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Agent and Environment
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Agent: Environment:

- The external context in which an
agent operates and interacts with

- Provides feedback to agent

- Perceives environment.
- Makes decisions.
- Aims to maximize reward.
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Markov Decision Process (MDP)

e MDPs provide a framework for modeling sequential decision-making problems.
e An MDP is defined by a tuple (S, A, P,R,7):

— & Set of states representing the environment.

— A: Set of actions the agent can take.

— P: Transition probability function, P(s'|s, a).

— R: Reward function, R (s, a).

— ~: Discount factor, v € [0, 1].
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Q-Learning Update Rule Q(s:0) =R(s,0) +7 ) Pls'ls,a) max @°(s", )

s'eS

e The Q-Learning update rule can be expanded as:

Q(s,a) + Q(s,a) + & [R(s, a) + ymax Q(s', ') — Q(s, a)|

Q(s,a) « (1 —a)Q(s,a) + « [R(s, a) + Y max Q(s, a')]
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Goal of Reinforcement Learning

Find the optimal policy 7; that maximizes the expected discounted return J(6):

T
J(H) = IETNpg (1) lz ’YtR(Sta at)]

t=0

Ty = arg max J(0)
where:
e J(0) is the expected discounted return under the policy p.
e T represents a trajectory (so, ag, o, S1,01,71,--.,ST,ar,rT) sampled from the policy 7y.

e py(7) is the probability distribution over trajectories induced by the policy 7y.
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Deep Q-Learning;:

\ \ - Q(s,a1)=-10

I Q(s,a2) =0 <=
Q(s,a3) =2 ﬂ
T Qs =1 =

/ /\‘ Q(s,a5) =1

. ConvNet | Deep Q NN

State Representation

7(s) = argmax(Q(s,a))

a
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Deep Q-Learning;:

\ \ - Q(s,a1)=-10

I Q(s,a2) =0 <=
Q(s,a3) =2 ﬂ
T Qs =1 =

[ / \ Q(s,a5) =1
State Representation

7(s) = argmax(Q(s,a))

This max function a
makes continuous and \/
stochastic actions hard

. ConvNet | Deep Q NN
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Deep Q-Learning;:

\ \ - Q(s,a1)=-10

I Q(s,a2) =0 <=
Q(S,(Ig) = 2 ﬂ
T Qs =1 =

/ /\ Q(s,a5) =1

State Representation

. ConvNet | Deep Q NN

7(s) = argmax(Q(s,a))
/ -

What if we can learn the policy directly?
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Policy Gradient:

T

. ConvNet |

/

State Representation

>

Policy NN

/

P(ay|s) = .01 ]

—— P(CLQ'S) =.1 <=
P(ag|s) = .49 J

T Plas) =2 =

P<CL5|S) =.2
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Policy Distribution:

Pacman is trying to decide to go
left, right, or not move at all

Pacman is now trying to
decide how fast to move?
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Review: The Reparameterization Trick
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Continuous Policy Gradient:

T

. ConvNet |

/ State Representation
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Goal of Reinforcement Learning

Find the optimal policy 7; that maximizes the expected discounted return J(6):

T
'](0) = [ETNpg (1) lz ’YtR(sta at)]

t=0

Ty = arg max J(0)
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What is our loss function?

Gradient Descent: Obijective function:

Hk—l—l = Hk, — OZVQ,C(H]C) Hk—l—l — Hk + (XVQJ(Qk)
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Policy Gradient Objective

Aim to update the policy parameters 6 in the direction of the gradient VyJ(f) to maximize the
expected discounted return:

0k+1 = Ok 1 aVeJ(Hk)

where:
e 0, represents the policy parameters at iteration k.
e « is the learning rate that controls the step size of the parameter update.

o VyJ(0r) is the gradient of the expected discounted return with respect to the policy param-
eters at iteration k.
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Policy Gradient Objective

To maximize the expected discounted return J(#), we need to compute its gradient with respect to
the policy parameters 6:

T
VeJ(Q) = Vo[ETNpe(T) [Z ’YtR(St, at)]
t=0

where:
e J(0) is the expected discounted return under the policy my.
e T represents a trajectory (so, ag, o, S1,01,71,--.,ST,ar,rT) sampled from the policy 7y.

