The Perceptron Algorithm

Announcements

1. P2 (Perceptron) will be out tmr

Recap on PCA

T/F: we need to center the dataset before we run PCA

Recap on PCA

T/F: we need to center the dataset before we run PCA

Q: How to pick the parameter K in PCA?

$$
X_{x}^{\top}=U \wedge U^{\top}
$$

Frank Rosenblatt
@ Cornell!

Perceptron, 1957

Predecessor of deep networks.

Separating two classes of objects using a linear threshold classifier.

Perceptron, 1957

New Navy Device Learns by Doing

- The New York Times (July 8, 1958)
"Later perceptrons will be able to recognize people and call out their names and instantly translate speech in one language to speech or writing in another language, it was predicted."
https://news.cornell.edu/stories/2019/09/professors-perceptron-paved-way-ai-60-years-too-soon

Today

Objective: learn our first (binary) classification algorithm and understand why it works

Outline

1. Linear binary Classifier
2. Algorithm
3. Proof of why it works

Linear classifier

Binary classification setting: $x \in \mathbb{R}^{d}, y=\{-1,+1\}$

Linear classifier

Binary classification setting: $x \in \mathbb{R}^{d}, y=\{-1,+1\}$

Linear classifier

Binary classification setting: $x \in \mathbb{R}^{d}, y=\{-1,+1\}$

Linear classifier

Binary classification setting: $x \in \mathbb{R}^{d}, y=\{-1,+1\}$

w : weight vector, wlog assume $\|w\|_{2}=1$
$b: \notin$ bias term; $|b|$ determines the distance of the hyperplane to origin

Linear classifier

Binary classification setting: $x \in \mathbb{R}^{d}, y=\{-1,+1\}$

Setting

We often assume data $\left\{x_{i}, y_{i}\right\}_{i=1}^{n}$ is linearly separable,

$$
\begin{aligned}
& \text { i.e., } \exists w^{\star}, b^{\star} \text {, such that } \\
& \operatorname{sign}\left(\left(w^{\star}\right)^{\top} x_{i}+b^{\star}\right)=\operatorname{sign}\left(y_{i}\right), \forall i
\end{aligned}
$$

Setting

We often assume data $\left\{x_{i}, y_{i}\right\}_{i=1}^{n}$ is linearly separable,

Linear classifier

Absorbing the bias term into the feature vector

Linear classifier

Absorbing the bias term into the feature vector

$$
w^{\top} x+b=\left[\begin{array}{l}
w \\
b
\end{array}\right]^{\top}\left[\begin{array}{l}
x \\
1
\end{array}\right]
$$

Throughout the semester, we will assume feature x in/default contains the constant 1

Outline

1. Linear binary Classifier
2. Algorithm
3. Proof of why it works

The learning protocol

Consider the online learning setting where every iteration t , a pair $\left(x_{t}, y_{t}\right)$ shows up
For $t=0 \rightarrow \infty$

The learning protocol

Consider the online learning setting where every iteration t , a pair $\left(x_{t}, y_{t}\right)$ shows up
For $t=0 \rightarrow \infty$
New feature x_{t} shows up

The learning protocol

Consider the online learning setting where every iteration t , a pair $\left(x_{t}, y_{t}\right)$ shows up

For $t=0 \rightarrow \infty$ $10{ }^{\top} \times$

New feature x_{t} shows up
Alg makes a prediction $\hat{y}_{t}=\operatorname{sign}\left(w_{t}^{\top} x_{t}\right)$

The learning protocol

Consider the online learning setting where every iteration t , a pair $\left(x_{t}, y_{t}\right)$ shows up

$$
\text { For } t=0 \rightarrow \infty
$$

New feature x_{t} shows up
Alg makes a prediction $\hat{y}_{t}=\operatorname{sign}\left(w_{t}^{\top} x_{t}\right)$
Check if $\hat{y}_{t}=y_{t}$

The learning protocol

Consider the online learning setting where every iteration t , a pair $\left(x_{t}, y_{t}\right)$ shows up

For $t=0 \rightarrow \infty$
New feature x_{t} shows up
Alg makes a prediction $\hat{y}_{t}=\operatorname{sign}\left(w_{t}^{\top} x_{t}\right)$
Check if $\hat{y}_{t}=y_{t}$
Alg updates w_{t+1}

