
Logistic Regression & convex
optimization

Announcements:

This week we will release P3 and HW3

Recap on Naive Bayes

NB is a generative model which models P(x, y)

P(y |x) ∝ P(y)P(x |y) = P(y)
d

∏
i=1

P(x[i] |y)

Conditional independent
assumption given label

Perceptron VS Gaussian Naive Bayes

Today

Logistic regression — a discriminative learning approach that
directly models for classificationP(y |x)

Outline for today

1. Logistic Regression

2. Convex optimization

3. Gradient Descent

Logistic Regression

Setting: binary classification , " = {xi, yi}n
i=1, (xi, yi) ∼ P

xi ∈ ℝd, yi ∈ {−1, + 1}

Logistic Regression

Setting: binary classification , " = {xi, yi}n
i=1, (xi, yi) ∼ P

xi ∈ ℝd, yi ∈ {−1, + 1}
(Note, we always assume contains a constant)x 1

Logistic Regression

Setting: binary classification , " = {xi, yi}n
i=1, (xi, yi) ∼ P

xi ∈ ℝd, yi ∈ {−1, + 1}
(Note, we always assume contains a constant)x 1

Logistic regression directly models P(y |x)

Logistic Regression

Setting: binary classification , " = {xi, yi}n
i=1, (xi, yi) ∼ P

xi ∈ ℝd, yi ∈ {−1, + 1}
(Note, we always assume contains a constant)x 1

Logistic regression directly models P(y |x)

P(y |x) = 1
1 + exp (−y(x⊤w⋆))

Logistic Regression

P(y |x) = 1
1 + exp (−y(x⊤w⋆))

Draw the Sigmoid function 1/(1 + exp(−Z))

1

0.5

Z

Logistic regression assumes:

Logistic Regression

P(y |x) = 1
1 + exp (−y(x⊤w⋆))

Draw the Sigmoid function 1/(1 + exp(−Z))

1

0.5

Z

Logistic regression assumes:

The model assigns higher prob to
y = sign(x⊤w⋆)

Logistic Regression

P(y |x) = 1
1 + exp (−y(x⊤w⋆))

Logistic regression assumes:

w⋆

z := y(x⊤w⋆)

Logistic Regression

P(y |x) = 1
1 + exp (−y(x⊤w⋆))

Logistic regression assumes:

w⋆ x

z := y(x⊤w⋆)

Learn via MLE

Recall we have data " = {xi, yi}n
i=1

arg max
w

P(" |w)

Learn via MLE

Recall we have data " = {xi, yi}n
i=1

arg max
w

P(" |w) = arg max
w

P ({yi}n
i=1 |{xi}n

i=1; w)

Learn via MLE

Recall we have data " = {xi, yi}n
i=1

arg max
w

P(" |w)

= arg max
w

n

∏
i=1

P (yi |xi; w)

= arg max
w

P ({yi}n
i=1 |{xi}n

i=1; w)

Learn via MLE

Recall we have data " = {xi, yi}n
i=1

arg max
w

P(" |w)

= arg max
w

n

∏
i=1

P (yi |xi; w)

Plug in logistic assumption and add log:

arg max
w

n

∑
i=1

− ln [1 + exp (−yi(w⊤xi))]

= arg max
w

P ({yi}n
i=1 |{xi}n

i=1; w)

Learn via MLE

ŵmle := arg max
w

n

∑
i=1

ln [1
1 + exp (−yi(w⊤xi))]

Intuitively, tries to explain the label:ŵmle

Learn via MLE

ŵmle := arg max
w

n

∑
i=1

ln [1
1 + exp (−yi(w⊤xi))]

Intuitively, tries to explain the label:ŵmle

Q: for , what we should expect from ? yi = + 1 ŵ⊤
mlexi

Learn via MLE

ŵmle := arg max
w

n

∑
i=1

ln [1
1 + exp (−yi(w⊤xi))]

Intuitively, tries to explain the label:ŵmle

Q: for , what we should expect from ? yi = + 1 ŵ⊤
mlexi

Q: for , what we should expect from ? yi = − 1 ŵ⊤
mlexi

Learn via MLE

ŵmle := arg max
w

n

∑
i=1

ln [1
1 + exp (−yi(w⊤xi))]

