

Cornell Bowers CIS Logistics

209.00.00

- HW2 is out
- We have a feedback form (due Friday February 23)
- Tuesday 10am office hours might change
- We will talking about projects on Thursday
 - HW3 will be a shorter

Cornell Bowers C·IS

Previously: Using LSTMs to solve sequence problems

- Process sequences one element at a time.
- Maintain a 'memory' (cell state) to capture information about previous steps.
- Mitigates the RNN vanishing gradient problem
- Suitable for time series, speech, text, and other sequential data.

Cornell Bowers C·IS

Bidirectional LSTM

Bottleneck Problem

- All the information about the source sequence must be stored in a single vector
 - How to translate a long paragraph?
 - How to summarize long articles?

Cornell Bowers CNS Discuss: What are limitations of such sequence to sequence models? Hint: Think about runtime.

Cornell Bowers CIS

Self-Attention

A bat flew out of the dugout, startling the baseball player and making him drop his bat.

Transformer Architecture

Introduced for seq2seq tasks like Machine translation, summarization, question answering, etc.

Concell Bowers CNS Example Positional Encoding

Self-Attention: General Formula

$$Attention(Q,K,V) = Softmax(rac{QK^T}{d_k})V$$

Discuss:

- Q, K, V are all (n x d) matrices. Consider have an input of shape b x n x d.
- What is the shape of QK^T?
 - What does this matrix represent?
- What is the shape of the final output?
 What does this matrix represent?

$$Attention(Q,K,V) = Softmax(rac{QK^T}{d_k})V$$

Cornell Bowers C^IS

Multi-Head Attention

What if I want to pay attention to different things at the same time !?

Content-based	This is my big red dog, Clifford.
---------------	-----------------------------------

Description-based	This is my big red dog,	Clifford

ord
c

What's useful depends on the task. How do I pick what to do?

Cornell Bowers C·IS

Multi-Head Attention

- The Scaled Dot-Product Attention attends to one or few entries in the input key-value pairs.
- Idea: apply Scaled Dot-Product Attention multiple times on the linearly transformed inputs.

 $\begin{aligned} \text{MultiHead}(Q, K, V) &= \text{Concat}(\text{head}_1, ..., \text{head}_h) W^O \\ \text{where head}_i &= \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) \end{aligned}$

Self-Attention vs. Masked Self-Attention

Self-Attention

Self-Attention vs. Masked Self-Attention

Cornell Bowers C·IS

Self-Attention vs. Masked Self-Attention

Self-Attention

Cornell Bowers C·IS

Point-wise Feed-forward Networks

- Purpose
 - Applies non-linear transformations to the output of the attention layer
- Equation
 - $FFN(x) = max(0, xW_1 + b_1)W_2 + b_2$
 - where W and b are learned weights and biases
- These FFN is applied separately to each position

Cornell Bowers C·IS Discuss: • How does the transformer scale with sequence length? Ich mag schwarzen Kaffee • Any problems with applying it to very long sequences? xN Feed Forward Feed Forward Cross-Attention Self-Attention Masked Self-Attention Position: Encodin Positional Encoding Embeddin Embedd I like black coffee <START> Ich mag schwarzen

Cornell Bowers C·IS

BERT (Bidirectional Encoder Representations from Transformers)

w's

0.

- Bidirectional Context
- Pre-trained on the language, and then fine-tuned

Cornell Bowers C·IS

BERT - Input Representation

Input:

- Use 30,000 WordPiece vocabulary on input.
- Each token is sum of three embeddings

Training

Masked Language Modelling

- \circ $\$ Mask out k% of the input words, and then predict the masked words
- the man went to the store to [MASK] a [MASK] of milk
- What can you use as a loss function?

Next sentence prediction

- To learn relationships between sentences, predict whether Sentence B is actual sentence that
- proceeds Sentence A, or a random sentence

Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk.
Label = IsNextSentence

Sentence A = The man went to the store. Sentence B = Penguins are flightless. Label = NotNextSentence

Cornell Bowers C·IS

Model Details

- Data: Wikipedia (2.5B words) + BookCorpus (800M words)
- Batch Size: 131,072 words (1024 sequences * 128 length or 256 sequences * 512 length)
- Training Time: 1M steps (~40 epochs)
- Optimizer: AdamW, 1e-4 learning rate, linear decay
- BERT-Base: 12-layer, 768-hidden, 12-head, 110M params
- BERT-Large: 24-layer, 1024-hidden, 16-head, 340M params
- Trained on 4x4 or 8x8 TPU slice for 4 days

Cornell Bowers C·IS

Demo

https://huggingface.co/google-bert/bert-large-cased?text=Paris+is+the+capital+of+ %5BMASK%5D.

Cornell Bowers C·IS

Pre-training to Fine-tuning Pipeline

system	MNLI-(m/mm)	OOP	ONLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
J	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
re-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
3iLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
3ERT _{LARGE}	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Cornell Bowers C^IS

Self-supervised Learning

- Labels are generated automatically, no human labeling process
- Benefits
 - Scales well
 - Cost-Efficient
 - Flexible Challenges
 - Challenges
 - Larger datasets are required
 - More compute is necessary

Cornell Bowers C·IS

Review

- LSTMs/GRUs are recurrent
- Self-attention can effectively replace recurrence in sequence-to-sequence models
- Transformers use self-attention and are parallelizable
- Pre-training using self-supervised learning help train large models that learn very good representations