The learning protocol

Consider the online learning setting where every iteration t , a pair $\left(x_{t}, y_{t}\right)$ shows up

For $t=0 \rightarrow \infty$
New feature x_{t} shows up
Alg makes a prediction $\hat{y}_{t}=\operatorname{sign}\left(w_{t}^{\top} x_{t}\right)$
Check if $\hat{y}_{t}=y_{t}$
Alg updates w_{t+1}
Goal: make \# of mistakes $\sum_{t=0}^{\infty} 1\left(\hat{y}_{t} \neq y_{t}\right)$ as small as possible

The learning protocol

Consider the online learning setting where every iteration t , a pair $\left(x_{t}, y_{t}\right)$ shows up
For $t=0 \rightarrow \infty$
New feature x_{t} shows up
Alg makes a prediction $\hat{y}_{t}=\operatorname{sign}\left(w_{t}^{\top} x_{t}\right)$
Check if $\hat{y}_{t}=y_{t}$
Alg updates w_{t+1}
Perceptron tells us how to do this update!

Goal: make \# of mistakes $\sum_{t=0}^{\infty} 1\left(\hat{y}_{t} \neq y_{t}\right)$ as small as possible

The Algorithm

Initialize $w_{0}=\mathbf{0}$

For $t=0 \rightarrow \infty$
New feature x_{t} shows up
Alg makes a prediction $\hat{y}_{t}=\operatorname{sign}\left(w_{t}^{\top} x_{t}\right)$
Check if $\hat{y}_{t}=y_{t}$

The Algorithm

$$
\begin{aligned}
& \text { Initialize } w_{0}=0 \text { Initidiza the zero vector } \\
& \text { For } t=0 \rightarrow \infty
\end{aligned}
$$

New feature x_{t} shows up
Alg makes a prediction $\hat{y}_{t}=\operatorname{sign}\left(w_{t}^{\top} x_{t}\right)$
Check if $\hat{y}_{t}=y_{t}$
Alg updates $w_{t+1}=w_{t}+\mathbf{1}\left(\hat{y}_{t} \neq y_{t}\right) y_{t} x_{t}$

The Algorithm

Initialize $w_{0}=\mathbf{0}$
For $t=0 \rightarrow \infty$
New feature x_{t} shows up
Alg makes a prediction $\hat{y}_{t}=\operatorname{sign}\left(w_{t}^{\top} x_{t}\right)$
Check if $\hat{y}_{t}=y_{t}$
Alg updates $w_{t+1}=w_{t}+\mathbf{1}\left(\hat{y}_{t} \neq y_{t}\right) y_{t} x_{t}$

Case 1: $\hat{y}_{t}=y_{t}, w_{t+1}=w_{t}$

The Algorithm

Initialize $w_{0}=\mathbf{0}$
For $t=0 \rightarrow \infty$
New feature x_{t} shows up
Alg makes a prediction $\hat{y}_{t}=\operatorname{sign}\left(w_{t}^{\top} x_{t}\right)$
Check if $\hat{y}_{t}=y_{t}$
Alg updates $w_{t+1}=w_{t}+\hat{1}\left(\hat{y}_{t} \neq y_{t}\right) y_{t} x_{t}$

Case 1: $\hat{y}_{t}=y_{t}, w_{t+1}=w_{t}$
Case 2: $\hat{y}_{t} \neq y_{t}$ (e.g., $\left.\hat{y}_{t}=-1, y_{t}=1\right)$

$$
W_{t+1}=W_{e}+y_{t} \cdot x_{t}
$$

$$
=w_{t}+x_{t}
$$

$\omega_{t}^{1} t_{t}$ was negative

The Algorithm

Initialize $w_{0}=\mathbf{0}$

$$
\text { For } t=0 \rightarrow \infty
$$

New feature x_{t} shows up
Alg makes a prediction $\hat{y}_{t}=\operatorname{sign}\left(w_{t}^{\top} x_{t}\right)$
Check if $\hat{y}_{t}=y_{t}$
Alg updates $w_{t+1}=w_{t}+\mathbf{1}\left(\hat{y}_{t} \neq y_{t}\right) y_{t} x_{t}$

