
Deep Learning
Recap & Multi-Layer Perceptrons



Quick Recap- Logistics

https://www.cs.cornell.edu/courses/cs4782/2026sp/



Quick Recap- Logistics

https://www.cs.cornell.edu/courses/cs4782/2026sp/

No laptops/mobiles/smart devices in

class please!



Agenda

● Perceptron
● Logistic Regression
● Gradient Descent
● Multi-Layer Perceptrons (MLPs)
● Backpropagation



A Classification Problem:
 

Will I Pass This Class?
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What are key components in ML?

● Training data

● Model Class / Hypothesis space

● Loss function

● Optimization



A Classification Problem: Will I Pass This Class?



Perceptron



Perceptron



Perceptron
Learned from training data



Perceptron
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Perceptron

● Linear classifier 
○ Predecessor to neural network



A Classification Problem: Will I Pass This Class?

Recall:



Recall:

A Classification Problem: Will I Pass This Class?



A Classification Problem: Will I Pass This Class?

● Perceptron defines a 
linear classification 
boundary



Perceptron



The “Soft” Perceptron



The “Soft” Perceptron



In other words… Logistic Regression

● A single-layer perceptron



Clean Up Bias Term

Origin



Maximum Likelihood Estimation

We want to find w to maximize the likelihood of the observed data



Maximum Likelihood Estimation

We want to find w to maximize the likelihood of the observed data

→ Minimize negative log likelihood loss (NLL loss)
 



Discuss: Why are they equivalent?

data=

Conditional 
independent

monotonic

Flipping +/-



Maximum Likelihood Estimation

Start by writing                   using          and  

Derive the “Log Loss”:

We want to find w to maximize the likelihood of the observed data



Maximum Likelihood Estimation



Negative log-likelihood loss (NLL loss)



Our Goal: Minimize the Loss



Gradient Descent 



Visualize Gradient Descent in 1-D

https://web.stanford.edu/~jurafsky/slp3/
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https://web.stanford.edu/~jurafsky/slp3/



Gradients

https://www.ml-science.com/gradients

Gradient Descent: 

- Find the gradient at current point
- Move in opposite direction with 

learning rate 𝛼 

https://www.ml-science.com/gradients


Gradient Descent (GD)



What are key components in ML?

● Training data

● Model Class / Hypothesis space

● Loss function

● Optimization



Demo: Logistic Regression

● Tensorflow Playground

https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=gauss&regDataset=reg-plane&learningRate=0.3&regularizationRate=0&noise=0&networkShape=&seed=0.49809&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false&activation_hide=true&percTrainData_hide=true&batchSize_hide=true&noise_hide=false&numHiddenLayers_hide=true&problem_hide=true&dataset_hide=true


Demo: The XOR Problem

● Tensorflow Playground

https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=xor&regDataset=reg-plane&learningRate=0.3&regularizationRate=0&noise=0&networkShape=&seed=0.23110&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false&activation_hide=true&percTrainData_hide=true&batchSize_hide=true&noise_hide=true&numHiddenLayers_hide=true&problem_hide=true&dataset_hide=false


The XOR Problem

● Perceptron canʼt learn the XOR function
○ Simple logical operation

● Data is not linearly separable

https://www.pyimagesearch.com/2021/05/06/implementing-the-perceptron-neur
al-network-with-python/



Discuss: What are some ways to handle data that is not linearly 
separable? 

Without deep learning!



Possible Solutions

● Feature engineering
○ Construct a feature space where the data is linearly separable

● Kernel methods
○ Implicitly project the data into a higher-dimensional space where it is linearly separable

● Non-linear classifiers
○ E.g. Nearest neighbor, decision tree algorithms 



Demo: Feature Engineering

Tensorflow Playground

https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=xor&regDataset=reg-plane&learningRate=0.3&regularizationRate=0&noise=0&networkShape=&seed=0.23110&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false&activation_hide=true&percTrainData_hide=true&batchSize_hide=true&noise_hide=true&numHiddenLayers_hide=true&problem_hide=true&dataset_hide=false


Feature Engineering

input image

input image

classification “dog”

classification “cat”



Agenda

● Perceptron
● Logistic Regression
● Gradient Descent
● Multi-Layer Perceptrons (MLPs)
● Backpropagation