e py(7) is the probability distribution over trajectories induced by the policy 7y.
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Discuss

What are some of the challenges with computing this objective:

T
VQJ(O) = VolETNpe(T) [Z ’)’tR(St, at)]
t=0

where:
e J(0) is the expected discounted return under the policy my.
e T represents a trajectory (so, ag, o, S1,01,71,--.,ST,ar,rT) sampled from the policy 7y.

e py(7) is the probability distribution over trajectories induced by the policy 7y.
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Policy Gradient Theorem

e Will give us a way to estimate the gradient of our objective with respect to our
policy network parameters
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Policy-Gradient Theorem (Part 1)

Express the expected discounted return J(#) in terms of the state-value function V™ (s):

> " R(st, at)]

t—0
= Esonp(so) [V (50)]

= " p(s0)V"™(s0)

J(Q) = IETNPG(T)

where:

o V7™ (8) = Ernpp(r|so=5) [ZZ;O YR (84, at)] is the state-value function.

e p(sp) is the initial state distribution.
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Recall: Action-Value (Q) Function

e Relationship between value function and Q-function:

V7(s) =) m(a|5)Q(s,a)

e Can recover the value function from the Q-function by marginalizing over all possible actions.
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Policy-Gradient Theorem (Part 2)

Let’s differentiate J(0) = >, p(s0)V™ (s0) with respect to 6:

VoJ (0 Zp (s0)VeV ™ (s0) (Step 1: Differentiate w.r.t. 0)

= Zp s0)Vg Zwo (als0)Q™ (so, a) (Step 2: Expand V™ (sg))

= Zp S0 Z Vomo(a|so)RQ™ (so, a) (Step 3: Interchange Vy and Z)

= Zp 50) Z mo(also) V97T0(CL|80) ———————Q™ (s0,a) (Step 4: Multiply and divide by mg(a|so))
mo(also)

— Zp S0 ng alsg) Ve log mg(alse)Q™ (so,a) (Step 5: Log-trick)
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Policy Gradient Theorem (Part 3)

Express the gradient VyJ(0) as an expectation over states and actions:

VoJ(0) = p(so) Y me(also)Velogms(alse)Q™ (so,a)

= Z Zp(so)we (a|so) Ve logme(alse)Q™ (so, a) (Step 1: Rearrange terms)
so a

= Z Zp(so, a)Vg log mg(alse)Q™ (so,a) (Step 2: Define joint distribution p(sg,a))

= E:O,\,:(SO)’GNWg(alsO) [V log mg(alse)Q™ (s0,a)] (Step 3: Express as an expectation)

= Espmo(s),a~mo(als) [ Vo l0g T (als)Q™ (s, a)] (Step 4: Generalize to state distribution)

where p™ (s) is the state distribution induced by the policy mp.
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Policy Gradient Theorem

Policy gradient theorem expresses the gradient of the expected discounted return as an expec-
tation over states and actions, weighted by the gradient of the log policy and the action-value
function:

Vo J(0) = Esnpro(s),anmo(als) [V logmg(als)Q™ (s, a)]

where p™ (s) is the state distribution induced by the policy .
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REINFORCE Algorithm

Key ideas:
e Estimate the policy gradient:

VoJ(0) = [ESpre(s),aNm(Ms) [V log mo(als)Q™ (s, a)]

using samples from the policy.

e Use the return G; = ZzO:o Y*R:4r+1 as an unbiased estimate of the action-value function

Q™ (s¢, at).

e Update the policy parameters € in the direction of the estimated gradient.
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REINFORCE Algorithm:

1. Runa policy over the
environment

2. Record actions, states, and
rewards

3. Increase probability of
good actions and decrease
probability of bad actions

(30) ag, TO)

/

(82’ az, T2)

9

-

)

(s1,a1,71) /

O
/
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REINFORCE Algorithm

Algorithm 1 REINFORCE Algorithm

1: Initialize policy parameters # randomly

2: for each episode do

3: Sample a trajectory 7 = (so, ag, 70, $1,a1,71,--.,ST,ar,rr) following the policy my
4 for each timestep ¢ in the trajectory do

5 Compute the return G; = Zfz_g Yers

6 Estimate the policy gradient: § = Vy log mp(at|s:)G

7: end for

8 Update the policy parameters: 6 < 6 + a% ZZ:O g, where « is the learning rate
9: end for
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REINFORCE: Demo

ode g2

ode rewardd

ape of last
5 last



http://www.youtube.com/watch?v=qx-KNh0I4CM
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REINFORCE Algorithm: Advantages and Disadvantages

Advantages:
e Unbiased estimate of the policy gradient.

e Can be applied to both continuous and discrete action spaces.

