Logistic Regression & convex
optimization

Announcements:

This week we will release P3 and HW3

Recap on Naive Bayes

NB is a generative model which models P(x, y)

P(y|x) x P(y)P(x|y) = P(y

Conditional independent
assumption given label

@gf ?%]x)

Perceptron VS Gaussian Naive Bayes

\)
/—>\7—.

A
—
4
P
~<
\
A
.
N
N $
Y
<

QZ

Today

Logistic regression — a-<discriminative learning approach that
directly/models P(y | x) for'classification

Outline for today

1. Logistic Regression

2. Convex optimization

3. Gradient Descent

Logistic Regression

Setting: binary classification 9 = {x;, y;}._,, (x;,y;)) ~ P,
xRy e {-1,+1)

Logistic Regression

Setting: binary classification 9 = {x;, y;}._,, (x;, ;) ~ P,
x, € Ry € {—1,+ 1}

(Note, we always assume x contains a constant 1)

Logistic Regression

Setting: binary classification 9 = {x;, y;}._,, (x;, ;) ~ P,
xRy e {-1,+1)

(Note, we always assume x contains a constant 1)

Logistic regression directly models P(y | x)

Logistic Regression
Setting: binary classification 9 = {x;, y;}._,, (x;, ;) ~ P,
x €RLy, € (—1,+1)

(Note, we always assume x contains a constant 1)

Logistic regression directly models P(y | x)

1
1 + exp (—y(xTw*))

P(y|x) =

Logistic Regression

Logistic regression assumes: Draw the Sigmoid function 1/(1 4+ exp(—2))

1
1 +exp (—((xTw*)

= 05
2= 9(xw”
J ,

P(y|x) =

Logistic Regression

Logistic regression assumes: Draw the Sigmoid function 1/(1 4+ exp(—2))

|
P(y|x) = i

1 + —y(xTw*
9 (T AT
0.5-F —
The model assigns higher prob to /
= sign(x ' w*

%(x w)> 7 =

Logistic Regression

Logistic regression assumes:

1
P(y|x) =
1 + exp (—y(xTw*))
o)
1 /
6 -4 —I2 Oo 2 4 6

z:=y(x'w*)

Logistic Regression

N /
S (W X . 7(
Logistic regression assumes:
1 1) o

P(y]x) = 1 (O 2
T 1 + exp (—y(xTw*))
—~=1
g/l

S
Z % y(xTw*)

Learn via MLE

Recall we have data & =

arg max P(<Z | w)
W

x5 y; ?:1

o V(v] = (Y|

Learn via MLE

Recall we have data & = {x;,y;}'_,

argmax P(Z |w) = argmax P ({yl-}?=1 | {x s w)

Learn via MLE

Recall we have data & = {x;,y;}'_,

arg max P(2 | w) —argmaxP({y,}y JHx YL w)

W i

Learn via MLE

Recall we have data & = {x;,y;}'_;
argmax P(Z |w) = argmax P ({yl-}?=1 | {x;} s w)
w w

L S (W - \%“(/\)>
=argmaXHP(yi|x-'w vEaT T
Voisl——)

. - . | +€xp ’%/ ‘
Plug in logistic assumption and add log:

n

arg max mﬂ [1 + eXp (_yz'(WTxi)>] \/

Yoo

Learn via MLE

. 1
W, 5, i= arg max Z In []
Yoz

1 + exp (—yl-(wal-))

Intuitively, w_, tries to explain the label:

mle

Learn via MLE

1
W, i= arg max Z In
i—1 [1 +exp (=y(wTx))]

Intuitively, w,;, tries to explain the label:

. _ T

Q: for y; = + 1, what we should expe@
AT
W e X7 T

<\/‘> (W Wmee 7> 770

Learn via MLE

W, i= arg max i In :
W 1 +exp (—y,(wTxy))

Intuitively, w_, tries to explain the label:

mle

T

Q: for y; = + 1, what we should expect fromw_, x; ?
. _ AT
Q: for y; = — 1, what we should expect fromw_, x; ?

