
Deep Learning
Recap & Multi-Layer Perceptrons

Quick Recap- Logistics

https://www.cs.cornell.edu/courses/cs4782/2026sp/

Quick Recap- Logistics

https://www.cs.cornell.edu/courses/cs4782/2026sp/

No laptops/mobiles/smart devices in

class please!

Agenda

● Perceptron
● Logistic Regression
● Gradient Descent
● Multi-Layer Perceptrons (MLPs)
● Backpropagation

A Classification Problem:

Will I Pass This Class?

A Classification Problem: Will I Pass This Class?

A Classification Problem: Will I Pass This Class?

A Classification Problem: Will I Pass This Class?

A Classification Problem: Will I Pass This Class?

A Classification Problem: Will I Pass This Class?

A Classification Problem: Will I Pass This Class?

A Classification Problem: Will I Pass This Class?

A Classification Problem: Will I Pass This Class?

A Classification Problem: Will I Pass This Class?

What are key components in ML?

● Training data

● Model Class / Hypothesis space

● Loss function

● Optimization

A Classification Problem: Will I Pass This Class?

Perceptron

Perceptron

Perceptron
Learned from training data

Perceptron

Perceptron

Perceptron

● Linear classifier
○ Predecessor to neural network

A Classification Problem: Will I Pass This Class?

Recall:

Recall:

A Classification Problem: Will I Pass This Class?

A Classification Problem: Will I Pass This Class?

● Perceptron defines a
linear classification
boundary

Perceptron

The “Soft” Perceptron

The “Soft” Perceptron

In other words… Logistic Regression

● A single-layer perceptron

Clean Up Bias Term

Origin

Maximum Likelihood Estimation

We want to find w to maximize the likelihood of the observed data

Maximum Likelihood Estimation

We want to find w to maximize the likelihood of the observed data

→ Minimize negative log likelihood loss (NLL loss)

Discuss: Why are they equivalent?

data=

Conditional
independent

monotonic

Flipping +/-

Maximum Likelihood Estimation

Start by writing using and

Derive the “Log Loss”:

We want to find w to maximize the likelihood of the observed data

Maximum Likelihood Estimation

Negative log-likelihood loss (NLL loss)

Our Goal: Minimize the Loss

Gradient Descent

Visualize Gradient Descent in 1-D

https://web.stanford.edu/~jurafsky/slp3/

Visualize Gradient Descent in 1-D

https://web.stanford.edu/~jurafsky/slp3/

Visualize Gradient Descent in 1-D

https://web.stanford.edu/~jurafsky/slp3/

Gradients

https://www.ml-science.com/gradients

Gradient Descent:

- Find the gradient at current point
- Move in opposite direction with

learning rate 𝛼

https://www.ml-science.com/gradients

Gradient Descent (GD)

What are key components in ML?

● Training data

● Model Class / Hypothesis space

● Loss function

● Optimization

Demo: Logistic Regression

● Tensorflow Playground

https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=gauss®Dataset=reg-plane&learningRate=0.3®ularizationRate=0&noise=0&networkShape=&seed=0.49809&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false&activation_hide=true&percTrainData_hide=true&batchSize_hide=true&noise_hide=false&numHiddenLayers_hide=true&problem_hide=true&dataset_hide=true

Demo: The XOR Problem

● Tensorflow Playground

https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=xor®Dataset=reg-plane&learningRate=0.3®ularizationRate=0&noise=0&networkShape=&seed=0.23110&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false&activation_hide=true&percTrainData_hide=true&batchSize_hide=true&noise_hide=true&numHiddenLayers_hide=true&problem_hide=true&dataset_hide=false

The XOR Problem

● Perceptron canʼt learn the XOR function
○ Simple logical operation

● Data is not linearly separable

https://www.pyimagesearch.com/2021/05/06/implementing-the-perceptron-neur
al-network-with-python/

Discuss: What are some ways to handle data that is not linearly
separable?

Without deep learning!

Possible Solutions

● Feature engineering
○ Construct a feature space where the data is linearly separable

● Kernel methods
○ Implicitly project the data into a higher-dimensional space where it is linearly separable

● Non-linear classifiers
○ E.g. Nearest neighbor, decision tree algorithms

Demo: Feature Engineering

Tensorflow Playground

https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=xor®Dataset=reg-plane&learningRate=0.3®ularizationRate=0&noise=0&networkShape=&seed=0.23110&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false&activation_hide=true&percTrainData_hide=true&batchSize_hide=true&noise_hide=true&numHiddenLayers_hide=true&problem_hide=true&dataset_hide=false

Feature Engineering

input image

input image

classification “dog”

classification “cat”

Agenda

● Perceptron
● Logistic Regression
● Gradient Descent
● Multi-Layer Perceptrons (MLPs)
● Backpropagation

