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Cornell Bowers CiS
Logistics

e HW3is out
e \We have a feedback form (due Friday, March 8th)
e Project proposal due Thursday, March 7th
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Project

e Aim: to get hands on experience with implementing modern deep learning
methods

e To be completed in groups of 2-3

e Find a recent deep learning research paper

e Reproduce a specific result from the paper
o Need to implement yourself!
e It's ok if open-source implementations exist

o Butyou can’t use them!
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Project Proposal

A page long project proposal due March 7. It should contain the following:

e Paper selection:
o Title, authors, and publication venue of the chosen paper
o Brief summary of the chosen paper
o Brief justification of why you choose this paper
e Result Selection
o Tell us which result you want to replicate
e Re-implementation Plan
o Describe architecture, method, and metrics
o Details about how much compute and time is required to replicate results
e Detailed instructions on canvas
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X )=bag of words

. The | Vector Space
tastiest best enjoy
fruits animals petting
are are baby
dogs

oranges puppies
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f (Zl?) =word embedding

‘“orange”
L1 Vector Space
ccpurple”
oy “puppies”
L2

“apple”
T “dogs”
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Semantically different: g
puUppy Vvs. cow

f(;zj) = raw pixels

Vector Space

Structurally similar:
black and white
animal, grass

Structurally different:
hands, different
backgrounds

Semantically similar:
Bernese puppies
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Pixel-Space: Nearest Neighbors

e Dominated by shallow similarities
o Background, etc.

e Poor semantic alignment

Cifar-10 Example
(http://cs231n.stanford.edu/slides/2023/lecture_13.pdf)
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Semantically different: s
puppy vs. cow

f(;zj) = classification network

Structurally similar:
black and white
animal, grass

Vector Space

Structurally different:
hands, different
backgrounds

Semantically similar:
Bernese puppies
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f(;zj) = classification network

How does the network
know that these should be
mapped to similar space?

Vector Space
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f(;zj) = classification network

How does the network
know that these should be
mapped to similar space?

Vector Space

Class Class
“puppy” “puppy”

7 ) . ¥
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Image Classification

Y
feature extraction

Image features!

v

TopEEEEE
00000000

~ (O— 0.9"dog’

Q—> 0.1 “cat”

Y

classification
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Neural Net Features: Nearest Neighbors

e Image classification features work really
well!

e Strong semantic alignment

e More robust to shallow variations

ImageNet Classification with Deep Convolutional Neural Networks
by Krizhevsky et al.
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Pretraining: Train a general purpose model on lots of data, and later

customize it for more specific tasks
- N Vector Space

NLP: BERT

Masked Sentence A Masked Sentence B

N Sy Already have a very

Pre-training

well-defined vector space
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Image Pretraining

First, train on a large, diverse
dataset so that our model learns
to extract robust image features 4

training

—

Vector Space
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Fine-tuning

Then, finetune for a specific task

Vector Space

training
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Pre-train then Fine-tune

e Use image classification backbone as a feature extractor for other vision tasks

o E.g. Instance segmentation

e Significantly accelerates training 45F

o Random init requires much longer training ar
351

30 -

25 -

20 1

15+

10

bbox AP: R50-FPN, GN

T
I
I
I
I
I typical
: fine-tuning
| schedule
I
I
I
I
I
I . w
| —random init
I .
| ——w/ pre-train
! | ! 1 1
1 2 3 4 5

iterations (105)

Ren, Shaoging, et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." Advances in neural information processing systems 28 (2015).
He, Kaiming, Ross Girshick, and Piotr Dollar. "Rethinking imagenet pre-training." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019.




Cornell Bowers CiIS
Few Shot Learning

Adapt to variations
within known classes,
with LIMITED labeled
training data

- We’ve only seen a few
puppies and a few
kittens, but a lot of
other pretrained data

Vector Space
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Potential Problems?

I

Figure 1: Example images from the IMAGENET, the retinal fundus photographs, and the CHEXPERT datasets,

respectively. The fundus photographs and chest x-rays have much higher resolution than the IMAGENET images,
and are classified by looking for small local variations in tissue.