<)

Learn via MLE

1
1 +exp <_yi(WTxi)

n
arg max Z In
Y=

Intuitively, w_, tries to explain the label:

mle

T

Q: for y; = + 1, what we should expect fromw_, x; ?
. _ AT
Q: for y; = — 1, what we should expect fromw_, x; ?

Learn via MAP

L £
Pw|D) P(W@
=

rp\/b(

Learn via MAP

Pw|9D) x PW)P(Z |w)

We use Gaussian prior, i.e., P(w) = A(0,6°])
D

J

Learn via MAP
Pw|9D) x PW)P(Z |w)

We use Gaussian prior, i.e., P(w) = A(0,6°])

arg max In <P(w)H PQy;| x;, w)) = arg max In P(w) + 2 In P(y;| x;, w)

Learn via MAP

Pw|9D) «x PW)P(Z |w)

—

{
W
We use Gaussian prior, i.e., P(w) = ﬂ/ (0,6°1) *@(f(f ?
Tax WS ¢/ e J

arg max In <P(w) H P(y;| x, w)) = arg max 1@ Z InP (y, | x;

=1

= arg min (Z In (1 + CXP(—yi(WTxi))
" =1 \’/&/_\/’/
_ ML=

Comparison to Navie Bayes

1. Logistic regression does not model P(x|y)

Comparison to Navie Bayes

1. Logistic regression does not model P(x|y)

2. Gaussian NB leads a linear classifier in the form of
P(y|x) = 1/(1 4+ exp(w "x))

/2/

Comparison to Navie Bayes

1. Logistic regression does not model P(x|y)

2. Gaussian NB leads a linear classifier in the form of
P(y|x) = 1/(1 4+ exp(w "x))

Gaussian NB is a special case of logistic regression

Outline for today

1¢#Logistic Regression

2. Convex optimization

3. Gradient Descent

We needs to solve the optimization problem

Y

MLz o N=0

W ;= arg min Z In [1 + exp (—yi(WTxi)) + /1||W||%]
Yz

We needs to solve the optimization problem

W ;= arg min Z In [1 + exp (—yi(WTxi)) + /1||W||%]
izl

=C(w)

There is no closed-form solution for the minimizer; luckily, £(w) is convex

_ (1
q
We needs to solve the optimization problem

9 E B Q%?< (w)+ W)

W= argmln Zln [1 +exp(y:(w x) +/1||w||2
i=1

=C(w)

There is no closed-form solution for the minimizer; luckily, £(w) is convex

We will find an approximate minimizer via gradient descent

Setup for Optimization

We consider minimizing a (convex) function arg min £ (w)
w

Setup for Optimization

We consider minimizing a (convex) function arg min £ (w)
w

Def of convexity:

Vix,x"),a € [0,1], C(ax+ (1 —a)x") < af(x) + (1 — a)Z(x)

Setup for Optimization

We consider minimizing a (convex)

function arg min 2 (w)
w

Def of convexity:

Vi, x),a € [0,1], (ax+ (1 —a)x") < af(x) + (1 — o) (x)

¥ 2
(-3)re o’ (3 (e,))

J
X

Setup for Optimization

We consider minimizing a (convex) function arg min £ (w)
w

Def of convexity:

Vix,x),a € [0,1], f(ax+ (1 —a)x") < al(x) + (1 —) (x’

- “
NURLARAASS,
AATETTEN .

v

Global minimizer of a convex function

A convex function has global minimizer which has gradient equal to O

Global minimizer of a convex function

A convex function has global minimizer which has gradient equal to O

d

)

aw()

QA Wld]

Examples of non-convex functions

Saddle point (£(x,y) = x% —)’2)

Outline for today

1¢#Logistic Regression

24 Convex optimization

3. Gradient Descent

The Gradient Descent algorithm

Goal: minimize £(w) .

