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Logistics

e Homework 4
o Due Sunday March 24th (still have two slip days
o Shorter assignment on VAEs and Diffusion
o Pinned posts

e Feedback form for HW3 and associated content is due on tomorrow

e Reselased project feedback and HW2 feedback
o Check graded documents for feedback!
e Midterm next Thursday (03/28)
o During regular class time
o Alternate time offered Wednesday at (03/27)
o Location and time will be posted on Ed

Cornell Bowers C1S
Denoising Diffusion Models

Denoising diffusion models consist of two processes:

e Forward diffusion process that gradually adds noise to input
e Reverse denoising process that learns to generate data by denoising

Forward Process

Reverse Process

Cornell Bowers C1S
Details: Forward Process

Can sample x; in closed-form as q(x¢|xo) = N (v/@xXo, (1 — &;)I)

xt:\/&_tx0+ Vl_atfye'\‘N(OyI)y

q(x¢[x0)

a € (0,1)
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Aside: Noise Schedules x: =+vaxo+vI—awe,e ~N(0,I), a € (0,1)

e Define the noise schedule in

terms of a; € (0,1) "
o Some monotonically decreasing
function from 1 to 0

e Cosine Noise schedule: 04

a; = cos(.5mt/T)? o

0.0 02 0.4 0.6 0.8 10
diffusion step (t/T)

Figure 5. &, throughout diffusion in the linear schedule and our
proposed cosine schedule.

Nichol, Alexander Quinn, and Prafulla Dhariwal. “Improved denoising diffusion probabilistic models.”
International conference on machine learning. PMLR, 2021
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Key Idea

We introduce a generative model to approximate the reverse process:

p(xr) = N(x7;0,1) _
= pe(X0.7) = px7) | | Po(xs-1l%¢)
Po(xi—11x1) = N (x¢—1; g(xt, 1), 07T) ' g '

&

Po(Xe-1]x¢)

Cornell Bowers C1S
Key Idea
We introduce a generative model to approximate the reverse process:

p(x) = N(x7;0,1) _
= pe(xo7) = p(XT)
Po(xe—1]%1) = N (x¢—1; pg(x, t), o71) e ! h

=

po(x¢—1/xt)

1

‘ Learning Objective! Fl[Eq(mdmo) [DKL(Q($t—1|$t: 1’0) || Pe(zt—1|zt))]l

Po(Xi—1]x¢)
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Training: Principled Derivation

Find the model that maximizes the likelihood of the
training data

i.e. same as VAEs, variational inference; approximate the true posterior
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Training Objective

e Bound the likelihood with the ELBO
o  Exactly like hierarchical VAEs

p(zo1) ]

logp(x) > Ey(z,.r120) |10
8P(2) > Eq(er.riz0) [ 8 (@irlzo)

= Eq(a: |zo) [l0g Po(2ol|1)] — Dxw(a(zr|0) || (7))

T

= Ey(aifzo) [Dxu(a(@ia]a:, 2o) || po(ze1]z:))]

reconstruction term prior matching term

http://cs231n stanford.edu/slides/2023/lecture_15.pdf

=2
denoising matching term
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Training Objective

e Bound the likelihood with the ELBO
o Exactly like hierarchical VAEs

p(zo.r) ]
logp() > Eg(z,.play) [log ————
8P(2) 2 Ego.z| u)[ 8 (rrlzo)
T
= Ey(ar o) [l0g Po(@o|a1)] — D (g(@r|20) || p(1)) = D Eg(ansfaro) (DL (@(@i—1 |21, o) || po(ai1]m1))]
t=2

reconstruction term prior matching term denoising matching term

Discuss: How does the diffusion model construction help minimize the first two
terms?

hitp://cs231n.stanford.edu/slides/2023/lecture_15.pdf
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Discuss:

Differences between diffusion models and hierarchical

VAEs?

p(zo.r) ]

logp(x) > E 1o,
gp(T) > q(zmm)[ % (rrleo)

= Eq(ay|wo) [l0g Po(zo|z1)] — Dxr(g(@r|@0) || P(2T)) —

Inference model ~ Generative model
a(zlx) p(x,2)

Learning Objective!
T

> Eyeteo) [Dxr(a(@i-1 ]2, z0) | po(ae—i|z:))]
=2

reconstruction term prior matching term

hitp://cs231n.stanford. edu/slides/2023/lecture_15.pdf

denoising matching term
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Training Objective

e Bound the likelihood with the ELBO
o Exactly like VAEs

p(xo.r) ]

logp(z) > E 1o,
gp(z) > q(mfr\mu)[ 8 C(@rrlzo)

Learning Objective!

