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Cornell Bowers CiIS

Quick Recap- Logistics

CS 4782. |ntr0 tO Deep Learning, Spl‘lng 2026 Overview Assignments Schedule References Policies

Instructors: Kilian Q. Weinberger and Wei-Chiu Ma

Office hours:
Kilian Weinberger : Mondays 9:45 - 10:30 am (Booking Link) in 410 Gates Hall
Wei-Chiu Ma: Wednesday 14:30 - 15:30 (Booking_Link). in 416A Gates Hall

Lectures: Tuesday and Thursday from 2:55 to 4:10 pm.

Course staff office hours: Calendar Link (TBD)

Course overview: This class is an introductory course to deep learning. It covers the fundamental principles behind training and inference of deep networks, deep reinforcement
learning, the specific architecture design choices applicable for different data modalities, discriminative and generative settings, and the ethical and societal implications of such
models.

Prerequisites: Fundamentals of Machine Learning (CS4780, ECE4200, STCSI4740), Python fluency (CS1110), and programming proficiency (e.g. CS 2110).

Course logistics: For enrolled students the companion Canvas page serves as a hub for access to Ed Discussions (the course forum) and Gradescope (for HWSs). If you are
enrolled in the course you should automatically have access to the site. Please let us know if you are unable to access it.

https://www.cs.cornell.edu/courses/cs4782/2026sp/




Cornell Bowers C1IS

Quick Recap- Logistics

No laptops/mobiles/smart devices In

class please!
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Agenda

Perceptron

Logistic Regression

Gradient Descent

Multi-Layer Perceptrons (MLPs)
Backpropagation




Cornell Bowers C1IS

A Classification Problem:

Will | Pass This Class?
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What are key components in ML?

e Training data
e Model Class / Hypothesis space
e Lossfunction

e Optimization
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Perceptron

@D

Input




Cornell Bowers CiIS

Perceptron
:13? (o
:L';l w1

Input Weights




Cornell Bowers C1IS

Perceptron
; a; =w x; +b
a;
:B,:Ll w1

Input Weights Sum
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Perceptron
; a; =w x; +b
O
:E,:Ll W1
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Function
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Perceptron
:1:? Wy
w,} W1
Input Weights

Step

Sum )
Function
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Perceptron

e Linear classifier

o Predecessor to neural network

:17? (o
:E,:Ll W1
Input Weights

a; =w x; +b

Step

Sum Function

Prediction
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A Classification Problem: Will | Pass This Class?

e Perceptron defines a
linear classification

boundary .
x- =hours p
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project
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The “Soft” Perceptron

Sigmoid
Function
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The “Soft” Perceptron

Sigmoid
Function
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In other words... Logistic Regression

e A single-layer perceptron

a;=w x;+b

N @ _ [lifo(a;) > 0.5
’ Yi =00 else

Sigmoid ]
b Function
1 , 0.5 ! !
U(w) B m J

Wy
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Clean Up BiasTerm  w'x;+b

Absorb bias term into feature vector:

1

X; becomes [xz] and w becomes [‘Z]

We can see that:

Can rewrite logistic regression as

yi = O'(WTXi)
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Maximum Likelihood Estimation ﬁ

We want to find w to maximize the likelihood of the observed data

(xi,yi), where y; € {0,1)
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Maximum Likelihood Estimation ﬁ

______ A

- - 0.5 -
P -
/
% T
yi — O(W xz) | 4/3 I I j

-6 -4 -2 0 2 4 6

We want to find w to maximize the likelihood of the observed data

(%, yi), where y; € {0,1}
Cornell Bowers C1S
What are key components in ML?

e Training data

— Minimize negative log likelihood loss (NLL 10SS) o wodel ciass/ Hypothesis space

e Loss function

e Optimization
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Discuss: Why are they equivalent?

max P, (Data)

@ data=(x:y:)

max Py, (Y1, Y2, -+ Yn|T1, T2, -, Tn)
@ Conditional
independent

max IL; Py, (y;|z;)

? monotonic
max » _logP, (yi|x;)

. ? Flipping +/-

2
min — ) " logP,, (yi|z;)
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Maximum Likelihood Estimation ﬁ