Intuitively, tries to explain the label:ŵmle

Q: for , what we should expect from ? yi = + 1 ŵ⊤
mlexi

Q: for , what we should expect from ? yi = − 1 ŵ⊤
mlexi

+

-

Learn via MAP

P(w |") ∝ P(w)P(" |w)

Learn via MAP

P(w |") ∝ P(w)P(" |w)

We use Gaussian prior, i.e., P(w) = *(0,σ2I)

Learn via MAP

P(w |") ∝ P(w)P(" |w)

We use Gaussian prior, i.e., P(w) = *(0,σ2I)

arg max
w

ln (P(w)
n

∏
i=1

P(yi |xi, w)) = arg max
w

ln P(w) +
n

∑
i=1

ln P(yi |xi, w)

Learn via MAP

P(w |") ∝ P(w)P(" |w)

We use Gaussian prior, i.e., P(w) = *(0,σ2I)

arg max
w

ln (P(w)
n

∏
i=1

P(yi |xi, w)) = arg max
w

ln P(w) +
n

∑
i=1

ln P(yi |xi, w)

= arg min
w (

n

∑
i=1

ln (1 + exp(−yi(w⊤xi))) + ∥w∥2
2

2σ2)

Comparison to Navie Bayes

1. Logistic regression does not model P(x |y)

Comparison to Navie Bayes

1. Logistic regression does not model P(x |y)

2. Gaussian NB leads a linear classifier in the form of
P(y |x) = 1/(1 + exp(w⊤x))

Comparison to Navie Bayes

1. Logistic regression does not model P(x |y)

2. Gaussian NB leads a linear classifier in the form of
P(y |x) = 1/(1 + exp(w⊤x))

Gaussian NB is a special case of logistic regression

Outline for today

1. Logistic Regression

2. Convex optimization

3. Gradient Descent

We needs to solve the optimization problem

ŵ := arg min
w

n

∑
i=1

ln [1 + exp (−yi(w⊤xi)) + λ∥w∥2
2]

:=ℓ(w)

We needs to solve the optimization problem

ŵ := arg min
w

n

∑
i=1

ln [1 + exp (−yi(w⊤xi)) + λ∥w∥2
2]

:=ℓ(w)

There is no closed-form solution for the minimizer; luckily, is convexℓ(w)

We needs to solve the optimization problem

ŵ := arg min
w

n

∑
i=1

ln [1 + exp (−yi(w⊤xi)) + λ∥w∥2
2]

:=ℓ(w)

There is no closed-form solution for the minimizer; luckily, is convexℓ(w)

We will find an approximate minimizer via gradient descent

Setup for Optimization

We consider minimizing a (convex) function arg min
w

ℓ(w)

Setup for Optimization

We consider minimizing a (convex) function arg min
w

ℓ(w)
Def of convexity:

∀(x, x′), α ∈ [0,1], ℓ(αx + (1 − α)x′) ≤ αℓ(x) + (1 − α)ℓ(x′)

Setup for Optimization

We consider minimizing a (convex) function arg min
w

ℓ(w)
Def of convexity:

∀(x, x′), α ∈ [0,1], ℓ(αx + (1 − α)x′) ≤ αℓ(x) + (1 − α)ℓ(x′)

Setup for Optimization

We consider minimizing a (convex) function arg min
w

ℓ(w)
Def of convexity:

∀(x, x′), α ∈ [0,1], ℓ(αx + (1 − α)x′) ≤ αℓ(x) + (1 − α)ℓ(x′)

Global minimizer of a convex function

w

A convex function has global minimizer which has gradient equal to 0

Global minimizer of a convex function

w

A convex function has global minimizer which has gradient equal to 0

w⋆

Examples of non-convex functions

w

Saddle point ()ℓ(x, y) = x2 − y2

Outline for today

1. Logistic Regression

2. Convex optimization

3. Gradient Descent

The Gradient Descent algorithm

Goal: minimize ℓ(w)

Initialize w0 ∈ ℝd

Iterate until convergence:

The Gradient Descent algorithm

Goal: minimize ℓ(w)

Initialize w0 ∈ ℝd

Iterate until convergence:

1. Compute gradient gt = ∇ℓ(w) |w=wt

The Gradient Descent algorithm

Goal: minimize ℓ(w)

