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Deep Learning

Week:[03]: [Transformers/Attention]
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Logistics

e HW2is out
o We have a feedback form (due Friday February 23)
e Tuesday 10am office hours might change

o We will talking about projects on Thursday
o HW3 will be a shorter
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Previously: Using LSTMs to solve sequence problems

- Process sequences one element at a time.

- Maintain a 'memory' (cell state) to capture information about previous
steps.

- Mitigates the RNN vanishing gradient problem

- Suitable for time series, speech, text, and other sequential data.
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Bidirectional LSTM
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Gated recurrent units (GRUSs)
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Bottleneck Problem

e All the information about the source sequence must be stored in a single
vector
o How to translate a long paragraph?
o How to summarize long articles?

Encoder bottleneck Decoder
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RNN for Machine Translation

Would be nice if we could “look back” at previous hidden states
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RNN with Attention
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RNN with Attention

Encoder
RNN

Embedding Embedding
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Discuss: What are limitations of such sequence to sequence
models? Hint: Think about runtime.
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Language Modelling History

Legend:
Before Transformer

@ After Transformer
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https://medium.com/@kirudang/language-model-history-before-and-after-transformer-the-ai-revolution-bedc7948a130
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Self-Attention

A bat flew out of the dugout, startling the baseball player and
making him drop his bat.
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Transformer Architecture

Introduced for seq2seq tasks like Machine translation, summarization, question

answering, etc.
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Transformer Architecture
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Input Embeddings

e Replace tokens with continuous vectors
e Made up of two components:
o token embeddings
o positional encoding depends on
position and dimension index as
follows:
PE s 2i) = sin(

po: )
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Example Positional Encoding
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Transformer Architecture

Ich mag schwarzen Kaffee

Linear Classifier
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Self-Attention

Keys (K)

-
'
1
1
1
1
1
1
1

-

][] s HHEE ! (HHEE! (HEBE | values (¥
e
L Wy Wi s
¢ A T
0 E— oo
. EEEE! E E H E
S :
| like black coffee <START> Ich mag schwarzen Selqnl.‘])euf:ce
Cornell Bowers C1S Cornell Bowers C1IS
Self-Attention

ay = softmax(s; )

Output
Sequence

Self-Attention: General Formula
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Self-attention
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Discuss:

e Q, K, Vareall (n x d) matrices. Consider have an input of shape b x n x d.

e What is the shape of QK™?
o What does this matrix represent?
e What is the shape of the final output?

o What does this matrix represent?
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Multi-Head Attention

What if | want to pay attention to different things at the same time!?

Content-based This is my big red dog, Clifford.
Description-based This is my big red dog, Clifford.
Reference-based This is my big red dog, Clifford.

What's useful depends on the task. How do | pick what to do?
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Multi-Head Attention

- The Scaled Dot-Product Attention attends to one or few entries in the
input key-value pairs.

- ldea: apply Scaled Dot-Product Attention multiple times on the
linearly transformed inputs.

MultiHead(Q, K, V') = Concat(heady, ..., heady, ) W©°
where head; = Attention(QWZ2, KW/, VW)
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Cross-Attention
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Self-Attention vs. Masked Self-Attention
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Self-Attention vs. Masked Self-Attention
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Self-Attention vs. Masked Self-Attention

Masked Self-
Attention

Self-Attention
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Self-Attention vs. Masked Self-Attention
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Self-Attention vs. Masked Self-Attention

. Masked Self-
Self-Attention Attention
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Point-wise Feed-forward Networks

Purpose

- Applies non-linear transformations to the output of the attention layer
Equation
FFN(x) = max(0, xW + b )W, + b,
where W and b are learned weights and biases

- These FFN is applied separately to each position
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Layernorm

Layer Normalization

Sentence Length
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Summary
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Discuss:

e How does the transformer scale with sequence length?
Any problems with applying it to very long sequences?
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BERT (Bidirectional Encoder Representations from Transformers)

- Bidirectional Context
- Pre-trained on the language, and then fine-tuned
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BERT - Input Representation

Input:
e Use 30,000 WordPiece vocabulary on input.

e Each token is sum of three embeddings
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Training

e Masked Language Modelling
o Mask out k% of the input words, and then predict the masked words
o the man went to the store to [MASK] a [MASK] of milk
o What can you use as a loss function?

e Next sentence prediction
o To learn relationships between sentences, predict whether Sentence B is actual sentence that
o proceeds Sentence A, or a random sentence

to the store. Sentence A = The man went t
a gallon of milk. Sentence B
Label = not

Sentence A = The man

Label = IsNext
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Model Details

e Data: Wikipedia (2.5B words) + BookCorpus (800M words)

Batch Size: 131,072 words (1024 sequences * 128 length or 256 sequences
512 length)

Training Time: 1M steps (~40 epochs)

Optimizer: AdamW, 1e-4 learning rate, linear decay

BERT-Base: 12-layer, 768-hidden, 12-head, 110M params

BERT-Large: 24-layer, 1024-hidden, 16-head, 340M params

Trained on 4x4 or 8x8 TPU slice for 4 days

*

e o o o o

Cornell Bowers C1S
Demo

https://huggingface.co/google-bert/bert-large-cased?text=Paris+is+the+capital+of+

%5BMASK%5D.

Cornell Bowers C1S

Pre-training to Fine-tuning Pipeline
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System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAI SOTA 80.6/80.1 66.1 82.3 932 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 733 84.9 56.8 71.0
OpenAI GPT 82.1/81.4 70.3 87.4 91.3 45.4 80.0 82.3 56.0 75.1
BERTgAse 84.6/83.4 712 90.5 935 521 85.8 88.9 66.4 79.6
BERTARGE 86.7/85.9 72.1 92.7 949 60.5 86.5 89.3 70.1 82.1

https://arxiv.org/pdf/1810.04805.pdf
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Self-supervised Learning

- Labels are generated automatically, no human labeling process
- Benefits

- Scales well

- Cost-Efficient

- Flexible
- Challenges

- Largerdatasets are required

- More compute is necessary
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Review

e |LSTMs/GRUs are recurrent

e Self-attention can effectively replace recurrence in sequence-to-sequence

models

e Transformers use self-attention and are parallelizable

e Pre-training using self-supervised learning help train large models that learn

very good representations