Raghu, Maithra, et al. "Transfusion: Understanding transfer learning for medical imaging." Advances in
neural information processing systems 32 (2019).
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Vector Space

Transfer Learning

Images may be
out-of-distribution
from the training data
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Potential Problems?

e Classify diabetic retinopathy in retinal photographs

e Introduce classification simple architecture
o Sequence of: Convolution, Batchnorm, ReLU (CBR)

@

Dataset Model Architecture Random Init  Transfer Parameters IMAGENET Top5
RETINA  Resnet-50 96.4% +0.05 96.7% +0.04 23570408 92.% + 0.06
RETINA  Inception-v3 96.6% +0.13  96.7% +0.05 22881424 93.9%

RETINA CBR-LargeT 96.2% +0.04 96.2% +0.04 8532480 77.5% £ 0.03
RETINA CBR-LargeW 95.8% +0.04 95.8% +0.05 8432128 75.1% + 0.3
RETINA CBR-Small 95.7% +0.04 95.8% +0.01 2108672 67.6% £ 0.3
RETINA CBR-Tiny 95.8% +0.03 95.8% £0.01 1076480 73.5% £ 0.05

Table 1: Transfer learning and random initialization perform comparably across both standard IMA-
GENET architectures and simple, lightweight CNNs for AUCs from diagnosing moderate DR. Both sets
of models also have similar AUCs, despite significant differences in size and complexity. Model perfor-
mance on DR diagnosis is also not closely correlated with IMAGENET performance, with the small models
performing poorly on IMAGENET but very comparably on the medical task.

Raghu, Maithra, et al. "Transfusion: Understanding transfer learning for medical imaging." Advances in
neural information processing systems 32 (2019).
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Potential Problems?

e C(Classify pathologies in chest x-rays

Model Architecture  Atelectasis

Cardiomegaly Consolidation

Edema Pleural Effusion

Resnet-50 79.52+0.31
Resnet-50 (trans) 79.76+0.47
CBR-LargeT 81.5240.25
CBR-LargeT (trans)  80.89+1.68
CBR-LargeW 79.79+0.79
CBR-LargeW (trans) 80.70+0.31
CBR-Small 80.43+0.72
CBR-Small (trans) 80.18+0.85
CBR-Tiny 80.81+0.55

CBR-Tiny (trans) 80.02+1.06

75.23+0.35
74.93+1.41
74.83+1.66
76.841+0.87
74.63+0.69
77.231+0.84
74.361+1.06
75.241+1.43
75.17£0.73
75.74£0.71

85.49+1.32
84.42+0.65
88.12+0.25
86.15+0.71
86.71£1.45
86.871+0.33
88.07+0.60
86.48+1.13
85.31+0.82
84.2840.82

88.34+1.17 88.70+0.13
88.89+1.66 88.07£1.23
87.97£1.40 88.3710.01
89.031+0.74 88.44+0.84
84.801+0.77 86.531+0.54
89.571+0.34 87.2940.69
86.20+1.35 86.14+£1.78
89.09£1.04 87.88+1.01
84.87+1.13 85.56+0.89
89.81+1.08 87.69+0.75

Table 2: Transfer learning provides mixed performance gains on chest x-rays. Performances (AUC%) of
diagnosing different pathologies on the CHEXPERT dataset. Again we see that transfer learning does not help
significantly, and much smaller models performing comparably.

Raghu, Maithra, et al. "Transfusion: Understanding transfer learning for medical imaging." Advances in
neural information processing systems 32 (2019).
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Not all images are labeled

e Particular problem for specialized domains (e.g. medicine)
o Annotation is expensive!

e Much easier to collect unlabeled data
o  Similar to text!

e Can we still learn good image representations?
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f(;zj) =raw pixel distance

Vector Space

The exact same
image, rotated,
maps to a
completely
different location
in vector space
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f(x) =

Vector Space

How do we learn
structure so that
these map to
similar points in
vector space?
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f(;zj) = classification network

Vector Space
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And what if they are
unlabeled?

f(;zj) = classification network

Vector Space
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Self-Supervised Learning

e Aim to learn from data without manual label annotation
o Useful for specialized domains (e.g. medicine) with limited annotated data

e Self-supervised learning methods solve “pretext” tasks that produce good
features for downstream tasks.

o Learn with supervised learning objectives (e.g.,classification, regression)
o Labels of these pretext tasks are generated automatically

Original text

Thank you fef inviting me to your party Jast week.

Inputs

Thank you <X> me to your party <Y> week.