Multi-Layer Perceptron (MLP)

● Compose multiple perceptrons to learn intermediate features



Multi-Layer Perceptron (MLP)

● Compose multiple perceptrons to learn intermediate features

An MLP with 1 hidden layer with 3 hidden units



A Simplified MLP Diagram

1 Hidden Layer,
3 Hidden Units
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A Simplified MLP Diagram

1 Hidden Layer,
3 Hidden Units



Complex Decision Boundaries

● What does this extra layer give us?
○ Can compose multiple linear classifiers
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Recall:
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● What does this extra layer give us?
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Complex Decision Boundaries

● What does this extra layer give us?
○ Can compose multiple linear classifiers



Discuss: Why this works?

● What does this extra layer give us?
○ Can compose multiple linear classifiers



Complex Decision Boundaries

● What does this extra layer give us?
○ Can compose multiple linear classifiers

Recall:



Complex Decision Boundaries

● What does this extra layer give us?
○ Can compose multiple linear classifiers

Recall:

What is w?

?

?

What is b?
?



Complex Decision Boundaries

● What does this extra layer give us?
○ Can compose multiple linear classifiers

Recall:



MLP Demo (1 Hidden Layer)

Tensorflow Playground

https://playground.tensorflow.org/#activation=sigmoid&batchSize=10&dataset=circle&regDataset=reg-plane&learningRate=0.3&regularizationRate=0&noise=0&networkShape=3&seed=0.44629&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false&activation_hide=false&percTrainData_hide=true&batchSize_hide=true&noise_hide=true&numHiddenLayers_hide=false&problem_hide=true&dataset_hide=false


Increasing Depth

Discuss: How to construct the decision boundary?



● MLP with 1 hidden layer composes linear classifiers
● MLP with 2 hidden layers can compose polygon classifiers

Increasing Depth



Increasing Depth



Increasing Depth



Increasing Depth



Increasing Depth

What is w?

?

What is b?

?



Discuss: What about just one layer?



What about just one layer?



What about just one layer?



● MLP with 1 hidden layer composes linear classifiers
● MLP with 2 hidden layers can compose polygon classifiers

Increasing Depth



Complex Decision Boundaries

● Can compose arbitrarily complex decision boundaries

https://deeplearning.cs.cmu.edu/S24/document/slides/lec2.universal.pdf



Activation Functions

● Can replace the sigmoid with other nonlinear functions
○ Still universal approximators!

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity

Squash between 0 and 1 Squash between -1 and 1 Threshold at 0
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● Can replace the sigmoid with other nonlinear functions
○ Still universal approximators!

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity

Squash between 0 and 1 Squash between -1 and 1 Threshold at 0



Activation Functions

● Can replace the sigmoid with other nonlinear functions
○ Still universal approximators!

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity

silu(x)=x∗σ(x) GELU(x)=x∗Φ(x)



MLP Demo (3 Hidden Layers)

Tensorflow Playground

https://playground.tensorflow.org/#activation=relu&regularization=L2&batchSize=10&dataset=spiral&regDataset=reg-plane&learningRate=0.03&regularizationRate=0.001&noise=0&networkShape=8,8,8&seed=0.12222&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false&activation_hide=false&percTrainData_hide=true&batchSize_hide=true&noise_hide=true&numHiddenLayers_hide=false&problem_hide=true&dataset_hide=false


How to learn MLP weights?

Gradient descent!



Calculus Review: The Chain Rule

Lagrangeʼs Notation:

Leibnizʼs Notation:



Calculus Review: The Chain Rule

Lagrangeʼs Notation:

Leibnizʼs Notation:

Example:



Multivariate Chain Rule

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/



Multivariate Chain Rule

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/



Backpropagation- An Example
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Backpropagation- An Example

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/



Backpropagation- Key Idea

https://windowsontheory.org/2020/11/03/yet-another-backpropagation-tutorial/



Preview



Backpropagation- MLPs



Backpropagation- MLPs



Backpropagation- MLPs



Takeaways

● MLPs consist of stacks of perceptron units

● MLPs can learn complex decision boundaries 
by composing simple features into more complex features

● Learn MLP weights with gradient descent
○ Backpropagation efficiently computes gradient



Next Week

A deep dive into training neural networks!

https://arxiv.org/abs/1712.09913


