
Deep Learning
Recap & Multi-Layer Perceptrons



Agenda

● Perceptron
● Logistic Regression
● Gradient Descent
● Multi-Layer Perceptrons (MLPs)
● Backpropagation



A Classification Problem:
 

Will I Pass This Class?



A Classification Problem: Will I Pass This Class?



What are key components in ML?

● Training data

● Model Class / Hypothesis space

● Loss function

● Optimization



A Classification Problem: Will I Pass This Class?



Perceptron

● Linear classifier 
○ Predecessor to neural network



Recall:

A Classification Problem: Will I Pass This Class?



A Classification Problem: Will I Pass This Class?

● Perceptron defines a 
linear classification 
boundary



Perceptron



The “Soft” Perceptron



In other words… Logistic Regression

● A single-layer perceptron



Clean Up Bias Term

Origin



Maximum Likelihood Estimation

We want to find w to maximize the likelihood of the observed data

→ Minimize negative log likelihood loss (NLL loss)
 



Discuss: Why are they equivalent?

data=

Conditional 
independent

monotonic

Flipping +/-



Negative log-likelihood loss (NLL loss)



Our Goal: Minimize the Loss



Gradient Descent 



Visualize Gradient Descent in 1-D

https://web.stanford.edu/~jurafsky/slp3/



Visualize Gradient Descent in 1-D

https://web.stanford.edu/~jurafsky/slp3/



Visualize Gradient Descent in 1-D

https://web.stanford.edu/~jurafsky/slp3/



Gradients

https://www.ml-science.com/gradients

Gradient Descent: 

- Find the gradient at current point
- Move in opposite direction with 

learning rate 𝛼 

https://www.ml-science.com/gradients


What are key components in ML?

● Training data

● Model Class / Hypothesis space

● Loss function

● Optimization



The XOR Problem

● Perceptron canʼt learn the XOR function
○ Simple logical operation

● Data is not linearly separable

https://www.pyimagesearch.com/2021/05/06/implementing-the-perceptron-neur
al-network-with-python/



Discuss: What are some ways to handle data that is not linearly 
separable? 

Without deep learning!



Agenda

● Perceptron
● Logistic Regression
● Gradient Descent
● Multi-Layer Perceptrons (MLPs)
● Backpropagation



Multi-Layer Perceptron (MLP)

● Compose multiple perceptrons to learn intermediate features

An MLP with 1 hidden layer with 3 hidden units



A Simplified MLP Diagram

1 Hidden Layer,
3 Hidden Units



Complex Decision Boundaries

● What does this extra layer give us?
○ Can compose multiple linear classifiers



Complex Decision Boundaries

● What does this extra layer give us?
○ Can compose multiple linear classifiers

Recall:



Complex Decision Boundaries

● What does this extra layer give us?
○ Can compose multiple linear classifiers



Complex Decision Boundaries

● What does this extra layer give us?
○ Can compose multiple linear classifiers



Discuss: Why this works?

● What does this extra layer give us?
○ Can compose multiple linear classifiers



Increasing Depth

Discuss: How to construct the decision boundary?



● MLP with 1 hidden layer composes linear classifiers
● MLP with 2 hidden layers can compose polygon classifiers

Increasing Depth



Discuss: What about just one layer?



● MLP with 1 hidden layer composes linear classifiers
● MLP with 2 hidden layers can compose polygon classifiers

Increasing Depth



Complex Decision Boundaries

● Can compose arbitrarily complex decision boundaries

https://deeplearning.cs.cmu.edu/S24/document/slides/lec2.universal.pdf



Activation Functions

● Can replace the sigmoid with other nonlinear functions
○ Still universal approximators!

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity

Squash between 0 and 1 Squash between -1 and 1 Threshold at 0



Activation Functions

● Can replace the sigmoid with other nonlinear functions
○ Still universal approximators!

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity

Squash between 0 and 1 Squash between -1 and 1 Threshold at 0



Activation Functions

● Can replace the sigmoid with other nonlinear functions
○ Still universal approximators!

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity

silu(x)=x∗σ(x) GELU(x)=x∗Φ(x)



How to learn MLP weights?

Gradient descent!



Calculus Review: The Chain Rule

Lagrangeʼs Notation:

Leibnizʼs Notation:

Example:



Multivariate Chain Rule

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/



Multivariate Chain Rule

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/



Backpropagation- An Example

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/



Backpropagation- An Example

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/



Backpropagation- Key Idea

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/



Preview



Backpropagation- MLPs



Backpropagation- MLPs



Backpropagation- MLPs



Takeaways

● MLPs consist of stacks of perceptron units

● MLPs can learn complex decision boundaries 
by composing simple features into more complex features

● Learn MLP weights with gradient descent
○ Backpropagation efficiently computes gradient



Next Week

A deep dive into training neural networks!

https://arxiv.org/abs/1712.09913


