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For paired data, how can we train a model to...

Map from aerial photographs
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For paired data, how can we train a model to...

Image Super-resolution

Saharia, Chitwan, et al. "Image super-resolution via iterative refinement." IEEE transactions on pattern analysis and machine intelligence 45.4 (2022): 4713-4726.
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For paired data, how can we train a model to...

Image Segmentation

Image Credit: Stanford CS231n, Lecture 11
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Review: Image Classification

Input Image

Image Credit: Stanford CS231n, Lecture 11

Image-level Prediction




Cornell Bowers C1S
Image-to-Image Task

Input Image

Semantic
Segmentation

>

Image Credit: Stanford CS231n, Lecture 11

Pixel-level Prediction
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Applications in Autonomous Driving
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Image Credit: CVPR 2018 WAD Video Segmentation
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Applications in Medical Imaging

Automatic segmentation Manual segmentation

Image Credit: LiTS17 (Liver Tumor Segmentation Benchmark)
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Semantic Segmentation
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Task Formulation

Take an image of dimension (H, W, 3) and output a segmentation map of dimension (H, W, 1).
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Task Formulation

Take an image of dimension (H, W, 3) and output a segmentation map of dimension (H, W, 1).

Formally, it is a function f, parameterized by 0, that produces a segmentation map of C classes.

fe ,RHXWXS ; NHxle

1: cow
2: grass
3: tree
4: sky




Cornell Bowers C1S
Image-to-Image Generation

A segmentation map of dimension (H, W, 1) can be viewed as a generated image.

f@ ,RHXWXS ; NHXWXl

Joy

1: cow
2: grass
3: tree
4: sky
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Image-to-Image Generation

A segmentation map of dimension (H, W, 1) can be viewed as a generated image.

Instead of outputting integers for each pixel, the model outputs a vector of length C

f9 ,RHXWXS ; NHXWXI

1: cow
2: grass
3: tree
4: sky
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Image-to-Image Generation

A segmentation map of dimension (H, W, 1) can be viewed as a generated image.

Instead of outputting integers for each pixel, the model outputs a vector of length C

f@ ,RHXWXB ; RHXWXC

1. cow
2: grass
3: tree
4: sky

3

,
Channel Index
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Segmentation Example

Segmentation



http://www.youtube.com/watch?v=ATlcEDSPWXY&t=111
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Review - Convolutional Neural Network

< Shared Linear Kernels
< Translation Invariance

% Parallel Computation
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Building an Image-to-Image Network from Scratch

??

Input Image Prediction
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Building a Image-to-Image Network from Scratch

Convolutions

Allow parallelization when extracting latent vector for each pixel

Input Image

Very Deep CNN at Same Resolution

Prediction
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Review - Downsample Pooling

Max Pooling

Average Pooling

% Down sample feature maps that
29 | 15 | 28 | 184

highlight the most present feature in

the patch 0o |100| 70 | 38

12 | 12 | 2

% Help over-fitting by providing an
abstracted form of representation

12 (12 | 45 | 6

% Increase receptive field size 2 x2

pool size
\
100 | 184

12 | 45

31| 15 | 28 | 184
0 (100 70 | 38
12 | 12 |EETE——
12 | 12 | 45 6
2X2
pool size
\
36 | 80
12 | 15
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Review - Strides and Kernel
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Dimension: 6 x 6

Filter w

Stride controls how many units the filter / the receptive field shift at a time
The size of the output image shrinks more as the stride becomes larger

The receptive fields to overlap less as the stride becomes larger

Filter Result
1 0|1
2 11
100 |- — -
1 0| -1
Parameters:
- f=3 =2"1+5% + 3°(-1) +
Stride: s=2 2*1+4°0 + 3°(-1) +
Padding: p=o0 5" ¥ 40 »25%-1)
https://indoml.com
ith stride (s) = 2
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Building a Image-to-Image Network from Scratch

Convolutions Allow parallelization when extracting latent vector for each pixel

Input Image Very Deep CNN at Same Resolution Prediction
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Building a Image-to-Image Network from Scratch

Convolutions Allow parallelization when extracting latent vector for each pixel
Hourglass Improve efficiency by reducing computations with downsampling

Increase receptive field size by convolving on downsampled feature maps

Input Image Hourglass CNN Prediction
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Building a Image-to-Image Network from Scratch

(pooling, strided

b
/ {

Input Image

— downsample upsample — . (?7?)