Initialize w0 ∈ ℝd

Iterate until convergence:

1. Compute gradient gt = ∇ℓ(w) |w=wt

2. Update (GD): wt+1 = wt − ηgt

The Gradient Descent algorithm

Goal: minimize ℓ(w)

Initialize w0 ∈ ℝd

Iterate until convergence:

1. Compute gradient gt = ∇ℓ(w) |w=wt

2. Update (GD): wt+1 = wt − ηgt

: learning rateη

The Gradient Descent demo

min
x,y

(x2 + y2)

The Gradient Descent demo

min
x,y

(x2 + y2)

Informal proof for GD convergence
First-order Taylor expansion: for

infinitesimally small (i.e.,), we haveδ δ → 0

Informal proof for GD convergence
First-order Taylor expansion: for

infinitesimally small (i.e.,), we haveδ δ → 0

ℓ(w − δ) = ℓ(w) − ∇ℓ(w)⊤δ

Informal proof for GD convergence
First-order Taylor expansion: for

infinitesimally small (i.e.,), we haveδ δ → 0

ℓ(w − δ) = ℓ(w) − ∇ℓ(w)⊤δ

Substitute , with δ = η∇ℓ(w) η → 0+

Informal proof for GD convergence
First-order Taylor expansion: for

infinitesimally small (i.e.,), we haveδ δ → 0

ℓ(w − δ) = ℓ(w) − ∇ℓ(w)⊤δ

Substitute , with δ = η∇ℓ(w) η → 0+

ℓ(w − η∇ℓ(w)) = ℓ(w) − η∇ℓ(w)⊤(∇ℓ(w))

Informal proof for GD convergence
First-order Taylor expansion: for

infinitesimally small (i.e.,), we haveδ δ → 0

ℓ(w − δ) = ℓ(w) − ∇ℓ(w)⊤δ

Substitute , with δ = η∇ℓ(w) η → 0+

ℓ(w − η∇ℓ(w)) = ℓ(w) − η∇ℓ(w)⊤(∇ℓ(w))

∥∇ℓ(w)∥2
2 > 0

Informal proof for GD convergence
First-order Taylor expansion: for

infinitesimally small (i.e.,), we haveδ δ → 0

ℓ(w − δ) = ℓ(w) − ∇ℓ(w)⊤δ

Substitute , with δ = η∇ℓ(w) η → 0+

ℓ(w − η∇ℓ(w)) = ℓ(w) − η∇ℓ(w)⊤(∇ℓ(w))

∥∇ℓ(w)∥2
2 > 0

i.e., w/ sufficiently small , GD decrease obj
value if !

η
∇ℓ(w) ≠ 0

How to set learning rate in practice?η

Large typically is bad and
can lead to diverge

η

How to set learning rate in practice?η

Large typically is bad and
can lead to diverge

η

How to set learning rate in practice?η

Large typically is bad and
can lead to diverge

η In theory, for convex loss,
 guarantees

convergence
η = c/ k

How to set learning rate in practice?η

Large typically is bad and
can lead to diverge

η In theory, for convex loss,
 guarantees

convergence
η = c/ k

Let’s summarize by applying GD to logistic regression
Recall the objective for LR:

min
w

n

∑
i=1

ln [1 + exp (−yi(w⊤xi))] + λ∥w∥2
2

Initialize w0 ∈ ℝd

Iterate until convergence:

Let’s summarize by applying GD to logistic regression
Recall the objective for LR:

min
w

n

∑
i=1

ln [1 + exp (−yi(w⊤xi))] + λ∥w∥2
2

Initialize w0 ∈ ℝd

Iterate until convergence:

1. Compute gradient gt = ∑
i

exp(−yix⊤
i wt)(−yixi)

1 + exp(−yix⊤
i wt) + 2λwt

Let’s summarize by applying GD to logistic regression
Recall the objective for LR:

min
w

n

∑
i=1

ln [1 + exp (−yi(w⊤xi))] + λ∥w∥2
2

Initialize w0 ∈ ℝd

Iterate until convergence:

1. Compute gradient gt = ∑
i

exp(−yix⊤
i wt)(−yixi)

1 + exp(−yix⊤
i wt) + 2λwt

2. Update (GD): wt+1 = wt − ηgt