T
= Eq(a ) 108 po(0|21)] — Dxr(g(@rlao) || p@r)) > Eqa o) [Dxr(@(@e—1lae, z0) || po(ae—i|z:))]
t=2

reconstruction term prior matching term denoising matching term

where q(x;,,] \xt«, Xo) is the tractable posterior distribution:
q(xe-1[%, %0) = N (e fie (0, %0), B1),

11—y P

1 B =
m("”w— If) wd o= e

where [i;(x;,%9) =

hitp://cs231n.stanford.edu/slides/2023/lecture_15.pdf
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Parameterizing the Denoising Model

Since both ¢(x;—1|x¢, X0) and pg(x;—1|x¢)are Normal distributions, the KL divergence has a simple form:
1.
L1 = Dxu(q(xe-1]xi, Xo) | [pa(xe-1[x0)) = Ey [ﬁ“#t(xhxtﬁ - #ﬁ(xhtm?] +C
t
Recall that x¢ = /&t o+ /(1 — &) € . Ho et al. NeurIPS 2020 observe that:

il ) 1 Bt
(X4, X0) = ——== | X4 — ——=¢€
(X, X =35 t T
They propose to represent the mean of the denoising model using a [noise-prediction network|

1 By
t)= —— s 1
uﬂ(xn j m (Xi T—a, fﬁ(xz, )

With this parameterization

B} 5
Lyt = Bxygixo).enA(0T) [m“‘ —lea( \/> Xg + \/1 —a f,f \z} +C

Xf
http://cs231n.stanford.edu/slides/2023/lecture_15.pdf g

Cornell Bowers C1S x¢ = Varxo + V1 — aue, e ~ N(0,1)
Training Objective Weighting

ELBO objective leads to a specific regression weight at each time step:

Li—1 = Exyng(xo).e~N(01)

50700 f i —a] Hf—f,,\/Txu+\/17mffH]
— B =

|
)\f Approaches zero!

However, this weight is often very large for small t's
Ho et al., 2020 proposed the following objective to improve perceptual quality:

Limple = Exgmqixg) 000017 [|1€ = €0(v/a X0+ V1 — 1Y/ e)]7]

xt

hitp://cs231n.stanford.edu/slides/2023/lecture_15.pdf
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What Network Architecture to Use For €g ?

People often use U-Nets with residual blocks and self-attention layers at low resolutions

Has same input and output image dimensions

W HIE

Fully-connected

Time representation: sinusoidal positional embeddings

Inject time embedding throughout the network (e.g. additive positional embedding)

hitp://cs231n.stanford edulslides/2023/lecture_15.pdf
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Diffusion Results

Outperforms prior generative models when using the simplified training objective

ELBO objective performs worse!

Model 1S FID

Gated PixelCNN [59] 4.60 65.93
Sparse Transformer [7]

PixelIQN [43] 5.29 49.46
EBM [11] 6.78 38.2

NCSNv2 [56] 31.75
NCSN [55] 8.87+0.12 25.32

SNGAN [39] 8.22+0.05 21.7
SNGAN-DDLS [4] 9.09+0.10 15.42
StyleGAN2 + ADA (v1) [29] 9.74 £ 0.05 3.26
} Ours (L, fixed isotropic 33) 7.67+£0.13 13.51

Lempte = Exggix)c~no1) 0~u(1.1) [|1€ = €0(v/@r x0 + VI —ay e, 1) Ours (Laimple) 0.46+0.11  3.17