Multi-Layer Perceptron (MLP)

● Compose multiple perceptrons to learn intermediate features

Multi-Layer Perceptron (MLP)

● Compose multiple perceptrons to learn intermediate features

An MLP with 1 hidden layer with 3 hidden units

A Simplified MLP Diagram

1 Hidden Layer,
3 Hidden Units

A Simplified MLP Diagram

1 Hidden Layer,
3 Hidden Units

A Simplified MLP Diagram

1 Hidden Layer,
3 Hidden Units

Complex Decision Boundaries

● What does this extra layer give us?
○ Can compose multiple linear classifiers

Complex Decision Boundaries

● What does this extra layer give us?
○ Can compose multiple linear classifiers

Recall:

Complex Decision Boundaries

● What does this extra layer give us?
○ Can compose multiple linear classifiers

Complex Decision Boundaries

● What does this extra layer give us?
○ Can compose multiple linear classifiers

Discuss: Why this works?

● What does this extra layer give us?
○ Can compose multiple linear classifiers

Complex Decision Boundaries

● What does this extra layer give us?
○ Can compose multiple linear classifiers

Recall:

Complex Decision Boundaries

● What does this extra layer give us?
○ Can compose multiple linear classifiers

Recall:

What is w?

?

?

What is b?
?

Complex Decision Boundaries

● What does this extra layer give us?
○ Can compose multiple linear classifiers

Recall:

MLP Demo (1 Hidden Layer)

Tensorflow Playground

https://playground.tensorflow.org/#activation=sigmoid&batchSize=10&dataset=circle®Dataset=reg-plane&learningRate=0.3®ularizationRate=0&noise=0&networkShape=3&seed=0.44629&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false&activation_hide=false&percTrainData_hide=true&batchSize_hide=true&noise_hide=true&numHiddenLayers_hide=false&problem_hide=true&dataset_hide=false

Increasing Depth

Discuss: How to construct the decision boundary?

● MLP with 1 hidden layer composes linear classifiers
● MLP with 2 hidden layers can compose polygon classifiers

Increasing Depth

Increasing Depth

Increasing Depth

Increasing Depth

Increasing Depth

What is w?

?

What is b?

?

Discuss: What about just one layer?

What about just one layer?

What about just one layer?

● MLP with 1 hidden layer composes linear classifiers
● MLP with 2 hidden layers can compose polygon classifiers

Increasing Depth

Complex Decision Boundaries

● Can compose arbitrarily complex decision boundaries

https://deeplearning.cs.cmu.edu/S24/document/slides/lec2.universal.pdf

Activation Functions

● Can replace the sigmoid with other nonlinear functions
○ Still universal approximators!

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity

Squash between 0 and 1 Squash between -1 and 1 Threshold at 0

Activation Functions

● Can replace the sigmoid with other nonlinear functions
○ Still universal approximators!

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity

Squash between 0 and 1 Squash between -1 and 1 Threshold at 0

Activation Functions

● Can replace the sigmoid with other nonlinear functions
○ Still universal approximators!

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity

Squash between 0 and 1 Squash between -1 and 1 Threshold at 0

Activation Functions

● Can replace the sigmoid with other nonlinear functions
○ Still universal approximators!

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity

silu(x)=x∗σ(x) GELU(x)=x∗Φ(x)

MLP Demo (3 Hidden Layers)

Tensorflow Playground

https://playground.tensorflow.org/#activation=relu®ularization=L2&batchSize=10&dataset=spiral®Dataset=reg-plane&learningRate=0.03®ularizationRate=0.001&noise=0&networkShape=8,8,8&seed=0.12222&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false&activation_hide=false&percTrainData_hide=true&batchSize_hide=true&noise_hide=true&numHiddenLayers_hide=false&problem_hide=true&dataset_hide=false

How to learn MLP weights?

Gradient descent!

Calculus Review: The Chain Rule

Lagrangeʼs Notation:

Leibnizʼs Notation:

Calculus Review: The Chain Rule

Lagrangeʼs Notation:

Leibnizʼs Notation:

Example:

Multivariate Chain Rule

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/

Multivariate Chain Rule

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/

Backpropagation- An Example

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/

Backpropagation- An Example

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/

Backpropagation- An Example

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/

Backpropagation- An Example

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/

Backpropagation- An Example

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/

Backpropagation- An Example

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/

Backpropagation- An Example

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/

Backpropagation- Key Idea

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/

Preview

Backpropagation- MLPs

Backpropagation- MLPs

Backpropagation- MLPs

Takeaways

● MLPs consist of stacks of perceptron units

● MLPs can learn complex decision boundaries
by composing simple features into more complex features

● Learn MLP weights with gradient descent
○ Backpropagation efficiently computes gradient

Next Week

A deep dive into training neural networks!

https://arxiv.org/abs/1712.09913

