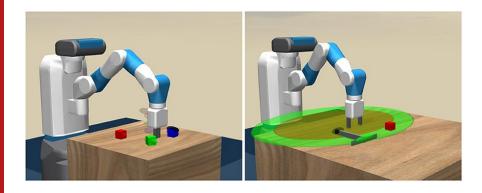


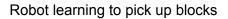
Logistics

- Assignment #4 Feedback Form due Friday
 - Will release this evening

Limitations of Supervised Learning

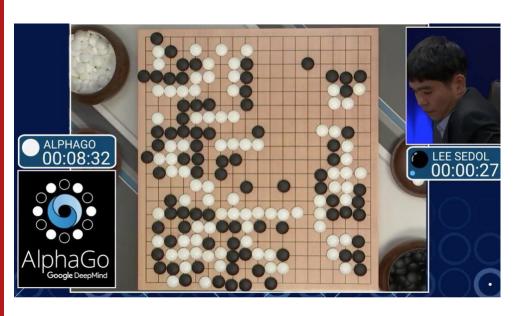
Can a regression/classification algorithm learn to perform these tasks successfully?





Waymo self-driving car

Using Reinforcement Learning to play games



Supervised Learning

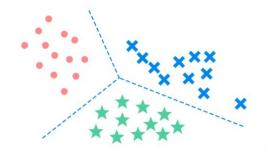
- Learns from a labeled dataset
- Classification Regression

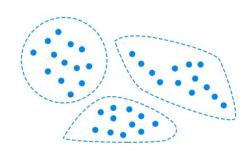
Unsupervised Learning

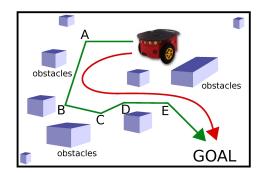
- Find patterns in unlabeled data
- Clustering
 Generative Models

Reinforcement Learning

- Agent interacts with an environment and learns to maximize a reward
- Game Playing Robot Navigation





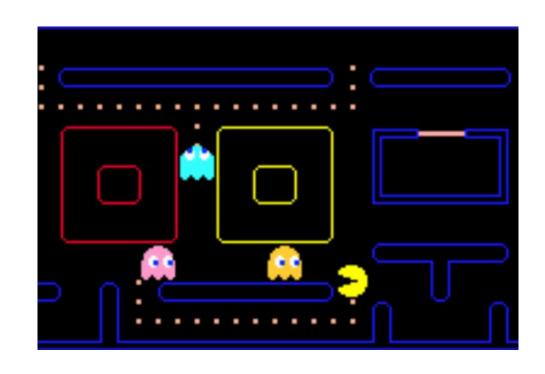


Pacman Example

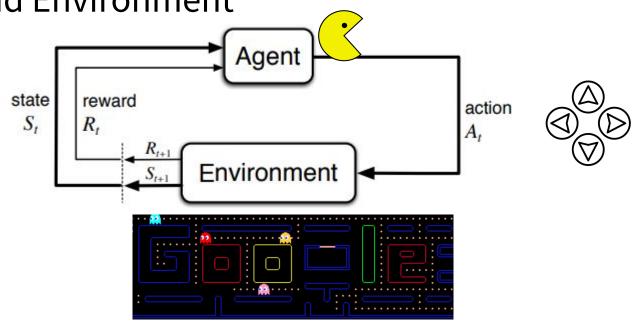
Objective of Game: Eat the most pellets

Want to **maximize reward** (pellets)

Not differentiable!



Agent and Environment



Agent:

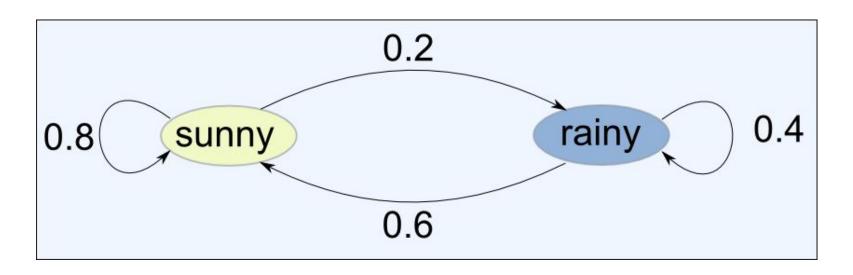
- Perceives environment.
- Makes decisions.
- Aims to maximize reward.

