat{\mathbf{m}}_{t+1}$$

ADAM
(Adaptive Moment Estimate)

$$\mathbb{E}[\hat{\mathbf{m}}_{t+1}]$$

$$\mathbb{E}[\hat{\mathbf{v}}_{t+1}]$$

$$\mathbf{m}_{t+1} = \beta_1 \mathbf{m}_t + (1 - \beta_1) \mathbf{g}_t$$

$$\mathbf{v}_{t+1} = \beta_2 \mathbf{v}_t + (1 - \beta_2) \mathbf{g}_t^2$$

$$\hat{\mathbf{m}}_{t+1} = \frac{\mathbf{m}_{t+1}}{1 - \beta_1^{t+1}}$$

$$\hat{\mathbf{v}}_{t+1} = \frac{\mathbf{v}_{t+1}}{1 - \beta_2^{t+1}}$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \frac{\alpha}{\sqrt{\hat{\mathbf{v}}_{t+1} + \epsilon}} \odot \hat{\mathbf{m}}_{t+1}$$

ADAM
(Adaptive Moment Estimate)

Optimizers Recap

- Gradient Descent
 - *Vanilla, costly, but for best convergence rate*
- Stochastic Gradient Descent
 - *Simple, lightweight*
- **Mini-batch SGD**
 - *balanced between SGD and GD*
 - ***1st choice for small, simple models***
- SGD w. Momentum
 - *Faster, capable to jump out local minimum*
- AdaGrad
- RMSProp
- **ADAM**
 - **JUST USE ADAM IF YOU DON'T KNOW WHAT TO USE IN DEEP LEARNING**