We want to find w to maximize the likelihood of the observed data

(xi,yi), where y; € {0,1}
Start by writing p(y;|x;) using ¥; and Yy;

Derive the “Log Loss”:

(i, y:) = —[yilogo(w'x; )+ 1 —y;)log(l—o(w'x; )]
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Maximum Likelihood Estimation

Maximize the likelihood of the observed data (x;,y;), where y; € {0,1}:
p(yilx:) =97 (1 —3:)'
Note that if y;, = 1, then
p(yilx:) = ¥
and if y; = 0, then

A

p(yilx;) =1—-y;
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Negative log-likelihood loss (NLL loss) |¥i= (W' xi) f

Maximizing the likelihood is equivalent to maximizing the log-likelihood:

log p(yi|xi) = log[yY (1 — 3:)' %)
=y;logy; + (1 —y;)log(l —¥:))

Add a negative sign to turn it into a loss, i.e. something to minimize:
U(yi,yi) = —logp(yilx:) = —[yilogy; + (1 — yi) log(1 — ¥3))]
We can plug in our definition of y; = o(w ' x; + b):

U(yi,yi) = —[y;log o(w'x; + b) + (1 — y;)log(1 — o(w'x; + b))]
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Our Goal: Minimize the Loss

Given some training dataset:

Dtr = {X4,Yi}ieo
min L(w; DrRr) = Zf Yi,¥i)

— LS totwT). v
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Gradient Descent




Cornell Bowers CiIS
Visualize Gradient Descent in 1-D

Loss ¢ Should we move
right or left from here?

https://web.stanford.edu/~jurafsky/slp3/
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Visualize Gradient Descent in 1-D

slope of loss at w™
is negative

Wl wmin

0 (goal)

\ |

https://web.stanford.edu/~jurafsky/slp3/




Cornell Bowers CiIS

Visualize Gradient Descent in 1-D

slope of loss atw™ _—
is negative

one step
of gradient
descent

\J

https://web.stanford.edu/~jurafsky/slp3/
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Gradients 9L (w: Drg)

VwL(W;DrRr) = | 9w® , VwL(w;Dr) € R™

0L - (w; DrrR)

L (M)

’l;ﬁ%’;;”

, 'll///!/il Gradient Descent:
N 7777
NN 2
“\\ “ S ] /’/ . . .
- = '*?’/" - Find the gradient at current point
1 X I N

- Move in opposite direction with
o learning rate o

W EY -— o

Wit — Wi — Oéthﬁ(wt; DTR)

90 90

https://www.ml-science.com/gradients



https://www.ml-science.com/gradients
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Gradient Descent (GD)

—— Gradient descent

Y 1.,
4

i~ 2.5
- 2.0
1.5
- 1.0
T 05
- 0.0

Min = 1.9500000000000002

Wil = Wi — Oéthﬁ(Wt; DTR)
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What are key components in ML?

e Training data
e Model Class / Hypothesis space
e Lossfunction

e Optimization
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Demo: Logistic Regression

e Tensorflow Playground



https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=gauss&regDataset=reg-plane&learningRate=0.3&regularizationRate=0&noise=0&networkShape=&seed=0.49809&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false&activation_hide=true&percTrainData_hide=true&batchSize_hide=true&noise_hide=false&numHiddenLayers_hide=true&problem_hide=true&dataset_hide=true

Cornell Bowers CiIS

Demo: The XOR Problem

e Tensorflow Playground

AND

Yy A y

OR

XOR



https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=xor&regDataset=reg-plane&learningRate=0.3&regularizationRate=0&noise=0&networkShape=&seed=0.23110&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false&activation_hide=true&percTrainData_hide=true&batchSize_hide=true&noise_hide=true&numHiddenLayers_hide=true&problem_hide=true&dataset_hide=false

Cornell Bowers CiIS

The XOR Problem

e Perceptron can’t learn the XOR function

o  Simple logical operation
e Dataisnotlinearly separable

Y A

AND

OR

XOR

x

https://www.pyimagesearch.com/2021/05/06/implementing-the-perceptron-neur

al-network-with-python/

>
X
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Discuss: What are some ways to handle data that is not linearly
separable?