Environment:

- The external context in which an agent operates and interacts with
- Provides feedback to agent

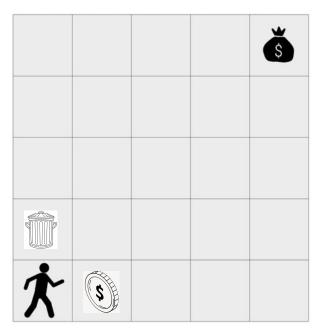
Markov Process

Probabilistic events in which state at time $\,t+1\,{\rm solely}$ depends on state at time $\,t\,$



Markov Decision Process (MDP)

Framework for modeling decision-making in situations where outcomes are partly random and partly under the control of a decision maker



State Space

$$S = \{s_1, s_2, s_3, \ldots\}$$

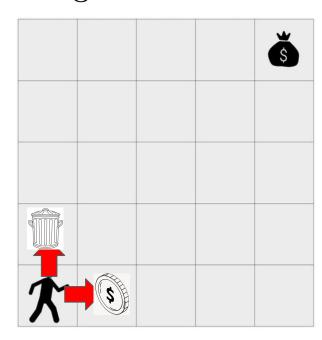
 $-\mathcal{S}$: Set of states representing the environment.

s_1	s_2	s_3	 Ğ
•			
大	\$		

Action Space

$\mathcal{A} = \{\text{Up, Down, Left, Right}\}$

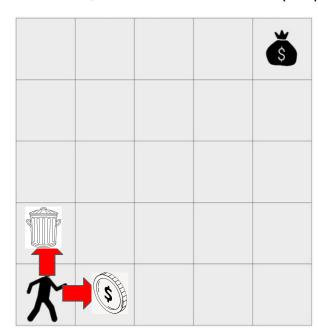
 $-\mathcal{A}$: Set of actions the agent can take.



Transition Function

 $-\mathcal{P}$: Transition probability function, $\mathcal{P}(s'|s,a)$.

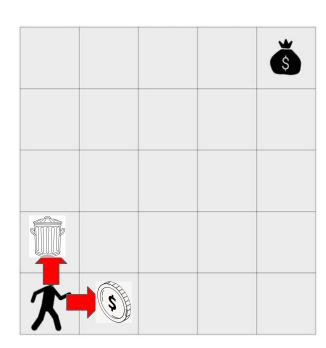
Probability distribution of the next state given the current state and action



Reward Function

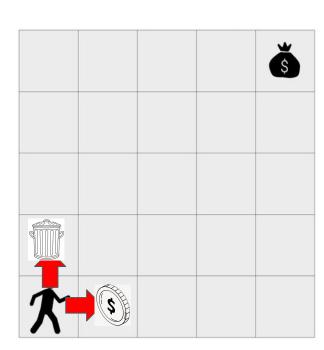
 $-\mathcal{R}$: Reward function, $\mathcal{R}(s,a)$.

Action	Reward	
Up	-5	
Right	10	



Discount Factor

 $-\gamma \in [0,1]$: Discount factor that balances immediate and future rewards.



Markov Decision Process (MDP)

- MDPs provide a framework for modeling sequential decision-making problems.
- An MDP is defined by a tuple $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$:
 - $-\mathcal{S}$: Set of states representing the environment.
 - $-\mathcal{A}$: Set of actions the agent can take.
 - $-\mathcal{P}$: Transition probability function, $\mathcal{P}(s'|s,a)$.
 - $-\mathcal{R}$: Reward function, $\mathcal{R}(s,a)$.
 - $-\gamma$: Discount factor, $\gamma \in [0,1]$.

Discussion: Identify the agent, environment and reward in each game.

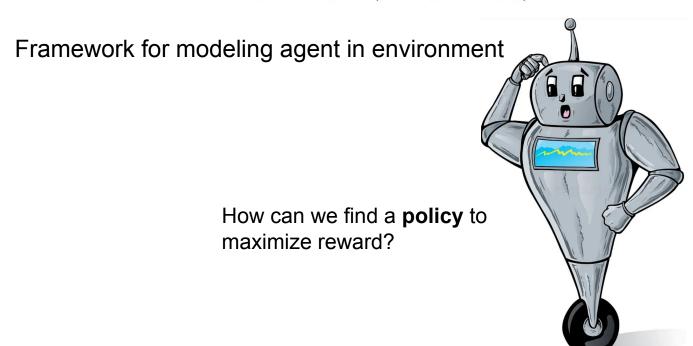
Tetris

Super Smash Bros

Chess

Markov Decision Process (MDP)

An MDP is defined by a tuple $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$



Policy

- A policy π is a mapping from states to actions, defining the agent's behavior.
 - Formally, a policy is a function $\pi: \mathcal{S} \to \mathcal{A}$.
- The policy determines which action the agent takes in each state.
- The goal of reinforcement learning is to find an optimal policy π^* that maximizes the expected cumulative reward.