Case 1: $\hat{y}_{t}=y_{t}, w_{t+1}=w_{t}$
Case 2: $\hat{y}_{t} \neq y_{t}$ (e.g., $\left.\hat{y}_{t}=-1, y_{t}=1\right)$

$$
w_{t+1}^{\top} x_{t}-w_{t}^{\top} x_{t}=\left(x_{t}^{\top} x_{t}\right)
$$

The Algorithm

Initialize $w_{0}=\mathbf{0}$
For $t=0 \rightarrow \infty$
New feature x_{t} shows up
Alg makes a prediction $\hat{y}_{t}=\operatorname{sign}\left(w_{t}^{\top} x_{t}\right)$
Check if $\hat{y}_{t}=y_{t}$
Alg updates $w_{t+1}=w_{t}+\mathbf{1}\left(\hat{y}_{t} \neq y_{t}\right) y_{t} x_{t}$

Case 1: $\hat{y}_{t}=y_{t}, w_{t+1}=w_{t}$
Case 2: $\hat{y}_{t} \neq y_{t}$ (e.g., $\left.\hat{y}_{t}=-1, y_{t}=1\right)$

$$
w_{t+1}^{\top} x_{t}-w_{t}^{\top} x_{t}=\left(x_{t}^{\top} x_{t}\right)
$$

Value of $w_{t+1}^{\top} x_{t}$ is increased (the correct progress)

The Algorithm

Initialize $w_{0}=\mathbf{0}$

$$
\text { For } t=0 \rightarrow \infty
$$

New feature x_{t} shows up
Alg makes a prediction $\hat{y}_{t}=\operatorname{sign}\left(w_{t}^{\top} x_{t}\right)$
Check if $\hat{y}_{t}=y_{t}$
Alg updates $w_{t+1}=w_{t}+\mathbf{1}\left(\hat{y}_{t} \neq y_{t}\right) y_{t} x_{t}$

Case 1: $\hat{y}_{t}=y_{t}, w_{t+1}=w_{t}$
Case 2: $\hat{y}_{t} \neq y_{t}$ (e.g., $\left.\hat{y}_{t}=-1, y_{t}=1\right)$

$$
w_{t+1}^{\top} x_{t}-w_{t}^{\top} x_{t}=\left(x_{t}^{\top} x_{t}\right)
$$

Value of $w_{t+1}^{\top} x_{t}$ is increased (the correct progress)

Q: what happens when

$$
\hat{y}_{t}=1, y_{t}=-1
$$

$$
W_{t+1}=W_{e}-\chi_{t}
$$

A Geometric explanation

$$
\text { When we make a mistake, i.e., } y_{t}\left(w_{t}^{\top} x_{t}\right)<0 \text { (e.g., } y_{t}=-1, w_{t}^{\top} x_{t}>0 \text {) }
$$

A Geometric explanation

When we make a mistake, i.e., $y_{t}\left(w_{t}^{\top} x_{t}\right)<0$ (e.g., $y_{t}=-1, w_{t}^{\top} x_{t}>0$)

Q: What does w^{\star} look like?

A Geometric explanation

When we make a mistake, i.e., $y_{t}\left(w_{t}^{\top} x_{t}\right)<0$ (e.g, $y_{t}=-1, w_{t}^{\top} x_{t}>0$)

Q: What does w^{\star} look like?

A Geometric explanation

When we make a mistake, i.e., $y_{t}\left(w_{t}^{\top} x_{t}\right)<0$ (e.g., $y_{t}=-1, w_{t}^{\top} x_{t}>0$)

Q: What does w^{\star} look like?

A Geometric explanation

When we make a mistake, i.e., $y_{t}\left(w_{t}^{\top} x_{t}\right)<0$ (e.g., $y_{t}=-1, w_{t}^{\top} x_{t}>0$)

Q: What does w^{\star} look like?

A Geometric explanation

When we make a mistake, i.e., $y_{t}\left(w_{t}^{\top} x_{t}\right)<0$ (e.g., $y_{t}=-1, w_{t}^{\top} x_{t}>0$)

We should track how the $\cos \left(\theta_{t}\right)$ is changing:

$$
\cos \left(\theta_{t}\right)=\frac{w_{t}^{\top} w^{\star}}{\left\|w_{t}\right\|_{2}}
$$

Q: What does w^{\star} look like?