Xt Ho etal. 2020
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Training Objective Weighting SNR(t) = @ /(1 i)

e ELBO forces the network to model log(SNR(?)) = log(ai/(1 — 1))

imperceptible details

x¢ = Varxo + V1 — age, e ~ N(0,1)

o Less modeling capacity dedicated to

X . . 1.0 4 —— ELBO
perceptible details (global image _ — \-prediction and FM-OT
structure, etc.) B osd —— EDM-monotonic (Ours)
N —— sigmoid(—A + 2) (Ours)
©
e If you care about perceptual quality: g 0.61
o Decrease the loss weighting for low noise £ ¢ 4 |
levels =
ENPR

-75 =50 =25 00 25 50 7.5 100
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Connection to VAEs

Diffusion models can be considered as a special form of hierarchical VAEs.
However, in diffusion models:

The inference model is fixed: easier to optimize

The latent variables have the same dimension as the data.
The ELBO is decomposed to each time step: fastto train ~~ §ggr™ e ’w
Can be made extremely deep (even infinitely deep)

The model is trained with some reweighting of the ELBO

o Can trade off likelihood for improved perceptual quality T --------------- ?

A (log SNR) v “
Inference model ~ Generative model
Kingma, Diederik, and Ruigi Gao. "Understanding diffusion objectives as the ELBO with simple
data augmentation.” Advances in Neura Information Processing Systems 36 (2023) a(zlx) p(x,2)
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Alternative Diffusion Parameterization: Data Prediction

Can also view the diffusion network as learning to predict the original data

x¢ = Varxo + V1 — aze

x; — /1 — age

Vag

x¢ — /1 — ar€p(xt,t)
NN

= x¢ =

= xg(x¢,t) =
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Alternative Diffusion Parameterization: Data Prediction

Can also view the diffusion network as learning to predict the original data
x: — /1 — areg(xy,t)
N

Diffusion training objective: Ey(z,|a,) [DkL(q(Ti—1|T¢, X0) || po(xi—1|T:))]

xg(x¢,t) =

For sampling, want q(z:—1 |z, o), but don’t have access to the original data

Use our estimate of the original data, xy(x, ), to sample:

Po(zt—1|713t) = q(mt—1|mt7X9(Xt:t)) ~ q(wz-1|mt,xO)




x¢ = Varxo + V1 — age, e ~ N(0,1)
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Training Algorithm

Repeat until convergence
1.xg ~ q(xo) « Sample original image from image distribution
2.t~ U{1,2,...,T}
3.e~N(0,1)

4. Optimizer step on L(6) = E; ., c[||e — ea(xt,1)||?]

¢ Sample random time step uniformly

¢ Sample Gaussian noise

« Model predicts noise applied at time step t and
calculate loss

Cornell Bowers C1S

Sampling Algorithm
X7 ~ N(O, I)
Fort=T,T—-1...,1

. Sample Gaussian noi
2~ N(0,I)ift > Lelsez =0 5,000 """

1 1— . . .
Xi-1= 55 (Xt - \/%eg(xt,t)) + 0tZ ¢ Predict noise applied to
image and remove that noise

« Sample pure Gaussian noise

Return x

[poei—ile:) = a(ei—ilor, w0, 0)|
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Generative Modeling

VAE: maximize
variational lower bound

Diffusion models:
Gradually add Gaussian
noise and then reverse

GAN: Adversarial
training

mage Source

Cornell Bowers C1S
Generative Modeling

Decoder

VAE: maximize | x 1
Po(x[z)

variational lower bound

L NX1“—; L ——— 2| Latent Distribution

Diffusion models: N
Gradually add Gaussian
noise and then reverse

Generator
G(z)

GAN: Adversarial |y |1

training

Target Distribution

Image Source
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Generative Modeling

Encoder

VAE: maximize ifx b
as(2lx)

variational lower bound

Diffusion models:
Gradually add Gaussian
noise and then reverse

GAN: Adversarial
training

Target Distribution

Image Source

Generator

G(2)

VAEs typically have a smaller
latent dimension, while
diffusion models do not

Latent Distribution

Cornell Bowers C1S

Diffusion Models vs. VAEs vs. GAN

Source
High 5 .
[ : Diffusion
Quality
ahhs / Samples } Models

- \
[a:‘as;n%\\/:/ c::::ge\\
&S

VAEs
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Stable Diffusion Demo!

https://huggingface.co/spaces/stabilityai/stable-diffusion

Sample input: "messi as a real madrid player"

Cornell Bowers C1S
Two Perspectives

Denoising Diffusion Probabilistic Models

Generative Modeling by Estimating Gradients of the
Data Distribution

¢sLG] 16 Dec 2020

2 [

2006.11239v

arXiv
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Score-based Models

Would like to model the probability density function as follows:

e—fo(x)

po(x) = 7

Discuss: Any problems with directly modelling this?