Policy

- The goal of reinforcement learning is to find an optimal policy π^* that maximizes the expected cumulative reward.
- The expected cumulative reward is defined as:

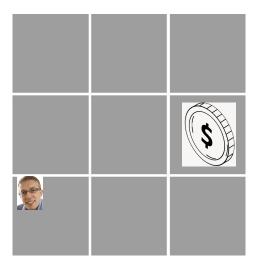
$$\sum_{t=0}^{\infty} \gamma^t \mathcal{R}(s_t, a_t)$$

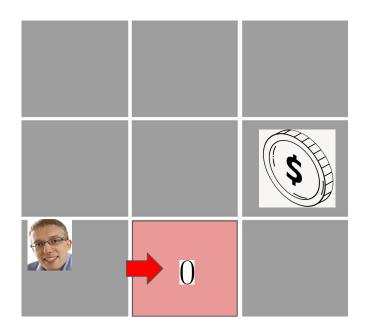
where:

- $-\mathcal{R}(s_t, a_t)$ is the reward obtained at time step t for taking action a_t in state s_t .
- $-\gamma \in [0,1]$ is the discount factor that determines the importance of future rewards.

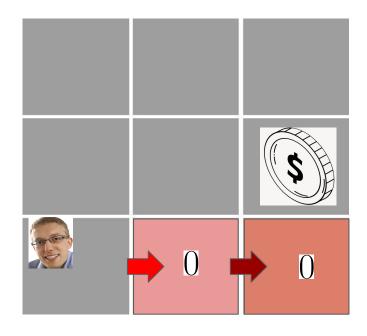
Discounting Example

Kilian gets reward r for finding the coin

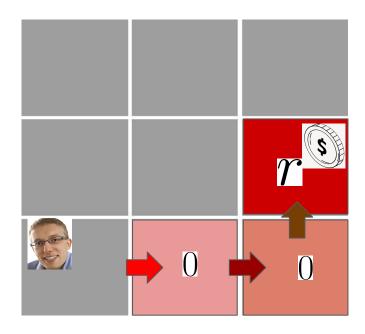




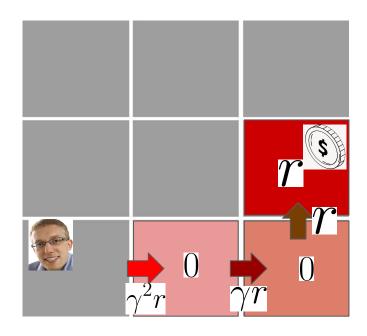
$$\sum_{t=0}^{\infty} \gamma^t \mathcal{R}(s_t, a_t)$$



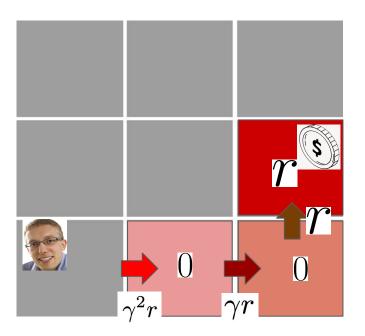
$$\sum_{t=0}^{\infty} \gamma^t \mathcal{R}(s_t, a_t)$$