Limitations:
e Return is a noisy estimate of the action-value function.
— High variance in the gradient estimates.

e High variance leads to potential instabilities and slow convergence.
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On-Policy vs. Off-Policy

Reinforcement learning algorithms can be categorized as either on-policy or off-policy based on how
they collect and use data for learning.
On-Policy Algorithms:

e Learn from experiences generated by the current policy being followed.

e The policy used for generating data is the same as the policy being improved.




Cornell Bowers CiIS

On-Policy vs. Off-Policy

Reinforcement learning algorithms can be categorized as either on-policy or off-policy based on how
they collect and use data for learning.

Off-Policy Algorithms:
e Learn from experiences generated by a different policy than the one being improved.

e The behavior policy (used for generating data) is different from the target policy (being
learned).

e Can learn from data generated by any policy and enables efficient use of data through replay
buffers.

)




Cornell Bowers C1IS

Discuss: Which of the following are on- vs. off-policy
algorithms?

Q-Learning, Deep Q-Learning, REINFORCE
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Issues with Policy Gradient
Methods
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Exploration

Might get stuck in Local Optima
Want to discover better policies
Adapt to changing environments
Generalize and handle uncertainty

s

&‘ @.tz—*’
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Exploration




Cornell Bowers CiIS

Exploration
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Exploration

&‘ Q‘t““’
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Solutions to exploration?

1. Stochastic policy

2. Change our reward to emphasize exploration
a. Entropy bonus

3. Run algo from different start states
o N
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Solutions to exploration?
1. Stochastic policy

2. Change our reward to emphasize exploration
a. Entropy bonus

3. Run algo from different start states

&




Cornell Bowers C1IS

Variance

- Your policy is dependent on randomness
- Noise = high variance in how you evaluate your policy
- Need relative information about how good a policy is

Is this a good /

sequence of actions?

G = Volog mg(at|s:)Ge > —>
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Variance Reduction with a Baseline

How good was that sequence of actions compared to other

sequences?

g = Vg logmg(at|s:)(Gt — b(st))

e

Subtract a Baseline

https://medium.com/@fork.tree.ai/understanding-baseline-techniques-for-reinforce-53a1e2279b57




Cornell Bowers CiIS

Variance Reduction with a Baseline

e Subtracting a baseline is a simple technique to reduce variance in the REINFORCE algorithm.

— Improves learning stability and convergence speed.
e A baseline, b(s;), estimates the expected return from state s;.

— Can be an estimated state-value function V™ (s;) or a moving average of returns.

e The policy gradient estimate becomes: Mean episode length over interactions

500 Pl

-

g — Vg logvrg(atlst)(Gt — b(St))

400

w
o
o

Episode length
N
o
o

100

j —— REINFORCE
0 ! ~—— REINFORCE learned baseline
] ] . ) ) ) 0 50000 100000 150000 200000 250000
https://medium.com/@fork.tree.ai/understanding-baseline-techniques-for-reinforce-53a1e2279b57 Interactions with environment
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REINFORCE Application- Image Captioning

e Typically train image captioning models with the cross-entropy loss
o  Would be nice to directly optimize for downstream metrics of interest

m Typically n-gram metrics of some form

Xu, Kelvin, et al. "Show, attend and tell: Neural image caption generation with
visual attention." International conference on machine learning. PMLR, 2015.