Without deep learning!

o = N W » 0 O

'
-

€

6 -5 4 3 2 -1 0 1 2 3 4 5 6
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Possible Solutions

e Feature engineering
o Construct a feature space where the data is linearly separable

e Kernel methods
o Implicitly project the data into a higher-dimensional space where it is linearly separable

e Non-linear classifiers
o E.g. Nearest neighbor, decision tree algorithms
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Demo: Feature Engineering

Tensorflow Playground



https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=xor&regDataset=reg-plane&learningRate=0.3&regularizationRate=0&noise=0&networkShape=&seed=0.23110&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false&activation_hide=true&percTrainData_hide=true&batchSize_hide=true&noise_hide=true&numHiddenLayers_hide=true&problem_hide=true&dataset_hide=false

Cornell Bowers CiIS
Feature Engineering

input image

input image

classification

classification

> “(j‘:)s;l

14
-

b

cat’
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Agenda

Perceptron

Logistic Regression

Gradient Descent

Multi-Layer Perceptrons (MLPs)
Backpropagation




Cornell Bowers CiIS

Multi-Layer Perceptron (MLP)

e Compose multiple perceptrons to learn intermediate features
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Multi-Layer Perceptron (MLP)

e Compose multiple perceptrons to learn intermediate features

An MLP with 1 hidden layer with 3 hidden units

0

z; = U(ngi)
@ o

@D
2 = o(wix;)
W1,0—

@i
z; = o(wy x;)
W20

1—

lifo(wjz) > 0.5
0 else
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A Simplified MLP Diagram

1 Hidden Layer,
3 Hidden Units

20 = o(wgx;
0
— @)D~
1
xi)

2 = o(wix;
0
. . . ] . . $i {1ifa(w§z) >05
0 else
1

PITITT

22 =o(wyx;
0
1
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A Simplified MLP Diagram

. . = = o(wgxi)
— @)D
o
:: F—wi0— A
- — OO 5~ {ran
@ i # = o(wix;)
@—wm—

1 Hidden Layer,
3 Hidden Units
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A Simplified MLP Diagram

0
£
W,
—O—HD—
Wo,

2z [l o(wix;
L0
9 @ e e @ . Bf1ifa(wjz)>05
N Yi T 0 else
W1,1

cY

wj o

PPPPTY

1 Hidden Layer,
3 Hidden Units
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Complex Decision Boundaries

e What does this extra layer give us?
o Can compose multiple linear classifiers

yi
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Complex Decision Boundaries

. . Recall:
e What does this extra layer give us?
o Can compose multiple linear classifiers _J1it w'x,+b>0
o 0 else
0 O @
e_ O ® O
o O
Jiee s
©0_o ®
Vi O ® @
y'l . .
O
® o O ®
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Complex Decision Boundaries

e What does this extra layer give us?
o Can compose multiple linear classifiers
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Complex Decision Boundaries

e What does this extra layer give us?
o Can compose multiple linear classifiers
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Discuss: Why this works?

e What does this extra layer give us?
o Can compose multiple linear classifiers
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Complex Decision Boundaries

e What does this extra layer give us?
o Can compose multiple linear classifiers

Recall:

o lifw'x; +5>0
¥ =0 else
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Complex Decision Boundaries Recall:
. T )
e What does this extra layer give us? v = {1 ifw x;+b>0
o Can compose multiple linear classifiers 0 else

What is w?
What is b?
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Complex Decision Boundaries

e What does this extra layer give us?
o Can compose multiple linear classifiers

Recall:

|

lifw'x; +b>0

AND

\
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MLP Demo (1 Hidden Layer)

Tensorflow Playground



https://playground.tensorflow.org/#activation=sigmoid&batchSize=10&dataset=circle&regDataset=reg-plane&learningRate=0.3&regularizationRate=0&noise=0&networkShape=3&seed=0.44629&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false&activation_hide=false&percTrainData_hide=true&batchSize_hide=true&noise_hide=true&numHiddenLayers_hide=false&problem_hide=true&dataset_hide=false

Cornell Bowers CiIS
Increasing Depth

Discuss: How to construct the decision boundary?