Targets
<X> for inviting <v> last <z>

Raffel, Colin, et al. "Exploring the limits of transfer learning with a unified text-to-text transformer." The Journal of Machine Learning Research 21.1 (2020): 5485-5551.
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Self-Supervised Learning: Rotation Prediction

90° rotation 270° rotation 180° rotation 0° rotation 270° rotation

Figure 1: Images rotated by random multiples of 90 degrees (e.g., 0, 90, 180, or 270 degrees). The
core intuition of our self-supervised feature learning approach is that if someone is not aware of the

concepts of the objects depicted in the images, he cannot recognize the rotation that was applied to
them.

Gidaris, Spyros, Praveer Singh, and Nikos Komodakis. "Unsupervised Representation Learning by Predicting Image Rotations." ICLR 2018. 2018.
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Rotation Prediction

e Self-supervised
> g(X,y=0)

learning by rotating | §Xr=0) |
. . Rotate 0 degrees e

the input image Rotated image:
e Predict which N

rotation is applied
o 4-way classification

Rotate 90 degrees

Rotated image: X'

—>‘ g(x,y=2)

Image X Rotate 180 degrees

-

Rotated image: X~

—>‘ g(x,y=3)

4

Rotate 270 degrees
Rotated image: X°

Gidaris, Spyros, Praveer Singh, and Nikos Komodakis. "Unsupervised Representation Learning by Predicting Image Rotations." ICLR 2018. 2018.




Cornell Bowers CiIS
Rotation Prediction

Co~e e
| Objectives:

e Self-supervised e . I
onviNe ‘ axm;lzeopro .
learning by rotating , model F() H OPEY) J |
. ) Rotate 0 degrees e B Predict 0 degrees rotation (y=0) |
the input image & |
e Predict which ~ . ot o e
. . . o model F() Fl(x! /
rotation is applied |
o 4-way classification

—» g(X,y=0)

Rotute ) degrees Predict 90 degrees rotation (y=1) |

Rotated image: X' ‘

ConvNet Maximize prob. |
model F(.) F*(X?)

‘ Predict 180 degrees rotation (y=2) |

— g(X,y=2)

Image X Rotate 180 degrees

Rotated image: X

» ConvNet Maximize prob. |
—p g(X,y=3) ‘ model F(.) F(X°) ] |
Rotate 270 degrees Rotated image: X° o ‘ _Predic_t 27(Eegrf rota_tion (i=3) |

Gidaris, Spyros, Praveer Singh, and Nikos Komodakis. "Unsupervised Representation Learning by Predicting Image Rotations." ICLR 2018. 2018.
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How to evaluate a self-supervised learning method?

e Don’t care about the performance of the self-supervised learning task
o E.g. Image rotation prediction

e Evaluate the learned feature encoder on downstream target tasks
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How to evaluate a self-supervised learning method?

feature
|:> self-supervised :> extractor
learning (e.g.,a
convnet)
lots of
unlabeled
data
,\ 90°
—

conv fc

1. Learn good feature extractors from
self-supervised pretext tasks, e.g.,
predicting image rotations

http://cs231n.stanford.edu/slides/2023/lecture_13.pdf
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How to evaluate a self-supervised learning method?

feature

|:> self-supervised |:> extractor

learning (e.g.,a

convnet)
lots of
unlabeled
data

2

1. Learn good feature extractors from
self-supervised pretext tasks, e.g.,
predicting image rotations

conv

evaluate on the
target task

supervised
learning

= :>[

|

e.g. classification, detection

4%%

hnear
classifier

small amount of
labeled data on

the target task conv

2. Attach a shallow network on the
feature extractor; train the shallow
network on the target task with small
amount of labeled data

http://cs231n.stanford.edu/slides/2023/lecture_13.pdf
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Self-Supervised Evaluation

e Downstream performance correlates with prefix task: rotation prediction

airplane E.% V..=&. -
automobile EE‘H‘
bird a;u ﬂ:\ '!-
« EESHNEEdEsP
e EREESES SRS
w  [AESEsBRK L
roo [ N I 21 5 O W
horse H.mn-im
hip ag- ‘gn‘ 50 Object recognition accuracy of self-supervised model |

— Object recognition accuracy of supervised model

truck 4 " h , i H - — Rotation prediction accuracy
Y — il 40 I I I I I L I

. . . 0 20 30 40 50 60 70 80 90 00
Cifar-10 Image Classification : haimgepachs 1

Gidaris, Spyros, Praveer Singh, and Nikos Komodakis. "Unsupervised Representation Learning by Predicting Image Rotations." ICLR 2018. 2018.
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Self-Supervised Evaluation

e Self-supervised learning outperforms supervised learning with limited data
o Can use large volumes of unlabeled data!

