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ML/AI Courses at Cornell

CS 4780:
CS 4756:
CS 4670:
CS 4744
CS 4789:
CS 4775:
CS 4740:

Introduction to Machine Learning
Robot Learning

Introduction to Computer Vision
Computational Linguistics |

Introduction to Reinforcement Learning
Computational Genetics and Genomics

Natural Language Processing
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Logistics
e All lectures will be held in person at Stocking Hall 202

e Lectures will be on Tuesdays and Thursdays from 2:55 to 4:10pm

e Aiming to have a small class

o If you are on the waitlist, come talk to us after class

e Please participate!!
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Logistics

Course website: https://www.cs.cornell.edu/courses/cs4782/2024sp/

o Tentative schedule, homework policies, grading policies, etc. are on the course page

Office hours are on the course website!

We also have a Canvas page
o Links to the Ed Discussion

No laptops/mobiles/smart devices and other devices in class please

Notes will be printed
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Grading

e Homework (30%)

o There will be written assignments and coding projects
m  Google Cloud Credits for compute!

o  We recommend doing them in pairs!

o 2-slip days for every assignment

e Mid-term exam (30%)

o  Will be similar to the homework assignments
e Project (20%)

o Goal: familiarize yourself with deep learning libraries

o Implement a method from a recent research paper and reproduce their results
e Participation (20%)

o Attend classes!

o Engage in class discussions

o At the end of each module provide feedback
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Academic Integrity

e Do not disclose exact solutions to members from other groups for
assignments

o High-level discussion is allowed

e Cite any external sources

e You can use ChatGPT/BARD/other Al assistants

o But add a note explaining what you used it for and how you used it
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Course Obijectives

By the end of the course you will be able to...

1. Design, train, and evaluate deep neural networks

2. Apply deep learning techniques to solve real-world problems in computer
vision, natural language processing, and other complex domains

3. Critically evaluate pros/cons of different model architectures

Read and understand research in deep learning

5. Understand the core design principles behind leading deep learning systems
like GPT-4, DALL-E 2/3, and Stable Diffusion

B
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Training Neural Networks

e Optimization algorithms - gradient
descent, SGD, AdaGrad, Adam

e Learning rate scheduling
e Hyperparameter Optimization

e Regularization
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https://towardsdatascience.com/an-introduction-to-surrogate-optimization-int
uition-illustration-case-study-and-the-code-5d9364aed51b
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Computer Vision

e Convolutional neural networks

e Different convolutional architectures - vanilla CNN, LeNet, ResNet,
DenseNets
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https://www.mdpi.com/1099-4300/19/6/242

CVPR 2018 WAD Video Segmentation
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Natural Language Processing

e \Word Embeddings SalENlliE e e
e Recurrent Neural Networks

/ Input: Did you see that Google just hired an eloquent
- RNNs/ LSTMs whale for their TPU team? It showed them how to

communicate between two different pods!

e Attention and Transformers

e Large Language Models (LLMs)
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Natural Language Processing

e Word Embeddings Explaining a Joke

e Recurrent Neural Networks s \
/ Input: Did you see that Google just hired an eloquent
- RNNS/ LSTMS whale for their TPU team? It showed them how to
) communicate between two different pods!
e Attention and Transformers Model Output: TPUs are a type of computer chip that

Google uses for deep learning. A "pod" is a group of
PY Large Language Models (LLMS) TPUs. A "pod" is also a group of whales. The joke is
that the whale is able to communicate between two
groups of whales, but the speaker is pretending that
the whale is able to communicate between two groups of

QPUS . /

https://arxiv.org/abs/2204.02311
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Natural Language Processing

e \Word Embeddings

1000

e Recurrent Neural Networks
- RNNs/ LSTMs

GPT-3 (175B)

100 Megatron-Turing NLG (530B)

Megatron-LM (8.3B)

Turing-NLG (17.2B)
10

e Attention and Transformers

T5 (11B)

GPT-2 (1.5B)

e Large Language Models (LLMs)

Model Size (in billions of parameters)

- BERT-Large (340M)
01 ¢

ELMo (94M)

