Machine Learning Basics



Announcements:

1. Warmup Quiz and P(-1) and P(0) are out

2. TA office hours are posted on Canvas (location: Rhodes 503)

3. CIS Partner Finding Social (Sep 1st, 4-6pm, Upson 142)



Objective:

Get familiar with some of the common definitions, and get a big
picture of supervised / unsupervised learning



Outline for Today:

1. Supervised Learning (Classification / Regression) and Unsupervised learning

2. Generalization

3. Training / validation / testing
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Mathematical formulation of the pipeline

Dataset:

D={xpy) (X, V) }, X € [R{d,yi € 6(eg.,.¢={-11}), (x,y) ~ P

Input Hidden Output HypotheS|S:

layer layer layer

l.e., a neural network-based
h:-Re— @  classifier that maps image to label
of cat or dog

Hypothesis class

_ i.e., a large family of NNs with
H = {h} different parameters
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Examples of hypothesis

Inductive bias (i.e., assumptions) encoded in the hypothesis class

Ex: h is a linear function h(x) = sign(wa); Ex: & is nonlinear h(x) = sign(w));

# contains all possible linear functions # contains all possible one-layer N
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Do we need to make assumptions on the data?
No free lunch theorem says that we must make such assumptions

Informal theorem: for any machine learning algorithm &, there must exist
a task & on which it will fail

® We use prior knowledge (i.e., we believe
o® linear function is enough) to design an ML
® algorithm here
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The Loss Function

Q: how to select the best hypothesis h from 7

Let’s define loss function Z : X X R4 X € — R

Intuitively, £(h, x, y) tells us how bad (e.g., classification mistake) the hypothesis / is.
Examples:

Zero-one loss: Squared loss:

0 h(x)=y

— 12
1 h(_x) =+ y f(h’ X, y) — (h(X) y)

£(h,x,y) = {
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Learning/Training
Q: how to select the best hypothesis h from 2

With loss £ being defined, we can perform training/learning:

The hypothesis that has

smallest training error _
e.g., total number of mistakes /& makes on n

training samples (training error)
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Putting things together: Binary classification

Dataset &

X5 V1 X2> Y2

\ 4

ML model, e.g., neural network w/ 0-1 loss #

A

n
hnn = arg hmelgf Z fO—l (hnn’ Xjs yl)

=" =1
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Regression

Example: learning to drive
from expert Loss function: square loss

£(h,x,y) = (h(x) — y)*

@ Hypothesis class: linear functions

h(x) := 0"x, where 0 € R

Expert steering

Feature x

angle y
. Training: minimizing mean squared error (MSE)
9_ {(xp)ﬁ),- 9 T )
arg mm 2 @ 'x;,—y)
collected by human expert
Continuous

variable (—x, n)
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Application of Regression: training self-
dr]V]ng Cars [Pomerleau, NeurlPS ‘88]
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Figure 1: ALVINN Architecture
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Unsupervised Learning

Dataset:

D ={(x),....(x)},x; € IRd,xl- ~ P

Example: Clustering
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Unsupervised Learning

Dataset:

D ={(x),....(x)},x; € IRd,xl- ~ P
Example: distribution estimation

i Can we construct a distribution 9’ to
e approximate J°?

Anomaly detection / generative Al
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Generated images:
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Generalization

Dataset &

%
/—

ML model #

Generalization: how well can our trained
model do on unseen test examples?




Let’s formalize this using distribution

The Independent and identically distributed (i.i.d) assumption:



Let’s formalize this using distribution

The Independent and identically distributed (i.i.d) assumption:

Training data & is i.i.d sampled from a distribution &, i.e., x;, y; ~ P, Vi € [n]
(i.e., all pairs are sampled from &, and (x;, y,) is independent of others)



Let’s formalize this using distribution

The Independent and identically distributed (i.i.d) assumption:

Training data & is i.i.d sampled from a distribution &, i.e., x;, y; ~ P, Vi € [n]
(i.e., all pairs are sampled from &, and (x;, y,) is independent of others)

We further assume test data is also from &, i.e., (x,y) ~ &



Let’s formalize this using distribution

The Independent and identically distributed (i.i.d) assumption:

Training data & is i.i.d sampled from a distribution &, i.e., x;, y; ~ P, Vi € [n]
(i.e., all pairs are sampled from &, and (x;, y,) is independent of others)

We further assume test data is also from &, i.e., (x,y) ~ &

Generalization error: [, [L”(}Al,x, Y)]



Let’s formalize this using distribution

The Independent and identically distributed (i.i.d) assumption:

Training data & is i.i.d sampled from a distribution &, i.e., x;, y; ~ P, Vi € [n]
(i.e., all pairs are sampled from &, and (x;, y,) is independent of others)

We further assume test data is also from &, i.e., (x,y) ~ &

Generalization error: [, [L”(}Al,x, Y)]

e.g., expected classification error of h
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Overfitting

Overfitting: we have a small training error but large generalization error

Example

Hypothesis h that memorizes the whole training set

il()C): {yl H(Xi’yi)E@W/xl-zx
—1 else

What is the training error? Is this a good classifier?
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Overfitting

Overfitting: we have a small training error but large generalization/test error

Example

Price of
the house

size: of the house, etc

Training error = 0 (e.g., we probably overfit to noises), but could do terribly on test examples



Overfitting

How to tell that our models overfit?
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Training, validation, and testing

Given a training dataset &, we can split it into three sets:

D gt training set
Dy, validation set

D - test set

Before training/learning, we often randomly split it with size proportional to 80% / 10% / 10%
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Selecting models using validation set

We can use validation set to select models, i.e., select hypothesis class, tune parameters, etc

Small avg error on &, but larger avg error on
<, indicates overfitting

i1

Revise model on Y1 (e.g., add regularization, change neural network structures, etc )
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Do not use test set to train/select models

We should not touch test set during training!

This makes sure that the test set &, is independent of our model h

Such independence implies that:

£(h,x,y) ~ E . gt (h, x, )]

(Due to law of large numbers)



Other ways to split the data?

Can we split data based on features, or labels?
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Summary

1. Given a task and a dataset

D = {xiayi}axiayl' ~ P

2. Design hypothesis class # and loss
function £ (encodes inductive bias)

R 4

3. Train: h = arg min Z £(h,x,y)

4. Output: h that has small k

generalizatiAon error
[Ex,yrv@[f(h@ X, y)]

Often repeated many times using
validation D4



