Logistic Regression & convex
optimization



Announcements:

This week we will release P3 and HW3



Recap on Naive Bayes

NB is a generative model which models P(x, y)

P(y|x) x P(y)P(x|y) = P(y

Conditional independent
assumption given label
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Perceptron VS Gaussian Naive Bayes
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Today

Logistic regression — a-<discriminative learning approach that
directly/models P(y | x) for'classification



Outline for today

1. Logistic Regression

2. Convex optimization

3. Gradient Descent
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(Note, we always assume x contains a constant 1)

Logistic regression directly models P(y | x)

1
1 + exp (—y(xTw*))

P(y|x) =



Logistic Regression

Logistic regression assumes: Draw the Sigmoid function 1/(1 4+ exp(—2))
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Logistic Regression

Logistic regression assumes: Draw the Sigmoid function 1/(1 4+ exp(—2))
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Logistic Regression

Logistic regression assumes:

1
P(y|x) =
1 + exp (—y(xTw*))
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Logistic Regression
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Learn via MLE

Recall we have data & =

arg max P(<Z | w)
W
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Learn via MLE

Recall we have data & = {x;,y;}'_;
argmax P(Z |w) = argmax P ({yl-}?=1 | {x;} s w)
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Plug in logistic assumption and add log:
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Learn via MLE

1
W, i= arg max Z In
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Intuitively, w,;, tries to explain the label:
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Learn via MLE

W, i= arg max i In :
W 1 +exp (—y,(wTxy))

Intuitively, w_, tries to explain the label:

mle
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Learn via MLE

1
1 +exp <_yi(WTxi)

n
arg max Z In
Y=

Intuitively, w_,  tries to explain the label:

mle
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Learn via MAP
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Learn via MAP
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Learn via MAP
Pw|9D) x PW)P(Z |w)

We use Gaussian prior, i.e., P(w) = A(0,6°])

arg max In <P(w)H PQy;| x;, w)) = arg max In P(w) + 2 In P(y;| x;, w)



Learn via MAP

Pw|9D) «x PW)P(Z |w)
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Comparison to Navie Bayes

1. Logistic regression does not model P(x|y)

2. Gaussian NB leads a linear classifier in the form of
P(y|x) = 1/(1 4+ exp(w "x))

Gaussian NB is a special case of logistic regression
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We needs to solve the optimization problem

Y

MLz o N=0

W ;= arg min Z In [1 + exp (—yi(WTxi)) + /1||W||%]
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We needs to solve the optimization problem
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W= argmln Zln [1 +exp( y:(w x) +/1||w||2
i=1

=C(w)

There is no closed-form solution for the minimizer; luckily, £(w) is convex

We will find an approximate minimizer via gradient descent
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Setup for Optimization

We consider minimizing a (convex)

function arg min 2 (w)
w
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Setup for Optimization

We consider minimizing a (convex) function arg min £ (w)
w

Def of convexity:

Vix,x),a € [0,1], f(ax+ (1 —a)x") < al(x) + (1 — ) (x’

- “
NURLARAASS,
AATETTEN .

v




Global minimizer of a convex function

A convex function has global minimizer which has gradient equal to O




Global minimizer of a convex function

A convex function has global minimizer which has gradient equal to O
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Examples of non-convex functions

Saddle point (£(x,y) = x% — )’2)
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The Gradient Descent algorithm

Goal: minimize £(w) .
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The Gradient Descent algorithm

Goal: minimize £(w)
Initialize w" € R?
Iterate until convergence:

1. Compute gradient g’ = VZ(w)| _
2. Update (GD): witl =l — ng'

n: learning rate
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The Gradient Descent demo
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Informal proof for GD convergence

First-order Taylor expansion: for
infinitesimally small o (i.e., 6 — 0), we have
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Let’s summarize by applying GD to logistic regression

Recall the objective for LR:
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Let’s summarize by applying GD to logistic regression

Recall the objective for LR:

min Z In [1 + exp (—yi(wal.))] + Alwll3
Yz

Initialize W' € R4

lterate until convergence:

exp(—yx; w(—y:x;) .
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I+ exp(—yayw)

1. Compute gradient g’ = Z
i

2. Update (GD): with =yt — ng'