Cornell Bowers C'IS
Score-based Models

Would like to model the probability density function as follows:
e—fo(x)
Zy
Want to maximize the log-likelihood of the data:

po(x) =

N
max ; log po (x; )-
Instead approximate the score function:

sp(x) = Vx logpy(x) = —Vx fo(x) — Vx log Zy = —Vx fo(x)

=0

Cornell Bowers CIS
Loss function

Predicted
score! unknown!

Ex[[lss (%) + Vx log p(z)|I3

Cornell Bowers C1S
Score-based Models

LT TS T S e e

]

‘
’
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Data density Data scores Estimated scores

E——————

e,

Vot
P

[

e e e £ 2

A a s s s m—————

Cornell Bowers C1S
Add noise!

Estimated scores

Perturbed density Perturbed scores

RS S S S i

Cornell Bowers C1S x ~ N(x,071)
Training
Training Objective for noise level t:
S to1 M) Ext[llso (x¢, 8) — Vi, logpy (x¢)13]
Using results from denoising score matching [1]:
S i1 A Ext s (%, t) — Vi, log g: (x[x) 3]

Using the definition of the pdf of a gaussian,

St A Exy[lls0 (x1,8) = 3]

[1] P. Vincent. A connection between score matching and denoising autoencoders. Neural computation, 23(7):1661-1674, 2011

Cornell Bowers C1IS

Discuss: How does this training objective relate to that of DDPMs?

Sty A B [[ls0 (e, t) — 2223

2
g




Cornell Bowers C1S
Continuous time (Stochastic Differential Equation Perspective)

Forward diffusion process (fixed)

—

s
<
q(xo) ‘ ! q(xr)

dx; = —%yf(f)x, dt + v/ B(t) dw,

Xo

Cornell Bowers C1S
Continuous time (Stochastic Differential Equation Perspective)

Reverse generative process

Q
-

q(xo)  logia iy q(xr)
- ERESEIERERESE

Score from network
dx; = [_%m)x/ — B(t)Vx, |w/~1x,\] dt + /B(t) dw,

—
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Conditional Diffusion

e We want to condition on images or text

e Learn a conditional diffusion model

Vx, logps (x:|y) = s0(x,y)

e I

Time Representation

Fully-connected
Cross
Attention

“Acat’

Text Encoder

Cornell Bowers C1S
Conditional Diffusion with Classifier Guidance

e May not have access to paired data for training
e Use Bayes’ rule to decompose the conditional score into the unconditional
score and a likelihood term
Vi, logpi (x:[y) = Vi, logp(x¢) + Vi, log p: (y[x:)

e Only need to train a classifier on noised data
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Unconditional Model Conditional Model

Dhariwal, P., & Nichol, A. (2021). Diffusion models beat gans on image synthesis. in neural p systems, 34, 8780-8794.

Cornell Bowers C1S
Classifier-Free Guidance

e Train a joint conditional and unconditional diffusion model
e Conditioning information is added by concatenating to input or cross attending

e Modified conditional distribution
log B (x:[y) o< pi(xe]y) pe(y|x:)”
e Conditional sampling

Vx, logp, (x¢|y) = Vx, log pi(x:) +w(Vx, log pi(x:]y) — Vi, logpi(xt))

Cornell Bowers CIS
Classifier-Free Guidiance

Significantly improves
quality of conditional models

Used by practically every
conditional diffusion model

Increasing
Guidance

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E. L., ... & Norouzi, M
(2022). Photorealistic text-to-image diffusion models with deep language
understanding. Advances in neural information processing systems, 35, 36479-36494.