Outline

1. Linear binary Classifier
2. Algorithm
3. Proof of why it works

Main theorem

Main theorem

Theorem of Perceptron:

Main theorem

Theorem of Perceptron:

Assume $\left\|x_{t}\right\|_{2} \leq 1, \forall t$. If there exists w^{\star} with $\left\|w^{\star}\right\|_{2}=1$, such that

$$
y_{t}\left(x_{t}^{\top} w^{\star}\right) \geq \gamma>0, \forall t
$$

then:

$$
\sum_{t=0}^{\infty} \mathbb{1}\left(\hat{y}_{t} \neq y_{t}\right) \leq 1 / \gamma^{2}
$$

Proof of the theorem

$$
\cos \left(\theta_{t}\right)=\frac{w_{t}^{\top} w^{\star}}{\left\|w_{t}\right\|_{2}}
$$

Proof of the theorem

Assume we make a mistake at x_{t}, track how the denominator and numerator change

Proof of the theorem

1. $\operatorname{Track} w_{t}^{\top} w^{\star}$

Proof of the theorem

Proof of the theorem

$$
\text { 1. Track } w_{t}^{\top} w^{\star}
$$

$$
w_{t+1}^{\top} w^{\star}=\left(w_{t}+y_{t} x_{t}\right)^{\top} w^{\star}
$$

$$
=w_{t}^{\top} w^{\star}+y_{t} x_{t}^{\top} w^{\star}
$$

Proof of the theorem

Proof of the theorem

1. $\operatorname{Track} w_{t}^{\top} w^{\star}$
$w_{t+1}^{\top} w^{\star}=\left(w_{t}+y_{t} x_{t}\right)^{\top} w^{\star}$
$=w_{t}^{\top} w^{\star}+y_{t} x_{t}^{\top} w^{\star}$
$\geq w_{t}^{\top} w^{\star}+\gamma$
Whenever we make a mistake, $w_{t}^{\top} w^{\star}$ at least increased by γ

Proof of the theorem

$$
\begin{aligned}
& \text { 2. Track } w_{t}^{\top} w_{t} \\
& w_{t+1}^{\top} w_{t+1}=\left(w_{t}+y_{t} x_{t}\right)^{\top}\left(w_{t}+y_{t} x_{t}\right)=1 \\
& =w_{t}^{\top} w_{t}+2 w_{t}^{\top}\left(x_{t} y_{t}\right)+x_{t}^{\top} x_{t}
\end{aligned}
$$

Discuss this derivation in small group for 5 minutes!

Proof of the theorem

Proof of the theorem

Proof of the theorem

Proof of the theorem

3. What is $\cos \left(\theta_{t}\right)=w_{t}^{\top} w^{\star} / \sqrt{w_{t}^{\top} w_{t}}$ if we have made M mistakes?

After make M mistakes:

$$
\begin{gathered}
w_{t}^{\top} w^{\star} \geq M \gamma \\
w_{t}^{\top} w_{t} \leq M
\end{gathered}
$$

$$
1 \geq \cos \left(\theta_{t}\right) \geq(M \gamma) / \sqrt{M}=\sqrt{M} \gamma
$$

Proof of the theorem

3. What is $\cos \left(\theta_{t}\right)=w_{t}^{\top} w^{\star} / \sqrt{w_{t}^{\top} w_{t}}$ if we have
made \mathbf{M} mistakes?

After make M mistakes:

$$
\begin{gathered}
w_{t}^{\top} w^{\star} \geq M \gamma \\
w_{t}^{\top} w_{t} \leq M \\
1 \geq \cos \left(\theta_{t}\right) \geq(M \gamma) / \sqrt{M}=\sqrt{M} \gamma \\
\Rightarrow M \leq 1 / \gamma^{2}
\end{gathered}
$$

Summary

The Perceptron algorithm:

1. Binary classification algorithm, runs in online mode, makes update when makes a mistake (See lecture note for how to apply Perceptron on a static dataset)
2. Total \# of mistakes is bounded by a constant $\left(1 / \gamma^{2}\right)$