\ 4
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Increasing Depth

e MLP with 1 hidden layer composes linear classifiers
e MLP with 2 hidden layers can compose polygon classifiers

A

\

\4
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Increasing Depth
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Increasing Depth
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Increasing Depth
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Increasing Depth

What is w?
What is b?
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Discuss: What about just one layer?
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What about just one layer?
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What about just one layer?

o ®/ \® ©

5 o

°®

o o o.'oo .
Vi @) 5 000.0 )

@)

® /fo o ® / o o
‘o @)
)
.4. ey © o , o
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Increasing Depth

e MLP with 1 hidden layer composes linear classifiers
e MLP with 2 hidden layers can compose polygon classifiers

A

\

\4
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Complex Decision Boundaries

e Can compose arbitrarily complex decision boundaries

)

https://deeplearning.cs.cmu.edu/S24/document/slides/lec2.universal.pdf
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Activation Functions

e Can replace the sigmoid with other nonlinear functions
o  Still universal approximators!
Sigmoid() Tanh() ReLU()
-1 tanh(z) = ——° = 25(2z) — 1
o) =1 anh(z) = o ——— =20(Qx) - ReLU(z) = max(0, z)

Squash between 0 and 1

Squash between -1 and 1

Threshold at 0

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity
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Activation Functions

e Can replace the sigmoid with other nonlinear functions
o  Still universal approximators!

Sigmoid() Tanh() ReLU()
6 6 6
4] “ 4]
2 2 2
3 ) 3 o 3 i
o at] o
= 8 .
S DN T S T A N S N T B B
1 e* —e?*
o(z) = 1xe= tanh(z) = pramperi 20(2z) — ReLU(z) = max(0, z)
Squash between 0 and 1 Squash between -1 and 1 Threshold at 0

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity




Delving Deep into Rectifiers:
Corne" Bowers C'IS Surpassing Human-Levvlel Perfomlnance onlImageNet Classification
Act I Va t I O n F u n Ct I O n S Kaiming He Xiangl}\rlllliCZrk:slf)lfl Rese::;oqing Ren Jian Sun
C |
LeakyReLU(negative_slope=0.1)
e Canreplace the sigmoid with other nonling.
o  Still universal approximators! 4
2
Sigmoid() Tanh() g
6 6 g 0
4 4 =21
24 2] -4
2‘- 0 ———/—— ;i 0+ g I =0’
° ° 6 4 -2 0 2 4 6
21 -2 Input
4 e -4 4
—6 -6 1 6
6 4 2 0 2 4 6 6 4 22 0 2 4 6 6 a4 2 0 2 4
Input Input Input
1 e* —e*
o) =1 tanh(z) = —— — = 20(23) - ReLU(z) = max(0, z)

Squash between 0 and 1

Squash between -1 and 1

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity

Threshold at 0
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Activation

Functions

e Can replace the sigmoid with other nonlinear functions

o  Still universal approximators!

SiLU()

Output
o

-2

—4 A

-6 4

Input

silu(x)=x*o(x)

Output

-2 1

-4 4

—6 -

GELU(approximate='none')

-6 -4 -2 0 2 4 6
Input

GELU(x)=x*®d(x)

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity
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MLP Demo (3 Hidden Layers)

Tensorflow Playground



https://playground.tensorflow.org/#activation=relu&regularization=L2&batchSize=10&dataset=spiral&regDataset=reg-plane&learningRate=0.03&regularizationRate=0.001&noise=0&networkShape=8,8,8&seed=0.12222&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false&activation_hide=false&percTrainData_hide=true&batchSize_hide=true&noise_hide=true&numHiddenLayers_hide=false&problem_hide=true&dataset_hide=false

Cornell Bowers C1S
How to learn MLP weights?

Gradient descent!
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Calculus Review: The Chain Rule

Lagrange’s Notation: If h(z) = f(g(x)), then A’ = f'(g(x))g'(x)
Leibniz’s Notation: If z= h(y), = g(a';), then 3—; - g_;s_g
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Calculus Review: The Chain Rule

Lagrange’s Notation: If h(z) = f(g(x)), then A’ = f'(g(x))g'(x)
Leibniz’s Notation: If z= h(y), = g(ay), then g—; - g_;g_g

Example:  If 2 = In(y),y = x?2, then

dz  dzdy
E- &k
- ()(20) = (5)(29)