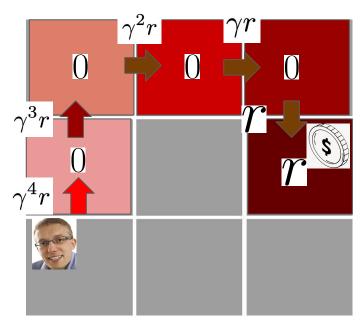


$$\sum_{t=0}^{\infty} \gamma^t \mathcal{R}(s_t, a_t)$$



$$\sum_{t=0}^{\infty} \gamma^t \mathcal{R}(s_t, a_t)$$





Policy

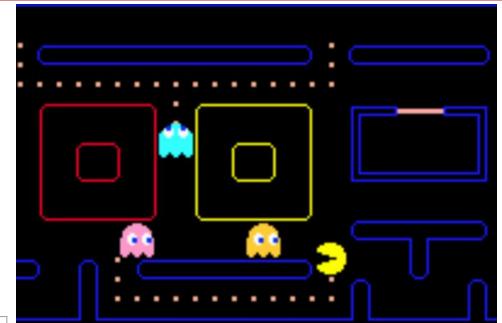
- Different types of policies:
 - Deterministic policy: Maps each state to a single action.
 - Stochastic policy: Defines a probability distribution over actions for each state.

Pacman Example

Discussion: Identify the **state space S** and **action space A** of Pacman

Is the **policy** below good (based on our current location)?
What would a good policy look like?

Move	Probability	
Left	.85	
Right	.00	
Up	.15	
Down	.00	



Value Function

- The value function $V^{\pi}(s)$ represents the expected cumulative reward an agent can obtain starting from state s and following policy π .
- Mathematically, the value function is defined as:

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t \mathcal{R}(s_t, a_t) \mid s_0 = s, \pi\right]$$

- $-\gamma \in [0,1]$: Discount factor that balances immediate and future rewards.
- $-\mathcal{R}(s_t, a_t)$: Reward obtained at time step t for taking action a_t in state s_t .
- $-\pi$: Policy that maps states to actions.

Value Function

• Mathematically, the value function is defined as:

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t \mathcal{R}(s_t, a_t) \mid s_0 = s, \pi
ight]$$

- The optimal value function $V^*(s)$ represents the maximum expected cumulative reward achievable from state s by following the optimal policy π^* .
- The optimal value function is defined as:

$$V^*(s) = \max_{\pi} V^*\pi(s)$$

Action-Value (Q) Function

• Mathematically, the value function is defined as:

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t \mathcal{R}(s_t, a_t) \mid s_0 = s, \pi
ight]$$

- Can we use a value function to choose actions?
 - Optimal action: $\operatorname{arg\,max}_a \left[r(s, a) + \gamma \mathbb{E}_{p(s'|s,a)} \left[V^{\pi}(s') \right] \right]$
 - Problem: Requires taking the expectation with respect to the environment's dynamics, which we don't have direct access to!

Action-Value (Q) Function

- The action-value function, or Q-function, represents the expected return if you take action a in state s and then follow policy π .
- Defined as:

$$Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k R_{k+1} \mid s_0 = s, a_0 = a\right]$$

• Optimal action using Q-function:

$$\argmax_a Q^\pi(s,a)$$

Action-Value (Q) Function

• Relationship between value function and Q-function:

$$V^{\pi}(s) = \sum_{a} \pi(a \mid s) Q^{\pi}(s, a)$$

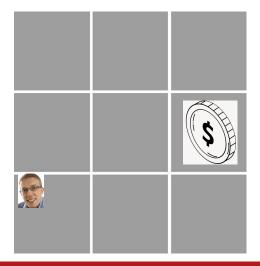
• Can recover the value function from the Q-function by marginalizing over all possible actions.

Q-Table

- In Q-Learning, the Q-function is typically represented using a Q-table.
 - A table that stores the estimated Q-values for state-action pairs.
- Q-table has dimensions $|S| \times |A|$, where:
 - $-|\mathcal{S}|$ is the number of states in the state space.
 - $|\mathcal{A}|$ is the number of actions in the action space.
- The Q-table is initialized with arbitrary values and iteratively updated based on the agent's experiences during the learning process.

Q-Table Example

- 9 states and 4 actions
- Initialize valid (s,a) tuples to 0s



Up	Down	Right	Left
0	_	0	-
0	-	0	0
0	-	-	0
0	0	0	-
0	0	0	0
0	0	-	0
_	0	0	-
_	0	0	0
_	0	-	0
	0 0 0 0	0 - 0 - 0 0 0 0 0 0 0 0 - 0	0 - 0 0 - 0 0 - - 0 0 0 0 0 0 0 0 - - 0 0 - 0 0

Bellman Equation

$$Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k R_{k+1} \mid s_0 = s, a_0 = a
ight]$$