0.01
2018 2019 2020 2021 2022

https://huggingface.co/blog/large-language-models
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Graph Neural Networks

e Neural networks for data represented as graphs!
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https://blogs.nvidia.com/blog/what-are-graph-neural-networks/
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Modern Vision Networks

e Vision Transformers (ViTs)

e \Vision Pre-Training
o  (Supervised, Self-supervised)

e Vision-Language Models

Cornell

Unsplash () Movies

https://huggingface.co/spaces/vivien/clip
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Real or Fake?

https://www.nytimes.com/interactive/2024/01/19/technology/artificial-intelligence-image-generators-faces-quiz.html




Cornell Bowers CiIS
Real or Fake?

https://www.nytimes.com/interactive/2024/01/19/technology/artificial-intelligence-image-generators-faces-quiz.html
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Generative Models

® U-Nets

e \Variational Autoencoders (VAEs)
e Generative Adversarial Networks (GANSs)
e Diffusion Models

e Multi-Modal Diffusion

T T T




Cornell Bowers C1S
Reinforcement Learning

Technique for an agent to learn in an interactive environment by testing different
actions and obtaining feedback from its experiences.

Markov Decision Process
Q-learning/Deep Q-learning
Policy Gradients
Exploration strategies

RL from Human Feedback
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Al in Human Society

https://builtin.com/articles/ai-lawsuits-and-regulations
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ARTIFICIAL INTELLIGENCE

A program that can sense, reason,
act, and adapt

MACHINE LEARNING

Algorithms whose performance improve
as they are exposed to more data over time

DEEP
LEARNING

Subset of machine learning in
which multilayered neural
networks learn from
vast amounts of data
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AlphaGo

& GitHub Copilot

Your Al pair
programmer
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McCulloch-Pitts Neuron

Computational model of a neuron that was proposed by Warren MuCulloch (neuroscientist) and
Walter Pitts (logician) in 1943.

ye{0,1}

Tn € {() . 1}

https://towardsdatascience.com/mcculloch-pitts-model-5fdf65ac5dd 1
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Perceptron (1957)

e Linear classifier, predecessor to Neural

Network
e Trained with the perceptron update rule

e Invented @ Cornell University

o First task: Recognize the Cornell “C” Logo
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Multi-layer neural networks

input (independenrt) variables
e Multi-Layer Perceptron, Rosenblatt (around
1965)

e Alexey Grigoryevich lvakhnenko 1965 Group
Method of Data Handling (GMDH)

o 1971 Eight Layer Neural Nets with skip connections!

output (dependent) variable
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Al Winter (1974-1980)

e (1969) Minsky & Papert “killed” Al
e Burst huge expectation bubble
e Speech understanding / translation fails

e UK and US stop funding Al research

OR

XOR

https://www.pyimagesearch.com/2021/05/06/implementing-the-perceptron-neur

al-network-with-python/
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Backprop

e 1960 Henry J. Kelly Initial formulation in control
theory (rocket science)

e 1962 Stuart Dreyfuss (use of chain rule)

e 1979 Seppo Linnainman (modern backdrop with
automatic differentiation [not in context of neural
nets])

e 1982 Paul Werbos proposes backprop for
artificial Neural Networks in PhD thesis

e 1986 Rumelhart, Hinton, Williams (coin the term
“back-propagation”) make the algorithm popular
(published in Nature)

Seppo Linnainmas

Gradient Theory of Optimal
Flight Paths

NEMATICAL ANALYSIS AND

APPLICATIONS 5, 30-45 (1962)

The Numerical Solution of Variational Problems

STUART DREYFUS

ALGORITMIN KUMULATIIVINEN PYORISTYSVIRHE

YK T TS T bbbl

Pro gradu-

Submitted by Richard Bellman

1. INTRODUCTION

Learning representations
by back-propagating errors

David E. Rumelhart*, Geoffrey E. Hintont
& Ronald J. Williams*

* Institute for Cognitive Science, C-015, University of California,
San Diego, La Jolla, California 92093, USA

1 Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, Philadelphia 15213, USA

We describe a new I p d back-prop i for
networks of neurone-like units. The procedure repeatedly adjusts
the weights of the connections in the network so as to minimize a
measure of the difference between the actual output vector of the
net and the desired output vector. As a result of the weight
adjustments, internal ‘hidden’ units which are not part of the input
or output come to represent important features of the task domain,
and the regularities in the task are captured by the interactions
of these units. The ability to create useful new features distin-
guishes back-propagation from enrlief, simpler methods such as
the percep gence procedure .