Prediction
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Upsampling - Unpooling

Nearest Neighbor 1111272 “Bed of Nails” 110l2 0
12 1112 2 112 0 0|0 O
3 4 3/3|4]4 3 4 3 0|4 0
3 3|4 4 O 0|0 O
Input: 2 x 2 Output: 4 x 4 Input: 2 x 2 Output: 4 x4

Does not recover all spatial
information loss during
downsampling!
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Upsampling - Max Unpooling

Max Pooling
Remember which element was max!
1 216 3
31512 |1 5 6
1 212 1 78 Rest of the network
7 3|4 8
Input: 4 x 4 Output: 2x 2

Corresponding pairs of
downsampling and
upsampling layers

Max Unpooling
Use positions from
pooling layer

1 2

3 4

Input: 2 x 2

11

0O 0 2 O
0O 1 0 O
O 0 0 o
3 0 0 4
Output: 4 x 4
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Building a Image-to-Image Network from Scratch

Convolutions Allow parallelization when extracting latent vector for each pixel
Hourglass Improve efficiency by reducing computations with downsampling

Increase receptive field size by convolving on downsampled feature maps

Input Image Hourglass CNN Prediction
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Building a Image-to-Image Network from Scratch

Convolutions Allow parallelization when extracting latent vector for each pixel
Hourglass Improve efficiency by reducing computations with downsampling

Increase receptive field size by convolving on downsampled feature maps

Skip Connections Improve prediction quality by combining low-level image features
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Input Image Hourglass CNN with Skip Connections Prediction
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U-Net Architecture!

Convolutions

Hourglass

Skip Connections

“U-net: Convolutional networks for biomedical image

segmentation.” Ronneberger et al., MICCAI 2015

Allow parallelization to extract latent vector for each pixel

Improve efficiency by reducing computations with downsampling

Increase receptive field size by convolving on downsampled feature maps

Input Image Hourglass CNN with Skip Connections

Improve prediction quality by combining low-level image features

Prediction



https://link.springer.com/chapter/10.1007/978-3-319-24574-4_28
https://link.springer.com/chapter/10.1007/978-3-319-24574-4_28
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Encoder-Decoder Perspective

e Encoder:

o Maps an image to a low-resolution, semantically meaningful feature map
o Basically ResNet!

e Decoder:
o Maps a low-dimensional feature map to an image

e Can use one or the other depending on the application
o  Similar to transformers!

Encoder Decoder
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Unpaired Image Translation

Unpaired

Paired
Edges = Photos

12

Generative adversarial networks and image-to-image translation | Luis Herranz

Paired limitations - it is hard to
find exact pairings

Zebra Facts | Live Science



http://www.lherranz.org/2018/08/07/imagetranslation/
https://www.livescience.com/27443-zebras.html
https://www.treehugger.com/astonishing-facts-about-horses-4869310
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Problem with Paired Approaches with Unpaired Translation

How can we tell if we produced a good output without any reference?

CycleGAN Project Page



https://junyanz.github.io/CycleGAN/
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84% (R)

92% (R) 89 (R) 6% (R)

Discriminators

89% (S) 88% (S)

e Abinary classifier that determines whether
a given image is real or fake
e (Can actually use as a learning signal!

13% S) 13% (S)



https://geneticliteracyproject.org/2022/03/04/can-we-tell-the-difference-between-a-real-human-face-and-an-artificially-generated-one-nope-and-the-ai-ones-are-more-trustworthy/
https://geneticliteracyproject.org/2022/03/04/can-we-tell-the-difference-between-a-real-human-face-and-an-artificially-generated-one-nope-and-the-ai-ones-are-more-trustworthy/
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Discriminator (high-level)

e Supervised machine learning task

e Input pairs features of both real
and synthetic data with
corresponding labels

Discriminator Architecture

~



https://subscription.packtpub.com/book/data/9781789139907/1/ch01lvl1sec17/basic-building-block-discriminator
https://subscription.packtpub.com/book/data/9781789139907/1/ch01lvl1sec17/basic-building-block-discriminator
https://subscription.packtpub.com/book/data/9781789139907/1/ch01lvl1sec17/basic-building-block-discriminator
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Discriminator Architecture

e Capture both fine-grained errors and semantic errors

e Fine-grained errors:
o  Blurry/distorted edges
o  Artifacts and Noise

e Semantic errors:
o  Carfloatingin the air
o Incorrect textures

A U-Net encoder is a good option for this! Encoder
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Discriminator as a Classification Model

e Train discriminator with the binary cross-entropy loss
e We have the following optimization problem:

min [—ylog(D(z)) — (1 —y)log(l — D(x))]
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To Generate Realistic Images, We Need:

e A way to generate images (Generator)
e Alearning signal to make the images realistic (Discriminator)
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Generator (U-Net)

e (Can parameterize our generator as a U-Net!
e Howtotrain?
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Discriminator Training

e Train the discriminator to identify real and fake zebra images

min [—ylog(D(x)) - (1 —y)log(1l — D(z))]

Classification
Loss

D()

]

Xzebra Xzebra
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Adversarial Training

e Train the generator to fool the discriminator!
o Itshould generate images that look like zebras
e Use the negative discriminator loss to update the
generator

min [—(1 —y)log(1 — D(G(2)))] =

Classification

Loss Backprop the derivative
but don't update
discriminator weights
D()

Flip the
derivative sign

Xhorse

min [~ log(1 — D(G(2)))]




