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Agenda

Perceptron

Logistic Regression

Gradient Descent

Multi-Layer Perceptrons (MLPs)
Backpropagation
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A Classification Problem:

Will | Pass This Class?
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Cornell Bowers Ci1S
What are key components in ML?

e Training data
e Model Class / Hypothesis space
e Lossfunction

e Optimization
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Perceptron

e Linear classifier

o Predecessor to neural network
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A Classification Problem: Will | Pass This Class?
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A Classification Problem: Will | Pass This Class?

e Perceptron defines a
linear classification

boundary .
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Perceptron
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The “Soft” Perceptron

Sigmoid
Function
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In other words... Logistic Regression

e A single-layer perceptron

a;=w x;+b

N @ _ [lifo(a;) > 0.5
’ Yi =00 else

Sigmoid ]
b Function
1 , 0.5 ! !
U(w) B m J

Wy
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Clean Up BiasTerm  w'x;+b

Absorb bias term into feature vector:

1

X; becomes [xz] and w becomes [‘Z]

We can see that:

Can rewrite logistic regression as

yi = O'(WTXi)
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Maximum Likelihood Estimation ﬁ
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We want to find w to maximize the likelihood of the observed data

(s, yi), where y; € {0,1}
Cornell Bowers C11S
What are key components in ML?

e Training data

— Minimize negative log likelihood loss (NLL 10SS) o wodel ciass/ Hypothesis space

e Loss function

e Optimization
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Discuss: Why are they equivalent?

max P, (Data)

@ data=(x:y:)

max Py, (Y1, Y2, -+ Yn|T1, T2, s Tn)
@ Conditional
independent

max IL; Py, (y;|z;)

? monotonic
max » _logP, (yi|x;)

. ? Flipping +/-

2
min — ) " logPy, (yi|z:)
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Negative log-likelihood loss (NLL loss) |¥i=o(W'x) f

Maximizing the likelihood is equivalent to maximizing the log-likelihood:

log p(yi|xi) = log[yY (1 — 3:)' %)
=y;logy; + (1 —y;)log(l —¥:))

Add a negative sign to turn it into a loss, i.e. something to minimize:
U(yi,yi) = —logp(yilxi) = —[yilogy; + (1 — yi) log(1 — ¥3))]
We can plug in our definition of y; = o(w ' x; + b):

U(yi,yi) = —[y;log o(w'x; + b) + (1 — y;)log(1 — o(w'x; + b))]
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Our Goal: Minimize the Loss

Given some training dataset:

Dtr = {X4,Yi}ieo
min L(w; DrRr) = Zf Yi,¥i)

— LS totwT). v
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Gradient Descent
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Visualize Gradient Descent in 1-D

Loss ¢ Should we move
right or left from here?

https://web.stanford.edu/~jurafsky/slp3/
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Visualize Gradient Descent in 1-D

slope of loss at w™
is negative

Wl wmin

0 (goal)

\ |

https://web.stanford.edu/~jurafsky/slp3/
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Visualize Gradient Descent in 1-D

slope of loss atw™ __—
is negative

one step
of gradient
descent

\J

https://web.stanford.edu/~jurafsky/slp3/
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Gradients 9L (w: Drg)

VwL(W;Dtr) = | 9w® , VwL(w;Dr) € R™

0L - (w; DrrR)

L (M)

’l;ﬁ%’;;”

, 'll///!/il Gradient Descent:
N 7777
NN 2
“\\ “ S ] /’/ . . .
- = '*?’/" - Find the gradient at current point
1 X I N

- Move in opposite direction with
o learning rate o

W EY -— o

Wit =— Wi — Oéthﬁ(wt; DTR)

90 90

https://www.ml-science.com/gradients
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Cornell Bowers Ci1S
What are key components in ML?

e Training data
e Model Class / Hypothesis space
e Lossfunction

e Optimization
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The XOR Problem

e Perceptron can’t learn the XOR function

o  Simple logical operation
e Dataisnotlinearly separable

Y A

AND

OR

XOR

x

https://www.pyimagesearch.com/2021/05/06/implementing-the-perceptron-neur

al-network-with-python/

>
X
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Discuss: What are some ways to handle data that is not linearly
separable?