Cornell Bowers (

Sproutsin the shape of text ‘Imagen’ coming out of a A photo of a Shiba Inu dog with iding a A high portrit of a very happ »
fairytale book. dressed s a ch

fin a high end

airytale bike. Itis

‘There is a painting of flowers on the wall behind him.

= i o ]
Teddy bears swimming at the Olympics 400m Butter- A cute corgi lives sushi.
fly event.

i sl s coming fom e chest
Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E. L., ... & Norouzi, M. (2022). Photorealistic text-to-image diffusion models with deep
language understanding in neural systems, 35, 36479-36494.




Cornell Bowers C1S
Latent Diffusion

Encoder Z  Decoder D X
i e

« Stage 1:
. Pixelwise and/or Visual
Train Autoencoder @ - Feature Space (LPIPS)
x =D(E(x)) p Reconstruction Objective
Latent embedding distribution
.« Stage2: modeled with Diffusion Model
>

Train Latent
Diffusion Model

Generative Denoising Process

https://neurips2023-ldm-tutorial.github.io/
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High-Resolution Image Synthesis with Latent Diffusion Models

C Q) Latent Space Conditioning
emant
Ma
Text

Repres
entations

Pixel Space

EI
denoising step crossattention  switch —

Rombach et al., “High-Resolution Image Synthesis with Latent Diffusion Models”, CVPR, 2022

skip connection concat

Cornell Bowers C1S
Latent Diffusion

Add Adversarial Patch-based Discriminator on top of Reconstruction Loss for Perceptual Compression

X Encoder£ Z  Decoder D X Discriminator
« Stage 1: . - ¢
Train Autoencoder ﬁ g ﬂ - 0/1

% = D(E(x))

https://neurips2023-Idm-tutorial github.io/

Cornell Bowers C1S
Impact of Patch Discriminator

Reconstruction with
Discriminator

Reconstruction without
Discriminator

https://neurips2023-ldm-tutorial.github.io/
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Latent Diffusion

Regularize Latent Space for better Compression and easier Training of Latent Space Diffusion Models

Encoder £ Z Decoder D Discriminator

- 0/1

Regularize latents z!

P i der by-di | Gaussi Encoder distribution:
arametrize encoder by diagonal Gaussian,
regularize towards standard normal distribution, qe (Z‘X) == N(Z; 5#’ 53)

as in regular VAEs.

Use very[small weight for KL regularization term|
(weak regularization).

KL regularization in latent space:

KL (ge (z[x)||N (2: 0, I))

Cornell Bowers C1S
Latent Diffusion

Latent Diffusion Models offer Excellent Trade-off between Performance and Compute Demands

X Encoder £  Z  Decoder D Discriminator

- 0/1

Latent embedding distribution
modeled with Diffusion Model

Generative Denoising Process

== | DM with appropriate regularization, compression, downsampling ratio and strong autoencoder reconstruction:
« Computationally efficient diffusion model in latent space (compression & lower resolution).
«  Yet very high-performance (latent diffusion + autoencoder + discriminator = ).
« Highly flexible (can adjust autoencoder for different tasks and data).

Cornell Bowers C1S
Latent Diffusion

Many state-of-the-art large-scale text-to-image models are latent diffusion models

e Stability Al's Stable Diffusion
e Meta’'s Emu
e OpenAl’s Dall-E 3

Cornell Bowers Ct . . i .
i_atent Diffusion for Video Generation
Sora

Prompt: 3D animation of a small,
round, fluffy creature with big,
expressive eyes explores a
vibrant, enchanted forest.




Cm"e"Buwersoﬁ_atent Diffusion for Video Generation @

Prompt: 3D animation of a small, Prompt: A cat waking up its
round, fluffy creature with big, sleeping owner demanding
expressive eyes explores a breakfast.

vibrant, enchanted forest.

Cornell Bowers C1S
Review

e Diffusion models can be used to generate high quality samples

e They were introduced simultaneously from two different perspecteives

e Conditional diffusion models can be used to generate samples conditioned on
other text or image

e Diffusion can also be performed in latent spaces