100
90 [ /
80
70

60

Test accuracy

50
40

Al Ours - Semi-supervised 7

= Supervised

20 ' ' .
20 100 400 1000 5000

# Training examples

Gidaris, Spyros, Praveer Singh, and Nikos Komodakis. "Unsupervised Representation Learning by Predicting Image Rotations." ICLR 2018. 2018.
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Discuss

We are provided this image without labels: what are some
other tasks we can do with it? i

How can we perform
self-supervised learning
with images?
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(@)=

Vector Space

Can we learn this directly?
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Review: Image Augmentation

Horizontal flips

Rotate image
Zoom/crop image
Brighten/darken image
Shift colors

Augmentation

N

https://imgaug.readthedocs.io/en/latest/index.html
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f(x): contrastive learning

Vector Space

All positive pairs are augmentations of the
original image
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f(:z:): contrastive learning

Vector Space

o f(r4)

Any other image is a negative pair
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Basic Model for Contrastive Learning

push positive pairs close
together in feature space

loss function

pull negative pairs far
apart in feature space

7

N\

Vector Space
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Anchor
example

Triplet loss function

/

Model

Positive pair Negative pair
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Margin

\

¢ =max(0, || f(x;) — fF(xT)* = [If(x:) = f(xT)I* +¢)

Triplet loss function

Y \ v J
Model should map Model should map
positive examples negative examples far
close together apart
Ensures
loss is not

negative




Cornell Bowers CiIS
Discuss

e Any potential problems with the triplet loss?
e Any ideas to remedy those problems Margin

\

¢ =max(0, || f(x;) — fF(xT)* = [If(x:) = fF(xT)II* +¢)

\ J 4 J
/ M M

Ensures Model should map Model should map
loss is not positive examples negative examples far
close together apart

negative
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SImMCLR: A Simple Contrastive Learning Framework for

Images
e Sample two different augmentations of . Maximize agreement
. 7 < > _7
an image
90)] o)
h; <— Representation —» h;

f(-)| L‘()
o O

Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on machine learning. PMLR, 2020.
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SImMCLR: A Simple Contrastive Learning Framework for

Images
e Sample two different augmentations of . Maximize agreement ‘

an image T ) N
e Apply a base encoder to each view of 90) | Tg(

the image to extract an image feature hi  «—Representation —  hy

o e.g. ResNet
ST f(-)| [f()
Z’\,
7\

Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on machine learning. PMLR, 2020.
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SImMCLR: A Simple Contrastive Learning Framework for

Images
e Sample two different augmentations of . Maximize agreement >
an image y T
e Apply a base encoder to each view of 9() Tg(')
h; <— Representation —» h;

the image to extract an image feature

o e.g. ResNet £0) £0)
e Apply an MLP projection head to

generate final representations -
o Throw away projection head after training

Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on machine learning. PMLR, 2020.
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SImMCLR: A Simple Contrastive Learning Framework for

Images
e Sample two different augmentations of . Maximize agreement >
an image y T
e Apply a base encoder to each view of 9() Tg(')
h; <— Representation —» h;

the image to extract an image feature

o e.g. ResNet £0) £0)
e Apply an MLP projection head to

generate final representations -
o Throw away projection head after training

Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on machine learning. PMLR, 2020.
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SImCLR Augmentations

(b) Crop and resize

c¢) Crop, resize (and flip) (e) Color distort. (jitter)

(f) Rotate {90°,180°, 270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on machine learning. PMLR, 2020.




Cornell Bowers CiIS

SIMCLR Loss

e Temperature-scaled cross-entropy loss

Model should map positive
examples close together
A

s
exp(d(x;, x7)/7)
)/T))

Lgim = —1
SImCLR 5 (exp(d(xi, x")/7) + exp(d(x;, x

\\

Y

Model should map negative
examples far apart

Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on machine learning. PMLR, 2020.
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input: batch size N, constant 7, structure of f, g, T .