- The Bellman equation for Q-Learning provides a recursive relationship between the Q-value of a state-action pair and the Q-values of the successor state-action pairs.
- Bellman equation for the optimal action-value function $Q^*(s, a)$:

$$Q^*(s, a) = \mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}(s'|s, a) \max_{a' \in \mathcal{A}} Q^*(s', a')$$

• Optimal Q-value $Q^*(s, a)$ can be expressed in terms of the immediate reward and the discounted maximum Q-value of the next state.

$$Q^*(s, a) = \mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}(s'|s, a) \max_{a' \in \mathcal{A}} Q^*(s', a')$$

Bellman Error

- The Bellman error measures the difference between the current Q-value estimate and the target Q-value based on the recursive Bellman equation.
- Bellman error for a state-action pair (s, a):

$$\delta = \mathcal{R}(s, a) + \gamma \max_{a'} Q(s', a') - Q(s, a)$$

- The Bellman error represents the discrepancy between the current Q-value estimate and the target Q-value derived from the recursive Bellman equation.
 - Goal is to minimize the Bellman error and bring the current Q-value estimates closer to the optimal Q-values.

Q-Learning Update Rule

• The Q-Learning update rule adjusts the Q-value estimate towards the target Q-value using the Bellman error:

$$Q(s, a) \leftarrow Q(s, a) + \alpha \delta$$

where:

- $-\alpha$: Learning rate that controls the step size of the update.
- $-\delta$: Bellman error.

Q-Learning Update Rule

$$Q^*(s, a) = \mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}(s'|s, a) \max_{a' \in \mathcal{A}} Q^*(s', a')$$

• The Q-Learning update rule can be expanded as:

$$Q(s, a) \leftarrow Q(s, a) + \alpha \left[\mathcal{R}(s, a) + \gamma \max_{a'} Q(s', a') - Q(s, a) \right]$$

- The update rule adjusts the current Q-value estimate Q(s,a) in the direction of the target Q-value based on the Bellman error.
 - Q-values are gradually improved and converge towards the optimal Q-function.

Q-Learning Algorithm

```
Initialize Q(s, a), \forall s \in S, a \in A(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
```

Chasse 4 from Susing policy

Choose A from S using policy derived from Q (e.g., ε -greedy) Take action A, observe R, S'

 $Q(S,A) \leftarrow Q(S,A) + \alpha [R + \gamma \max_a Q(S',a) - Q(S,A)]$ $S \leftarrow S';$

until S is terminal

Exploration-Exploitation Tradeoff

$$Q(s,a) \leftarrow Q(s,a) + \alpha \delta$$

- Q-Learning only learns about the states and actions it visits.
- Exploration-exploitation tradeoff: The agent should sometimes pick suboptimal actions to visit new states and actions.
- Balancing exploration and exploitation is crucial for effective learning:
 - Exploration: Trying new actions to gather information about the environment.
 - Exploitation: Using the current knowledge to make the best decisions based on the learned Q-values.

Exploration-Exploitation Tradeoff

$$Q(s,a) \leftarrow Q(s,a) + \alpha \delta$$

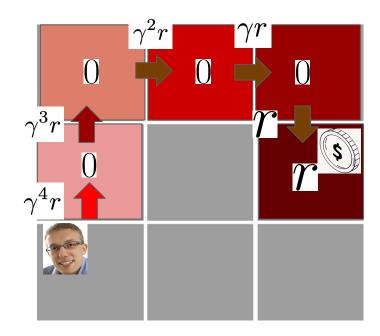
- Insufficient exploration may lead to suboptimal policies and getting stuck in local optima.
- Too much exploration may slow down the learning process and hinder the agent from converging to the optimal policy.
- Finding the right balance between exploration and exploitation is essential for efficient and effective learning in Q-Learning.

Exploration-Exploitation TradeOff

$\sum_{t=0}^{\infty} \gamma^t \mathcal{R}(s_t, a_t)$

No Exploration:

- Begin by making random moves
- Find some way to obtain reward
- Stick with that solution



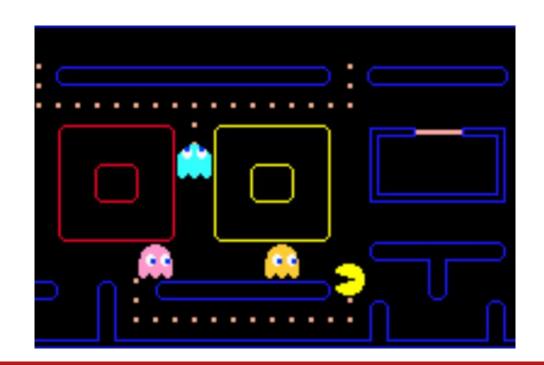
ε-Greedy Policy

- Simple solution to balance exploration and exploitation: ϵ -greedy policy
- ϵ -greedy policy:
 - With probability 1ϵ , choose the optimal action according to the learned Q-values.
 - With probability ϵ , choose a random action.
- The ϵ -greedy policy ensures that the agent explores the environment while still exploiting the learned knowledge.
- Despite its simplicity, ϵ -greedy is still widely used in practice and often yields good results.