Without deep learning!

o = N 0w » O O
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Agenda

Perceptron

Logistic Regression

Gradient Descent

Multi-Layer Perceptrons (MLPs)
Backpropagation
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Multi-Layer Perceptron (MLP)

e Compose multiple perceptrons to learn intermediate features

An MLP with 1 hidden layer with 3 hidden units

0

z; = U(ngi)
@ o

@D
2 = o(wix;)
W1,0—

@i
z; = o(wy x;)
W20

1—

lifo(wjz) > 0.5
0 else
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A Simplified MLP Diagram

1 Hidden Layer,
3 Hidden Units

20 = o(wgx;
0
— @)D~
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2 = o(wix;
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Complex Decision Boundaries

e What does this extra layer give us?
o Can compose multiple linear classifiers

yi
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Complex Decision Boundaries

. . Recall:
e What does this extra layer give us?
o  Cancompose multiple linear classifiers _J1it w'x,+b>0
o 0 else
0 O @
e O ® O
o O
Jiee s
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Complex Decision Boundaries

e What does this extra layer give us?
o Can compose multiple linear classifiers
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Complex Decision Boundaries

e What does this extra layer give us?
o Can compose multiple linear classifiers
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Discuss: Why this works?

e What does this extra layer give us?
o Can compose multiple linear classifiers
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Increasing Depth

Discuss: How to construct the decision boundary?

\ 4
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Increasing Depth

e MLP with 1 hidden layer composes linear classifiers
e MLP with 2 hidden layers can compose polygon classifiers

A

\

\ 4
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Discuss: What about just one layer?
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Increasing Depth

e MLP with 1 hidden layer composes linear classifiers
e MLP with 2 hidden layers can compose polygon classifiers

A

\
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Complex Decision Boundaries

e Can compose arbitrarily complex decision boundaries

)

https://deeplearning.cs.cmu.edu/S24/document/slides/lec2.universal.pdf
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Activation Functions

e Can replace the sigmoid with other nonlinear functions
o  Still universal approximators!
Sigmoid() Tanh() ReLU()
-1 tanh(z) = ——° = 25(2z) — 1
o) =1 anh(z) = o ——— =20(Qx) - ReLU(z) = max(0, z)

Squash between 0 and 1

Squash between -1 and 1

Threshold at 0

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity




Delving Deep into Rectifiers:
Corne" Bowers C'IS Surpassing Human-Levvlel Perfomlnance onlImageNet Classification
Act I Va t I O n F u n Ct I O n S Kaiming He Xiangl}\rlllliCZrk:slf)lfl Rese::;oqing Ren Jian Sun
C |
LeakyReLU(negative_slope=0.1)
e Canreplace the sigmoid with other nonling:
o  Still universal approximators! 4
2
Sigmoid() Tanh() g
6 6 g 0
4 4 =21
24 2] -4
2‘- 0 ———/—— ;i 0+ g I =0’
° ° 6 4 -2 0 2 4 6
21 -2 Input
4 e -4 4
—6 -6 6
6 4 2 0 2 4 6 6 4 22 0 2 4 6 6 4 2 0 2 4
Input Input Input
1 e* —e*
o) =1 tanh(z) = —— — = 20(23) - ReLU(z) = max(0, z)

Squash between 0 and 1

Squash between -1 and 1

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity

Threshold at 0
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Activation

Functions

e Can replace the sigmoid with other nonlinear functions

o  Still universal approximators!

SiLU()

Output
o

-2

—4 A

-6 4

Input

silu(x)=x*o(x)

Output

-2 1

-4 4

—6 -

GELU(approximate='none')

-6 -4 -2 0 2 4 6
Input

GELU(x)=x*®d(x)

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity
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How to learn MLP weights?