SimCLR Algonth m for sampled minibatch {x;}7_; do
forallk € {1,...,N} do

draw two augmentation functions t ~ 7, t' ~T

e Use other images in the mini-batch as Z e ﬁfst:(‘f“)lemauon
2k—1 = k
negatives hop—1 = f(Zox—1) # representation
e L2 normalize representations B glhar—1) # projection
e second augmentation
o Use cosine similarity as the distance metric Fop = t'(x)
e Compute temperature-scaled hok = f(@2k) # representation
2ok = g(hag) # projection
cross-entropy for all positive pairs end for
foralli € {1,...,2N}andj € {1,...,2N} do
si; =z zi/(lz:lllz51) # pairwise similarity
end for

define £(7, j) as £(i,j)=—log s exp(si,;/7)
k=

~1 Lirzs) exp(sik/T)
L= ol [6(2k—1,2Kk) + £(2k, 2k —1)]
update networks f and g to minimize £
end for
return encoder network f(-), and throw away g(-)

Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on machine learning. PMLR, 2020.
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Comparison of Loss Functions

e Temperature-scaled cross entropy places more weight on hard negatives
o Don’t need to mine hard negatives

Name | Negative loss function | Gradient w.r.t. u
exp(uTvt/r exp(uTv= /T -
NT-Xent w' vt /T =108 Y it ooy exP(uv/T) | (1 - %)/T’U‘F -3 .- %/T'v
NT-Logistic logo(ufvt /1) +logo(—ulv™/7) (o(—uTvt /7)) /T —o(uTv™ /7)/TV
Margin Triplet —max(ufv™ — ulvt +m,0) vt —v  ifulvt —ulv™ <melse 0

Table 2. Negative loss functions and their gradients. All input vectors, i.e. u, v, v, are £> normalized. NT-Xent is an abbreviation for

“Normalized Temperature-scaled Cross Entropy”. Different loss functions impose different weightings of positive and negative examples.

Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on machine learning. PMLR, 2020.
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SIMCLR Results

e T[rain a linear classifier on features

from SIMCLR *Supervised - *SimCLR (4x)
. = 75F Tty
e Approaches supervised performance! & . *SimCLR (2x)
%y eCPCv2-L
© L
S 7O AsimCLR ome dMoCo (4
3 oPIRL-c2X
< s eMoCo (2x) RO
= %o qCPCv2 PIRL-ens.
4'% ,\P,:Ré BigBiGAN
2 eof §Vio-°
5 LA
:
£ L eRotation
58 e|nstDisc
25 50 T00 500 700 626

Number of Parameters (Millions)

Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on machine learning. PMLR, 2020.
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SIMCLR Results

e Self-supervised vs. supervised ImageNet pre-training

e Evaluate transfer performance across 12 downstream classification datasets
o Often outperforms supervised pre-training!

Food CIFAR10 CIFAR100 Birdsnap SUN397 Cars Aircraft VOC2007 DTD Pets Caltech-101 Flowers

Linear evaluation:

SimCLR (ours) 76.9 95.3 80.2 48.4 659 60.0 61.2 84.2 78.9 89.2 93.9 95.0
Supervised 75.2 95.7 81.2 56.4 649 688 63.8 83.8 78.7 92.3 94.1 94.2
Fine-tuned:

SimCLR (ours) 89.4 98.6 89.0 78.2 681 921 87.0 86.6 77.8 92.1 94.1 97.6
Supervised 88.7 98.3 88.7 77.8 67.0 914 88.0 86.5 78.8 93.2 94.2 98.0
Random init 88.3 96.0 81.9 717.0 537 913 84.8 69.4 64.1 82.7 72.5 92.5

Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on machine learning. PMLR, 2020.
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Effect Of Projection Head

Maximize agreement

: 7 . . . ’ Z; = > Z
e Projects data to "augmentation-invariant A "
representation 9() Tg(')
o Less useful features for downstream tasks h; <— Representation — h;

0 f() f()

Projection
B linear
B Non-linear
[ | None
3
bc Qbfb

PrOJectlon output dlmen5|onaI|ty

)]
o

Top 1
B Ul
o o

o

Figure 8. Linear evaluation of representations with different pro-
jection heads g(-) and various dimensions of z = g(h). The
representation h (before projection) is 2048-dimensional here.

Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on machine learning. PMLR, 2020.
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Effect Of Projection Head

e Projects data to "augmentation-invariant”

representation

o Features less useful for downstream tasks

@h (b) z =g(h)

Figure B.4. t-SNE visualizations of hidden vectors of images from
arandomly selected 10 classes in the validation set.

Maximize agreement

Z; = > Zj
9() g9()
h; <— Representation — h;
fC) fC)
Z;
T o
What to predict? Random guess Reprssentanon
h  g(h)
Color vs grayscale 80 99.3 97.4
Rotation 23 67.6 25.6
Orig. vs corrupted 50 99.5 59.6
Orig. vs Sobel filtered 50 96.6 56.3

Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on machine learning. PMLR, 2020.
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Impact of Loss Function

e Proposed loss outperforms the

margin loss
o Even with negative mining

e L2 normalization is useful
e Sensitive to cross-entropy
temperature

Margin NT-Logi. Margin (sh) NT-Logi.(sh) NT-Xent
50.9 51.6 57.5 57.9 63.9

Table 4. Linear evaluation (top-1) for models trained with different
loss functions. “sh” means using semi-hard negative mining.

f2norm? 7 | Entropy Contrastive acc. | Top 1

0.05 1.0 90.5 59.7

Yes 0.1 4.5 87.8 64.4
0.5 8.2 68.2 60.7

1 8.3 59.1 58.0

No 10 0.5 91.7 57.2
100 0.5 92.1 57.0

Table 5. Linear evaluation for models trained with different choices
of /2 norm and temperature 7 for NT-Xent loss. The contrastive
distribution is over 4096 examples.
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Impact of Batch Size

e Requires large batches
o Harder negatives!

Top 1

50.0

100

200

300

400

500 600
Training epochs

700

800

Batch size
256

5112

1024
2048
4096
8192

900 1000

Figure 9. Linear evaluation models (ResNet-50) trained with differ-
ent batch size and epochs. Each bar is a single run from scratch.'”
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Momentum Contrast (MoCo)

e (Cache negative samples from
earlier batches as you train

e Replace one encoder with an
exponential moving average
(EMA) of the model

o Makes queued representations more
stable

O <+ mby + (1 — m)9q

loss

f
affinity |°:S
affinity HHHH -~ HH
f t
? T T T queue
encoder encoder encoder momentum

encoder

(a) end-to-end (b) Momentum Contrast

Chen, Xinlei, et al. "Improved baselines with momentum contrastive learning." arXiv preprint arXiv:2003.04297 (2020).
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MoCo v2

e MoCo v2: MoCo with some tricks from

SImCLR

o Stronger augmentations
o  MLP projection head

e Outperform SImCLR with modest

batch sizes

o Large numbers of negatives available from

the queue

unsup. pre-train ImageNet

case MLP aug+ cos epochs batch acc.
MoCo vl [6] 200 256 60.6
SimCLR [2] v v v 200 256 61.9
SimCLR [2] v v v 200 8192 66.6
MoCo v2 v v v 200 256 67.5
results of longer unsupervised training follow:

SimCLR [2] v v v 1000 4096 69.3
MoCo v2 v v v 800 256 71.1

Table 2. MoCo vs. SimCLR: ImageNet linear classifier accuracy
(ResNet-50, 1-crop 224 x224), trained on features from unsuper-
vised pre-training. “aug+” in SimCLR includes blur and stronger
color distortion. SimCLR ablations are from Fig. 9 in [2] (we
thank the authors for providing the numerical results).

mechanism  batch  memory /GPU  time /200-ep.

MoCo 256 5.0G 53 hrs
end-to-end 256 7.4G 65 hrs
end-to-end 4096 93.0GT n/a

Table 3. Memory and time cost in 8 V100 16G GPUs, imple-
mented in PyTorch. T: based on our estimation.

Chen, Xinlei, et al. "Improved baselines with momentum contrastive learning."
arXiv preprint arXiv:2003.04297 (2020).
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Recap

e Supervised image classification pre-training produces strong image
representations
o Can efficiently transfer to other tasks

e Can apply self-supervised learning to images
o Prefix tasks: rotation prediction, masked-image modeling, etc.

e Contrastive learning explicitly enforces similarity in representation space
o Requires defining image augmentations