5 i)
W

Initialize w® € R¢

Iterate until convergence:

The Gradient Descent algorithm

Goal: minimize £(w)

Initialize w' € R4

Iterate until convergence:

1. Compute gradient g’ = V(W) | _

The Gradient Descent algorithm

Goal: minimize £(w)
Initialize w" € R?
Iterate until convergence:

1. Compute gradient g’ = VZ(w)| _
2. Update (GD): w't! = w! — ng’

The Gradient Descent algorithm

Goal: minimize £(w)
Initialize w" € R?
Iterate until convergence:

1. Compute gradient g’ = VZ(w)| _
2. Update (GD): witl =l — ng'

n: learning rate

ff 70

ool
—

The Gradient Descent demo

min(x? + y?) 200 |
X,y ‘

=2Y-0.75_; g1-00

The Gradient Descent demo

min(x? + y?) 200 |
X,y ‘

=2Y-0.75_; g1-00

Informal proof for GD convergence

First-order Taylor expansion: for
infinitesimally small o (i.e., 6 — 0), we have

Informal proof for GD convergence

First-order Taylor expansion: for
infinitesimally small o (i.e., 6 — 0), we have
7/ 3
fw—=8)=£6w)—Vew)'s - 5§ = f
Z> - N

g«, L o0

Informal proof for GD convergence

First-order Taylor expansion: for
infinitesimally small o (i.e., 6 — 0), we have

w—08)=7w)—=VEw)'s

Substitute 6 = n VZ(w), withyp — 0%

Informal proof for GD convergence

First-order Taylor expansion: for
infinitesimally small 6 (i.e., 0 — 0), we have

f(w—20)=¢0(w)—VE&(w)
Substitute 6 = n V£ (w), Wlthﬂﬁ(/x géf(% VUVX(’/\)

rw—nVEew)) =¢C(w)—

Informal proof for GD convergence

First-order Taylor expansion: for
infinitesimally small o (i.e., 6 — 0), we have

w—08)=7w)—=VEw)'s

Substitute 6 = n VZ(w), withyp — 0% <
W
£w—nVEw)) = €w) — VW) (VE(w))

IVZWII5 >0

Liw- gvjw)) () i vAw)%o

Informal proof for GD convergence

First-order Taylor expansion: for
infinitesimally small o (i.e., 6 — 0), we have

fw—=208)=£¢(w)—=VEw)'s \

Substitute 6 = n VZ(w), withyp — 0% 2

AN =
"7
_ _ _ T <
Cw—nVew)) =£w) —nVew) (VE(w)) e Yoy
Ve3> 0 - (o)
i.e., w/ sufficiently small 77, GD decrease obj o (\ O 2w \\be %

value if VZ(w) # 0!

How to set learning rate 7 in practice?

Large n typically is bad and
can lead to diverge

How to set learning rate 7 in practice?

Large n typically is bad and
can lead to diverge

L)

How to set learning rate 7 in practice?

Large # typically is bad and In theory, for convex loss,
can lead to diverge n= c/\/z guarantees
convergence
L)

How to set learning rate 7 in practice?

Large # typically is bad and In theory, for convex loss,
can lead to diverge n= c/\/z guarantees
convergence
L)

L)

Let’s summarize by applying GD to logistic regression

Recall the objective for LR:

min Z In [1 + exp (—yi(wal.))] + Alwll3
Yz

Initialize W' € R4

lterate until convergence:

Let’s summarize by applying GD to logistic regression

Recall the objective for LR:

min Z In [1 + exp (—yi(wal.))] + Alwll3
Yz

Initialize W' € R4

lterate until convergence:

exp(—yx; w(—y:x;) s

2w’
1 + exp(—yx,"w?)

1. Compute gradient g' = Z

i

Let’s summarize by applying GD to logistic regression

Recall the objective for LR:

min Z In [1 + exp (—yi(wal.))] + Alwll3
Yz

Initialize W' € R4

lterate until convergence:

exp(—yx; w(—y:x;) .

2wt
I+ exp(—yayw)

1. Compute gradient g’ = Z
i

2. Update (GD): with =yt — ng'