Gradient descent!
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Calculus Review: The Chain Rule

Lagrange’s Notation: If h(z) = f(g(x)), then A’ = f'(g(x))g'(x)
Leibniz’s Notation: If z= h(y), A= g(ay), then g—; - g_;g_g

Example:  If 2 = In(y),y = x?2, then

dz dzdy
E- &k
- ()(20) = (5)(29)

2

i
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Multivariate Chain Rule

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/
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Multivariate Chain Rule

If f(u)is z = f(v(u),w(u)), then
of _  O0vdz  Ow oz

ou (8u ov g ou 8w)

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/
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Backpropagation- An Example

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/
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0z dv 0z Ow 0z
du

Backpropagation— AN Example = du v 4 du ow

750 s

y 2 =
Forward v %2 _10-3-% s
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Ju 0v

A

Backward

<50 . J—
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https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/
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Backpropagation- Key Idea

If you know
0z 0z

u I (%)
\
N
Y
s\ V3
Ny ,\\

0z
You can compute =

N )
\ ¢
\ Y
N
-
! 4
I _ 27
,/
dz _ (0dv, az+6v2 az+6v3 0z
dou \du Odv, Ou 0dv, Ou OJvs

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/
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Preview
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Backpropagation- MLPs

Algorithm Forward Pass through MLP

z0 = x

: forl=1to L do

alll = wlldzli-1 L pl
zll — O'[l](a[l])

: end for

. Output: zl

e =S~ B NI R

. Input: input x, weight matrices W, ...,

WL bias vectors bl ... blZl
> Initialize input

> Linear transformation
> Nonlinear activation

= Wz 1 bl
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Backpropagation- MLPs

Algorithm Forward Pass through MLP

1: Input: input x, weight matrices W, ... WL bias vectors b, ..., bl

2: 2zl = x > Initialize input

3: for/=1to L do

4: alll = wligli-1 4 pl > Linear transformation
ol =Wzl + bl afl = Wla 1 b 54 zll = gl (alt) > Nonlinear activation

6: end for

7. Output: z!

Algorithm Backward Pass through MLP

1: Input: {z1,... zlH}, {alt] ... all}, loss gradient %

2: 1L = % ® ol (all)) > Error term
3: for/ =L to1ldo

4: soa = 6l (zl-1NHT > Gradient of weights
5: % =6l > Gradient of biases
6: oU=1 = (WINT sl @ gl=1" (all-1)

7: end for

8: Output: BV\a/'ILhLJ ; aba[fm
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Backpropagation- MLPs

Algorithm Forward Pass through MLP

all =Wz +b] 2 =Wz + b 1: Input: input x, weight matrices W, ..., WILI bias vectors blll, ... blZl
2: zl% = x > Initialize input
3: for/=1to L do
4: all = wligli=1] 4 pl] > Linear transformation
54 zll = sli(all) > Nonlinear activation
6: end for
7. Output: z!"

zEO] =x; z£1] = a(a?]) z?] = a(a?]) 7 = a(a[sl

1 1 )Algorithm Backward Pass through MLP (Detailed)

1: Input: {zl!,... zIH1}, {altl ... alF} loss gradient ;2f;

2 Ol = afﬁ] = aﬁﬁl gﬁ = 32[%1 ©o [L]l(a[L]) > Error term
3: for|=Lto1ldo

- 635[11 = aaaﬁ] 36\?{,51[]:] = gl (zl=1)T > Gradient of weights
8 a%ﬁll] = aiﬁ] g{t[[lz]] = 4l > Gradient of biases
6 5oLy =2k fall _ (wll)Tgll

o = e = i S = (W78 0 ol (al =)

8: end for

9: Output: .0f77, saen
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Takeaways

e MLPs consist of stacks of perceptron units

e MLPs can learn complex decision boundaries
by composing simple features into more complex features

e Learn MLP weights with gradient descent
o Backpropagation efficiently computes gradient
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Next Week

A deep dive into training neural networks!

—— Gradient descent

Min = 1.9500000000000002

https://arxiv.org/abs/1712.09913