There have been many attempts to design self-organizing
neural networks. The aim is to find a powerful synaptic

e derived various conditions that must
v solution of a variational problem. In [1]
problem of Lagrange. In [2] we studied
ted the conditions implied by the intro-
u either the shape of the solution curve
the region in which it could lic (state
we shall discuss the numerical solution
conventional and inequality-constrained
2at, until recently, has been the usual
gradient technique that has proved very
+his known to a few practitioners of the
Bryson [4]. Our derivation, using essen-
iques of dynamic programming that we
rew and simple. We conclude this paper
1 sol riant of the classical
quality constraint has

still known.
is familiar with such dynamic program-
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ConvNets

e 1979 Kunihiko Fukushima invents

Neocognitron
o Heavily inspired by human Visual Cortex
o Alternates between Simple Cells / Complex Cells
o Unsupervised \

e 1986 Yann LeCun introduces BackProp to
ConvNets for Handwritten Digits (creates g O e enes

MNIST) /%J —.
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Recurrent Neural Nets

e 1982 John Hopfield “Hopfield Networks”

e 1991 Sepp Hochreiter formulates Vanishing
Gradient Problem

e 1997 S. Hochreiter and Jurgen Schmidhuber
publish “Long Short-Term Memory” (LSTM)

o https://web.archive.ora/web/20231216143334/https://
people.idsia.ch/~juergen/ai-priority-disputes.html

Proc. Natl. Acad, Sci. USA
Vol. 79, pp. 2554-2558, April 1982
Biophysics

Neural networks and physical systems with emergent collective

computational abilities

(associative memory,parallel processing/

J. J. HoPFIELD

ble memory/fail-soft devices)

Division of Chemistry and Biology, California Institute of Technology, Pasadena, California 91125; and Bell Laboratories, Murray Hill, New Jersey 07974

Contributed by John ] . Hopfield, January 15, 1982

ABSTRACT ~ Computational properties of use to biological or-
ganisms or to the construction of computers can emerge as col-
lective properties of systems having  large number of simple
tent-addressable memory is described by an appropriate plme
space flow of the state of a system. A model of such a system is
given, based on aspects of neurobiology but readily adapted to in-
tegrated circuits. The collective properties of this model produce
a content-addressable memory which correctly yields an entire
‘memory from any subpart of sufficient size. The algorithm for the
time evolution of the state of the system is based on asynchronous
parallel processing. Additional emergpnt collective pmp:rbes in-
famili

calized content-addressable memory or izer using ex-
tensive asynchronous parallel processing.
The general content-addressable memory of a physical
system
Suppose that an item stored in memory is “H. A. Kramers &
G. H. Wannier Phys. Rev. 60, 252 (1941).” A general content-
addressable memory would be capable of retrieving this entire
memory item on the basis of suffcient partial information. The
input “& Wannier, (1941)” might suffice. An ideal memory
could deal with errors and retrieve this reference even from the
input “Vannier, (1941)". In computers, only relatively simple
tadd

clude some capacity for arity forms of
uie;am.num, error wrrectwn .nd hme sequence retention.
ils of the
modeling or the failure uf mdmd\n.l devnoes
Given the dynamical electrochemical of and o

ble memory have been made in hard-
ware (10, 11). Sophisticated ideas like error correction in ac-
cessing information are usually introduced as software (10).
There are classes of physical systems whose spontaneous be-
havor can be used a5  form of general(and eror-corecting)

their interconnections (synapses), we readlly understand schemes
that use a few neurons to obtain elementary useful biological
behavior (1-3). Our understanding of such simple circuits in
electronics allows us to plan larger and more complex circuits
which are essential to large computers. Because evolution has
no such plan, it becomes relevant to ask whether the ability of
large collections of neurons to perform “computational” tasks
may in part be a spontaneous collective consequence of having
a large number of interacting simple neurons.

In physical systems made from a large number of simple ele-
ments, interactions among large numbers of elementary com-
ponents yield collective phenomena such as the stable magnetic
orientations and domains in a magnetic system or the vortex
patterns in fluid flow. Do analogous collective phenomena in

memory. Consider the time evolution of
a physlcal system that can be described by a set of general co-
ordinates. A point in state space then represents the instanta-
neous condition of the system. This state space may be either
continuous or discrete (as in the case of N Ising spins).