=

1. Input
Image

14x14 Feature Map

2. Convolutional 3. RNN with attention 4. Word by

Feature Extraction

A

bird

over the image

flying
over
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body
of
water
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generatlon)
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Self-Critical Sequence Training

e Train image captioning model with the cross-entropy objective

e Use REINFORCE to optimize some non-differentiable metric
o CIDEr: Average cosine similarity of n-gram feature vectors for the candidate and reference

1. Input

Rennie, Steven J., et al. "Self-critical sequence training for Image
image captioning." Proceedings of the IEEE conference on
computer vision and pattern recognition. 2017. \

14x14 Feature Map

2. Convolutional
Feature Extraction

A
bird
flying
over

a
body
of
water
3. RNN with attention 4. Word by

over the image word
generatlon)
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Self-Critical Sequence Training

hi,¢1 = LSTM(BOS, hy, co) ha,co = LSTM(’w‘f,hl,Cl)

h07CO — > B >
@ r(ws,...,ws
BOS —»| I I
1 po(wlh2) w3

po(w|hy) wy
{(wi,...,wp)}

((r(wf, o ws) — (b, ..., 7)) Ve log pe (w3, . .. ,w;;))

hi,¢; = LSTM(BOS, hy,ch)  hh,ch = LSTM (i1, b}, c}) (@1,...,dr)

po(wlhi)

Rennie, Steven J., et al. "Self-critical sequence training for
image captioning." Proceedings of the IEEE conference on
computer vision and pattern recognition. 2017.

h6706—>
’)"(?f)l, § a0 ,’IDT)

-
6

BOS —p

po(w|hs)
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Self-Critical Sequence Training

e Can directly optimize non-differentiable downstream metrics with

REINFORCE

Training Evaluation Metric

Metric CIDEr BLEU4 ROUGEL METEOR
XE 90.9 28.6 52.3 24.1
XE (beam) | 94.0 29.6 52.6 25.2
CIDEr 106.3 31.9 54.3 25.5
BLEU 94.4 33.2 53.9 24.6
ROUGEL 97.7 31.6 554 24.5
METEOR 80.5 25.3 51.3 25.9
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Actor-Critic Algorithms

Combine the benefits of both policy-based and value-based approaches.
Key Components:

e Actor: The actor is a policy network mg(a|s) that maps states to probability distributions
over actions. It selects actions based on the current policy.

e Critic: The critic is a value network Vi(s) or Q4(s,a) that estimates the expected return or
action-value function. It evaluates the quality of the actor’s decisions.

VoJ(0) = Vglogme(als)Qqs(s,a)
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Actor-Critic Algorithms

Vo (6) = Volog mo(als)Qy(s, a)

/

Moving right sounds Don’t do that. Bad
like a good choice Idea!

w 0’ ~

0‘“5
N )
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Actor-Critic Algorithm

Algorithm 3 Actor-Critic Algorithm (Q-Function Critic)

1: Initialize actor network my(a|s) with random weights 6
2: Initialize critic network @Q4(s,a) with random weights ¢
3: for each episode do

4.

10:
11z
12:
13:
14:
15:
16:
1

Initialize state s
for each step of the episode do
Choose action a ~ mg(als)
Take action a, observe reward r and next state s’
Choose next action a’ ~ mg(als’)
Compute TD error: § =7+ vQ4(s',a") — Q4 (s, a)
Update critic weights ¢ using TD learning:
O o+ acdvd,fo,(s, a)
Compute policy gradient:
Vo J(0) = Vglogmy(als)Qy(s; a)
Update actor weights € using policy gradient ascent:
0 «— 0+ a,VoJ(0)
s+ s
end for

18: end for
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Actor-Critic: Advantages

e Combine the benefits of policy-based and value-based methods.

e The critic helps in reducing the variance of the policy gradient estimates.

e The actor allows for continuous and stochastic action spaces.

e Can be more sample-efficient compared to pure policy-based methods.

Y

state

state

actor
policy

—

!

error<_ error

critic

value function

)

0

reward

environment

action
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Challenges with RL in the Real World

Sample Inefficiency + Danger + Cost = Simulation

ATIONAL
GEOGRAPHIC]
CHANNEL
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Reward hacking

Learn to maximize the reward in
unexpected ways
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How do we get what we want, NOT what we say we want?

It is important to
have a good reward
function

Boston Dynamics
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Recap

e Policy gradient methods directly learn the policy function

o Policy Gradient Theorem lets us estimate the gradient of expected reward with respect to the
policy parameters

e REINFORCE learns the policy network parameters with an unbiased estimate
of the gradient
o But can have high variance!

e Actor-Critic algorithms introduce a learnable critic to estimate the gradient
o Reduces variance




