
Logistic Regression & convex 
optimization

 



Announcements:

This week we will release P3 and HW3



Recap on Naive Bayes

NB is a generative model which models P(x, y)

P(y |x) ∝ P(y)P(x |y) = P(y)
d

∏
i=1

P(x[i] |y)

Conditional independent 
assumption given label 



Perceptron VS Gaussian Naive Bayes



Today

Logistic regression — a discriminative learning approach that 
directly models  for classificationP(y |x)



Outline for today

1. Logistic Regression

2. Convex optimization

3. Gradient Descent
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P(y |x) = 1
1 + exp (−y(x⊤w⋆))

Draw the Sigmoid function 1/(1 + exp(−Z))
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Logistic regression assumes:

The model assigns higher prob to 
y = sign(x⊤w⋆)
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P(y |x) = 1
1 + exp (−y(x⊤w⋆))

Logistic regression assumes:

w⋆ x

z := y(x⊤w⋆)
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Learn via MLE

Recall we have data " = {xi, yi}n
i=1

arg max
w

P(" |w)

= arg max
w

n

∏
i=1

P (yi |xi; w)

Plug in logistic assumption and add log:

arg max
w

n

∑
i=1

− ln [1 + exp (−yi(w⊤xi))]

= arg max
w

P ({yi}n
i=1 |{xi}n

i=1; w)
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Q: for , what we should expect from  ? yi = + 1 ŵ⊤
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Learn via MLE

ŵmle := arg max
w

n

∑
i=1

ln [ 1
1 + exp (−yi(w⊤xi)) ]

Intuitively,  tries to explain the label:ŵmle

Q: for , what we should expect from  ? yi = + 1 ŵ⊤
mlexi

Q: for , what we should expect from  ? yi = − 1 ŵ⊤
mlexi

+

-
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Learn via MAP

P(w |") ∝ P(w)P(" |w)

We use Gaussian prior, i.e.,  P(w) = *(0,σ2I)

arg max
w

ln (P(w)
n

∏
i=1

P(yi |xi, w)) = arg max
w

ln P(w) +
n

∑
i=1

ln P(yi |xi, w)

= arg min
w (

n

∑
i=1

ln (1 + exp(−yi(w⊤xi))) + ∥w∥2
2

2σ2 )
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Comparison to Navie Bayes

1. Logistic regression does not model P(x |y)

2. Gaussian NB leads a linear classifier in the form of 
P(y |x) = 1/(1 + exp(w⊤x))

Gaussian NB is a special case of logistic regression
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We needs to solve the optimization problem

ŵ := arg min
w

n

∑
i=1

ln [1 + exp (−yi(w⊤xi)) + λ∥w∥2
2]

:=ℓ(w)

There is no closed-form solution for the minimizer; luckily,  is convexℓ(w)

We will find an approximate minimizer via gradient descent
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Global minimizer of a convex function

w

A convex function has global minimizer which has gradient equal to 0

w⋆



Examples of non-convex functions

w

Saddle point ( )ℓ(x, y) = x2 − y2
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The Gradient Descent algorithm

Goal: minimize ℓ(w)

Initialize w0 ∈ ℝd

Iterate until convergence:

1. Compute gradient gt = ∇ℓ(w) |w=wt

2. Update (GD): wt+1 = wt − ηgt

: learning rateη



The Gradient Descent demo

min
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Informal proof for GD convergence
First-order Taylor expansion: for 

infinitesimally small  (i.e., ), we haveδ δ → 0

ℓ(w − δ) = ℓ(w) − ∇ℓ(w)⊤δ

Substitute , with δ = η∇ℓ(w) η → 0+

ℓ(w − η∇ℓ(w)) = ℓ(w) − η∇ℓ(w)⊤(∇ℓ(w))

∥∇ℓ(w)∥2
2 > 0

i.e., w/ sufficiently small , GD decrease obj 
value if  !

η
∇ℓ(w) ≠ 0



How to set learning rate  in practice?η

Large  typically is bad and 
can lead to diverge

η



How to set learning rate  in practice?η

Large  typically is bad and 
can lead to diverge

η



How to set learning rate  in practice?η

Large  typically is bad and 
can lead to diverge

η In theory, for convex loss, 
 guarantees 

convergence
η = c/ k



How to set learning rate  in practice?η

Large  typically is bad and 
can lead to diverge

η In theory, for convex loss, 
 guarantees 

convergence
η = c/ k



Let’s summarize by applying GD to logistic regression
Recall the objective for LR:

min
w

n

∑
i=1

ln [1 + exp (−yi(w⊤xi))] + λ∥w∥2
2

Initialize w0 ∈ ℝd

Iterate until convergence:



Let’s summarize by applying GD to logistic regression
Recall the objective for LR:

min
w

n

∑
i=1

ln [1 + exp (−yi(w⊤xi))] + λ∥w∥2
2

Initialize w0 ∈ ℝd

Iterate until convergence:

1. Compute gradient gt = ∑
i

exp(−yix⊤
i wt)(−yixi)

1 + exp(−yix⊤
i wt) + 2λwt



Let’s summarize by applying GD to logistic regression
Recall the objective for LR:

min
w

n

∑
i=1

ln [1 + exp (−yi(w⊤xi))] + λ∥w∥2
2

Initialize w0 ∈ ℝd

Iterate until convergence:

1. Compute gradient gt = ∑
i

exp(−yix⊤
i wt)(−yixi)

1 + exp(−yix⊤
i wt) + 2λwt

2. Update (GD): wt+1 = wt − ηgt