The equations of motion of the system describe a flow in state
space. Various classes of flow patterns are possible, but the sys-
tems of use for memory particularly include those that flow to-
‘ward locally stable points from anywhere within regions around
those points. A particle with frictional damping moving in a
potential well with two mlmma exempllfies snch a dynamxcs

If the flow is not the
is more complicated. In the two-well problems above, if the
frictional force is characterized by a temperature, it must also
produce a random driving force. The limit points become small
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Universal Approximation

e 1989 George Cybenko proofs universal
approximation of single hidden-layer
neural networks

e Also yields wide-spread believe that more
than one layer is unnecessary

Math. Control Signals Systems (1989) 2 303-314 Mathematics of Control
)

Signals, and Systems
© 1989 Springer-Verlag New York Inc.

Approximation by Superpositions of a Sigmoidal Function*

G. Cybenkot

Abstract. In this paper we demonstrate that finite linear combinations of com-
positions of a fixed, univariate function and a set of affine functionals can uniformly
approximate any continuous function of n real variables with support in the unit
hypercube; only mild conditions are imposed on the univariate function. Our
results settle an open question about representability in the class of single hidden
layer neural networks. In particular, we show that arbitrary decision regions can

bitrarily well i d by i rward neural networks with
only asingle internal, hidden layer and any continuous sigmoidal nonlinearity. The
paper discusses approximation properties of other possible types of nonlinearities
that might be implemented by artificial neural networks.

Key words. Neural networks, Approximation, Completeness.

1. Introduction

A number of diverse application areas are concerned with the representation of
general functions of an n-dimensional real variable, x € R", by finite linear combina-
tions of the form

N
}Z ao(y]x + 6)), m
=1
where y; € R" and «;, 6 € R are fixed. (y" is the transpose of y so that y"x is the inner

product of y and x.) Here the univariate function o depends heavily on the context
of the application. Our major concern is with so-called sigmoidal ¢’s:

o) 1 as t— +oo,
-
0 as t—» —oo.

Snch fanctinne arice naturallv in nenral netwark thearv ac the activation fanction




Cornell Bowers C1IS

Summer of SVMs 1995-2008

1993-1995 Corinna Cortes, Isabella
Guyon, Vladimir Vapnik invent Support
Vector Machines

Mid 2000s ICML and NeuRIPS (NIPS)
exclusively papers on non-neural

network approaches
o Mostly SVM, Graphical Models, Boosting
o These algorithms are more efficient, easier
to train / modify, have strong theoretical
guarantees / frameworks
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Neural Network Resurgence (2010s)

e Relentless effort by Hinton, Bengio, LeCun: Kept pushing Neural Nets when
they were not cool - but did not join other communities (e.g. ICANN)

e Invent Deep Belief Nets in effort to attract experts in Graphical Models
(mimics Graphical Models)

e Rename Neural Nets as “Deep Learning” (in effort to brand SVMs as
“shallow”)
Create ICLR as a venue to accept research on Neural Nets

e 2007 NeuRIPS Workshop on Deep Learning (rejected, changed to Hinton’s
60th birthday party)

e 2009 Fei-Fei Li creates ImageNet (after Caltech 4, 101, 256)
2012 Hinton’s deep network research creates AlexNet
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The Era of Scale (2020-Present)

e GPT-3 introduced in 2020

“Language Models are Few-Shot Learners”

e Stable Diffusion released in 2022

LANGUAGE MODEL SIZES TO MAR/2023
13B @

108 BLOOM
BLOOMZ
138 1768

https://stability.ai/stable-image

aaaaaaaaa

& LifeArchitect.ai/models
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Public Perception of Al/ML
Al/ML winters

A .
Foundation
Models

, (GPT-3)
__,? Al Excitement Fueled by A* Search ?777?
< Backprop based NNs
— Deep Learning
8. (ImageNet)
o .
] Overpromise
g Extreme Expectations Machine Learning
=< (Kernel Methods, SVMs)

>

1970 1980 1990 2000 2010 2020

1st Al Winter 2nd Al Winter

https://medium.com/ersiliaio/beyond-the-hype-of-ai-ml-in-biomedicine-76c198c07467
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Task: Predict whether it is winter from an image.
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Thanks!

e Ifyou have received a permission number
o Enroll today if you'd like to take the course
e We will start sending out permission numbers to people on the waitlist later this

week

e If you have not received a permission number and want to enroll

o Come talk to us after class