Jp
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Generative Adversarial Networks (GANSs)

e Minimax formulation D()
o The generator and discriminator are playing a zero-sum
game against each other T
xzebra iz bra

Ip = Eenp|—log D(z)] + E-[—log(1 — D(G(2)))]

G()

max min Jp
) x

Xhorse
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Generative Adversarial Networks (GANS)

e Minimax cost runs into vanishing gradient problems with a
strong discriminator
o No learning signal for the generator!

min [—(1 — y)log(1 — D(G(2)))] = min [~ log(1 — D(G(2)))]

mén [—ylog(D(G(?)))] = mén [—log(D(G(#)))]

modified
cost

minimax
cost

.0

02 04 06 08

D(G(z))

(how well it fooled
the discriminator)

Goodfellow, lan, et al. "Generative adversarial nets." Advances in neural information processing systems 27 (2014).
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Improving the Generator and Discriminator Together

e The generator and discriminator both start performing poorly
o Train them together incrementally
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Black dotted line: Data distribution
Green solid line: Generative distribution from Generator (G)
Blue dashed line: Discriminative distribution (D)

Goodfellow, lan, et al. "Generative adversarial nets." Advances in neural information processing systems 27 (2014).
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Unpaired Image Translation

e Want to preserve information
about the original image in the
generated image

Information
not preserved
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Key Idea: Cycle Consistency

e Image translation should be

invertible!
o Translating a zebra to a horse and then
back to a zebra should recover the
original image
e Cycle consistency!

Zebra — Horse

wra — Horse
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CycleGAN

e Enforce cycle consistency with a
reconstruction loss

Hxhorse — G2 (Gl (Xhorse)) || g

The discriminator tries to
distinguish generated zebra
images from real ones

Discriminator loss: GAN
generator objective, i.e. negative
log probability D assigns to the
sample being real

Reconstruction loss: squared
error between the original image
and the reconstruction

BT

Input image

: Generator 1 learns to map Generated sample
(real horse image)

from horse images to zebra
images while preserving the
structure

Zhu, Jun-Yan, et al. "Unpaired image-to-image translation using cycle-consistent adversarial

TR
o X e

e

orks-implefnentation-of-|

le-CONSTSTent Adversaria

Generator 2 learns to map Reconstruction
from zebra images to horse
images while preserving the

structure

networks." Proceedings of the IEEE international conference on computer vision. 2017. Total loss = discriminator loss + reconstruction loss



https://github.com/asraman9792/Generative-Adversarial-Networks-implementation-of-KERAS
https://github.com/asraman9792/Generative-Adversarial-Networks-implementation-of-KERAS
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Discuss: What are some applications of unpaired
translation?

Unpaired
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The Power of Unpaired Translation

Input Monet

5

LITITYY

CycleGAN Project Page

Zhu, Jun-Yan, et al. "Unpaired image-to-image translation using cycle-consistent adversarial
networks." Proceedings of the |IEEE international conference on computer vision. 2017.



https://junyanz.github.io/CycleGAN/
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Can we perform unconditional generation?

e Just want to draw samples from some distribution of images (e.g. zebras)
e Replace the source image with Gaussian noise

JIp

fD()E

4

\

Xzebra

A

Xzebra

JIp
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Can we perform unconditional generation?

e Just want to draw samples from some distribution D()
of images (e.g. zebras)
e Replace the source image with Gaussian noise T

Xzebra Xzebra
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GANSs

e First generative model capable of realistic
high-resolution image synthesis
e \ery fast generation!
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Latent Space Properties

Gaussian noise vector is
meaningful

Source B

Source A

e Similar noise vectors lead
similarimages

e Noise dimensions are
meaningful!

e Can exploit this to control
generation

Coarse styles from source B
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Limitations of GANs

e Minimax training objective is hard to optimize!
o Can lead to oscillations/instability during training

e Not guaranteed to converge to a good solution
o Sensitive to hyperparameter settings, network architectures, and the choice of loss functions
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Limitations of GANs

e Consider training a GAN on a dataset of
dogs and cats
e Generator could specialize in generating s

realistic dogs
o  Successfully fools the discriminator!

cat (0)

cat (0)
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Mode Collapse

e Big problem in practice

e GANSs often fail to model the full distribution of images
o “Collapse” to some popular mode to fool the discriminator

- - - s

Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k

Metz, Luke, et al. "Unrolled generative adversarial networks." arXiv preprint arXiv:1611.02163 (2016).




Cornell Bowers CiIS

Recap

e Many vision tasks can be formulated as image-to-image problems
o Segmentation, super-resolution, etc.

e The U-Net is a versatile encoder-decoder architecture for these tasks

e CycleGAN can perform unpaired image translation by learning to fool a
discriminator

e GANSs can perform unconditional image generation conditioned on samples of

Gaussian noise

o Challenging to train
o  Susceptible to mode collapse




