
The Perceptron Algorithm

 



Announcements

1. P2 (Perceptron) will be out tmr
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Recap on PCA

T/F: we need to center the dataset before we run PCA

Q: How to pick the parameter K in PCA? 



Perceptron, 1957

Predecessor of deep networks.


Separating two classes of objects using a 
linear threshold classifier.Frank Rosenblatt


@ Cornell!



Published: July 8, 1958
Copyright © The New York Times

New Navy Device Learns by Doing 
- The New York Times (July 8, 1958)


“Later perceptrons will be able to 
recognize people and call out their 
names and instantly translate speech in 
one language to speech or writing in 
another language, it was predicted.”

Perceptron, 1957

https://news.cornell.edu/stories/2019/09/professors-
perceptron-paved-way-ai-60-years-too-soon



Today

Objective: learn our first (binary) classification algorithm 
and understand why it works
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2. Algorithm

3. Proof of why it works

1. Linear binary Classifier
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Linear classifier

Binary classification setting:  x ∈ ℝd, y = {−1, + 1}

+
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Hyperplane H = {x : w⊤x + b = 0}

w

: weight vector, wlog assume  w ∥w∥2 = 1
: bias term; determines the 

distance of the hyperplane to origin
b |b |



Linear classifier

Binary classification setting:  x ∈ ℝd, y = {−1, + 1}

A Hyperplane defines a binary linear classifier

+
+-

- w

sign(w⊤x + b)

|b |



Setting
We often assume data  is linearly separable, {xi, yi}n

i=1
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Setting
We often assume data  is linearly separable, {xi, yi}n

i=1

+
+-

- w
|b |

i.e., , such that   ∃w⋆, b⋆

sign((w⋆)⊤xi + b⋆) = sign(yi), ∀i

Or equivalently, 

yi((w⋆)⊤xi + b⋆) > 0,∀i



Linear classifier
Absorbing the bias term into the feature vector

w⊤x + b = [w
b]

⊤
[x
1]



Linear classifier
Absorbing the bias term into the feature vector

w⊤x + b = [w
b]

⊤
[x
1]

Throughout the semester, we will assume feature  in default 
contains the constant 1

x
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The learning protocol

Consider the online learning setting where every iteration t, a pair  shows up(xt, yt)

For t = 0 → ∞
New feature  shows upxt
Alg makes a prediction ̂yt = sign(w⊤

t xt)
Check if ̂yt = yt

Alg updates wt+1

Goal: make # of mistakes  as small as possible 
∞

∑
t=0

1( ̂yt ≠ yt)

Perceptron tells us how to do this update!
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The Algorithm

Initialize w0 = 0
For t = 0 → ∞

Alg updates wt+1 = wt + 1( ̂yt ≠ yt)ytxt

Case 1: , ̂yt = yt wt+1 = wt

Case 2:  (e.g., )̂yt ≠ yt ̂yt = − 1,yt = 1

w⊤
t+1xt − w⊤

t xt = (x⊤
t xt)

Value of  is increased 

(the correct progress)

w⊤
t+1xt

Q: what happens when 
̂yt = 1,yt = − 1

New feature  shows upxt
Alg makes a prediction ̂yt = sign(w⊤

t xt)
Check if ̂yt = yt
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A Geometric explanation 
When we make a mistake, i.e.,  (e.g., )yt(w⊤

t xt) < 0 yt = − 1, w⊤
t xt > 0

wt

xt

w⋆

ytxt wt+1
We should track how the  is changing: cos(θt)

cos(θt) = w⊤
t w⋆

∥wt∥2

Q: What does  look like? w⋆
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Main theorem
Theorem of Perceptron: 

 

Assume . If there exists  with , such that 

, 

∥xt∥2 ≤ 1,∀t w⋆ ∥w⋆∥2 = 1

yt(x⊤
t w⋆) ≥ γ > 0,∀t

then:
∞

∑
t=0

1( ̂yt ≠ yt) ≤ 1/γ2
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Proof of the theorem

wt

xt

w⋆

ytxt wt+1

cos(θt) = w⊤
t w⋆

∥wt∥2

Assume we make a mistake at , track how the 
denominator and numerator change

xt
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Proof of the theorem

wt

xt

w⋆

ytxt wt+1 1. Track w⊤
t w⋆

w⊤
t+1w⋆ = (wt + ytxt)⊤w⋆

= w⊤
t w⋆ + ytx⊤

t w⋆

≥ w⊤
t w⋆ + γ

Whenever we make a mistake,  at 
least increased by 

w⊤
t w⋆

γ



Proof of the theorem

wt

xt

w⋆

ytxt wt+1 2. Track w⊤
t wt

w⊤
t+1wt+1 = (wt + ytxt)⊤(wt + ytxt)

= w⊤
t wt + 2w⊤

t (xtyt) + x⊤
t xt

≤ w⊤
t wt + 1

Discuss this derivation in small group for 
5 minutes!
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Proof of the theorem

wt

xt

w⋆

ytxt wt+1
3. What is  if we have 

made M mistakes?
cos(θt) = w⊤

t w⋆/ w⊤
t wt

After make M mistakes: 

w⊤
t w⋆ ≥ Mγ

w⊤
t wt ≤ M

1 ≥ cos(θt) ≥ (Mγ)/ M = Mγ

⇒ M ≤ 1/γ2



Summary

The Perceptron algorithm: 

1. Binary classification algorithm, runs in online mode, makes update when makes a mistake

2. Total # of mistakes is bounded by a constant ( )1/γ2

(See lecture note for how to apply Perceptron on a static dataset)