Discussion: Calculate the size of the State Space for Pacman in the following environment

Assume there are 100 positions, 4 ghosts, and pacman

(Can ignore pellets for simplicity)



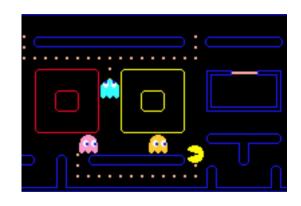
Discussion: Calculate the size of the State Space for Pacman in the following environment

4 ghosts and Pacman

$$100 \cdot 100 \cdot 100 \cdot 100 \cdot 100 = 10^{10}$$

What if we consider pellets? Assuming there are 100 pellets:

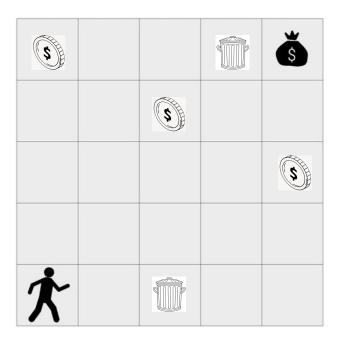
$$2^{100} \cdot 10^{10} > 10^{40}$$



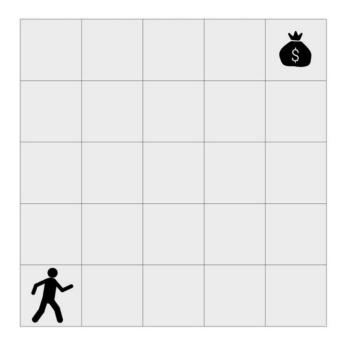
What are the issues with Q Learning?

- As the state/action space increases, the likelihood of reaching a specific state and action decreases
- Continuous spaces are impossible to model with a table

Dense Rewards



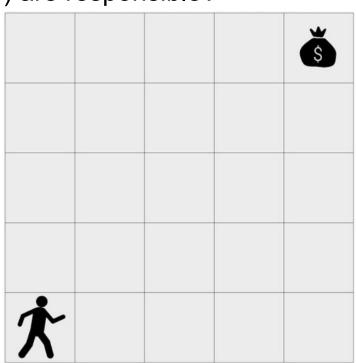
Sparse Rewards



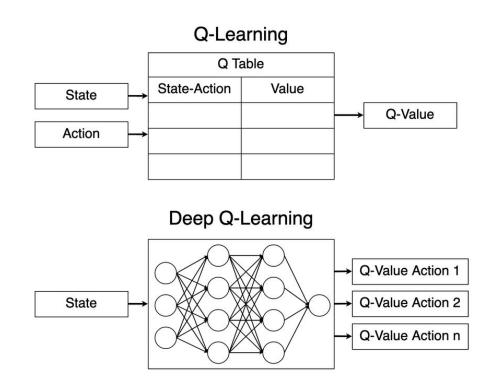
Discussion: if a long sequence of actions results in just one reward, how do you know which states/action(s) are responsible?

How do you learn a good policy in the presence of sparse rewards?

- In general, credit attribution is hard!
- Can introduce intermediate rewards
 - E.g. distance to money
 - Not always possible!
- Hard to learn with sparse rewards



Next Time: How can we use deep learning to improve Q-Learning?



Recap

- Markov Decision Processes (MDPs)
 - Framework for modeling decision-making in situations where outcomes are partly random and partly under the control of a decision maker
- Value function
 - Expected cumulative reward from state s following some policy
- Action-value (Q) function
 - Expected cumulative reward if you take action a in state s and follow some policy
- Q-Learning iteratively updates a Q-Table to minimize the Bellman Error
 - Need to balance exploration-exploitation tradeoff
 - Often use epsilon-greedy policy for exploration