2

i
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Multivariate Chain Rule

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/
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Multivariate Chain Rule

If f(u)is z = f(v(u),w(u)), then
of _  O0vdz  Ow oz

ou (8u ov g ou 8w)

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/
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Backpropagation- An Example

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/
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Backpropagation- An Example

Forward

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/
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Backpropagation- An Example

Forward

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/
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BackpropagatiOn- AR Example oz _ (()l’ 0z Ow ()z)

du du dv Odu Jdw

Forward

Backward

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/
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Backpropagation- An Example

dz (()1’ dz oOw ()z)

du ‘()u Jdv du Jdw

Forward

Backward

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/
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Backpropagation- An Example i (()u Ba " Ba ‘(,W)

{)?
Forward oa
Backward

e 125
= * e

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/
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0z dv 0z Ow 0z
du

Backpropagation— AN Example = du v 4 du ow

750 s

y 2 =
Forward v %2 _10-3-% s
(4]

Ju 0v

A

Backward

<50 . J—
ow

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/
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Backpropagation- Key Idea

If you know
0z 0z

u I (%)
\
N
Y
s\ V3
Ny ,\\

0z
You can compute =

N )
\ ¢
\ Y
N
-
! 4
I _ 27
,/
dz _ (0dv, az+6v2 az+6v3 0z
dou \du Odv, Ou 0dv, Ou OJv,

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/




Cornell Bowers CiIS

Preview
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Backpropagation- MLPs

Algorithm Forward Pass through MLP

z0 = x

: forl=1to L do

alll = wlldzli-1 L plH
zlll — O'[l](a[l])

: end for

. Output: zl

N oo W N

. Input: input x, weight matrices W, ...

WL bias vectors bl ... blZl
> Initialize input

> Linear transformation
> Nonlinear activation

= Wz 1 bl
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Backpropagation- MLPs

Algorithm Forward Pass through MLP

1: Input: input x, weight matrices W, ... WL bias vectors b, ..., bl

2: 2zl = x > Initialize input

3: for/=1to L do

4: alll = wligli-1 4 pl > Linear transformation
ol =Wzl + bl afl = Wla 1 b 54 zll = gll(alt) > Nonlinear activation

6: end for

7. Output: z!

Algorithm Backward Pass through MLP

1: Input: {zl1,... zlH}, {altl ... all}, loss gradient %

2: 1L = % ® ol (all)) > Error term
3: for/ =L to1ldo

4: soam = 6l (zl-1NT > Gradient of weights
5: % =gl > Gradient of biases
6: oU=1 = (WINT sl @ gli=1" (all-1])

7: end for

8: Output: BV\a/'ILhLJ ; aba[fm
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Backpropagation- MLPs

Algorithm Forward Pass through MLP

all =Wz + b 2 =Wla + b 1: Input: input x, weight matrices W, ..., WILI bias vectors blll, ... blZl
2: zl% = x > Initialize input
3: for/=1to L do
4: all = wligli=1] 4 pl] > Linear transformation
54 zlll = sli(all) > Nonlinear activation
6: end for
7. Output: z!"

zEO] =x; z£1] = a(a?]) z?] = a(a?]) 7 = a(a[sl

1 1 )Algorithm Backward Pass through MLP (Detailed)

1: Input: {zl!,... zIF1}, {alll ... alF} loss gradient ;2f;

2 Ol = afﬁ] = aﬁﬁl 333 = 32[%1 ©o [L]l(a[L]) > Error term
3: for =L to1do

- 635[11 = aaaﬁ] 36\?{,51[]:] = gl (2l -1)T > Gradient of weights
8 a%ﬁll] = aiﬁ] g{t[[lz]] = 4l > Gradient of biases
6 5oLy =2k fall _ (wWll)Tgll

o = ey = i S = (W78 0 ol (al =)

8: end for

9: Output: 5.o0f77, saen
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Takeaways

e MLPs consist of stacks of perceptron units

e MLPs can learn complex decision boundaries
by composing simple features into more complex features

e Learn MLP weights with gradient descent
o Backpropagation efficiently computes gradient
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Next Week

A deep dive into training neural networks!

—— Gradient descent

Min = 1.9500000000000002

https://arxiv.org/abs/1712.09913




