# K-nearest Neighbor

## **Announcements:**

1. HW1 will be out today / early tomorrow and Due Sep 12

2. P1 will be out later this week

3. First paper reading quiz will be out later this week (for 5780)

## Recap on ML basics

T/F: A hypothesis that achieves zero training error is always good

T/F: zero-one loss is a good loss function for regression

T/F: We can use validation dataset to check if our model overfits

# **Objective**

Understand KNN — our first ML algorithm that can do both regression and classification

# **Outline for Today**

1. The K-NN Algorithm

2. Why/When does K-NN work

3. Curse of dimensionality (i.e., when it can fail)

**Input**: classification training dataset  $\{x_i, y_i\}_{i=1}^n$ , and parameter  $K \in \mathbb{N}^+$ , and a distance metric d(x, x') (e.g.,  $||x - x'||_2$  euclidean distance)

**K-NN Algorithm:** 



**Input**: classification training dataset  $\{x_i, y_i\}_{i=1}^n$ , and parameter  $K \in \mathbb{N}^+$ , and a distance metric d(x, x') (e.g.,  $||x - x'||_2$  euclidean distance)

#### **K-NN** Algorithm:

Store all training data

**Input**: classification training dataset  $\{x_i, y_i\}_{i=1}^n$ , and parameter  $K \in \mathbb{N}^+$ , and a distance metric d(x, x') (e.g.,  $||x - x'||_2$  euclidean distance)

#### **K-NN Algorithm:**

Store all training data

For any test point x:

**Input**: classification training dataset  $\{x_i, y_i\}_{i=1}^n$ , and parameter  $K \in \mathbb{N}^+$ , and a distance metric d(x, x') (e.g.,  $||x - x'||_2$  euclidean distance)

#### **K-NN** Algorithm:

Store all training data

For any test point x:

Find its top K nearest neighbors (under metric *d*)

**Input**: classification training dataset  $\{x_i, y_i\}_{i=1}^n$ , and parameter  $K \in \mathbb{N}^+$ , and a distance metric d(x, x') (e.g.,  $||x - x'||_2$  euclidean distance)

#### **K-NN Algorithm:**

Store all training data

For any test point x:

Find its top K nearest neighbors (under metric *d*)

Return the most common label among these K neighbors

**Input**: classification training dataset  $\{x_i, y_i\}_{i=1}^n$ , and parameter  $K \in \mathbb{N}^+$ , and a distance metric d(x, x') (e.g.,  $||x - x'||_2$  euclidean distance)

#### **K-NN Algorithm:**

Store all training data

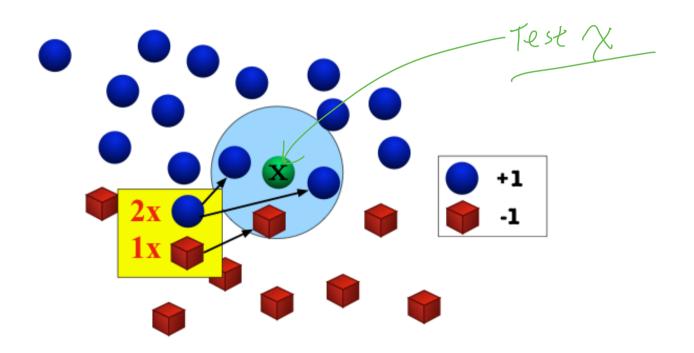
For any test point x:

Find its top K nearest neighbors (under metric *d*)

Return the most common label among these K neighbors

(If for regression, return the average value of the K neighbors)

Example: 3-NN for binary classification using Euclidean distance



### The choice of metric

1. We assume our metric d captures similarities between examples:

Examples that are close to each other under distance d share similar labels

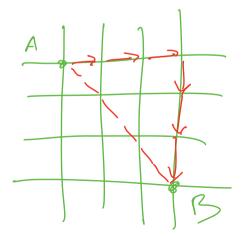
## The choice of metric

1. We assume our metric d captures similarities between examples:

Examples that are close to each other under distance d share similar labels

Another example: Manhattan distance ( $\ell_1$ )

$$d(x, x') = \sum_{j=1}^{d} |x[j] - x'[j]|$$



1. What if we set K very large?

1. What if we set *K* very large?

Top K-neighbors will include examples that are very far away...

1. What if we set *K* very large?

Top K-neighbors will include examples that are very far away...

2. What if we set K very small (K=1)?

1. What if we set *K* very large?

Top K-neighbors will include examples that are very far away...

2. What if we set K very small (K=1)?

label has noise (easily **overfit** to the noise)

1. What if we set *K* very large?

Top K-neighbors will include examples that are very far away...

2. What if we set K very small (K=1)?

label has noise (easily **overfit** to the noise)

(What about the training error when K = 1?)

# **Outline for Today**

1. The K-NN Algorithm

2. Why/When does K-NN work

3. Curse of dimensionality (i.e., why it can fail in high-dimension data)

Assume our data is collected in an i.i.d fashion, i.e.,  $(x,y) \sim P$  (say  $y \in \{-1,1\}$ )

Assume our data is collected in an i.i.d fashion, i.e.,  $(x, y) \sim P$  (say  $y \in \{-1, 1\}$ )

Assume we know P(y | x) for now

Q: what label you would predict?

Assume our data is collected in an i.i.d fashion, i.e.,  $(x, y) \sim P$  (say  $y \in \{-1, 1\}$ )

Assume we know  $P(y \mid x)$  for now

Q: what label you would predict?

A: we will simply predict the most-likely label,

$$h_{opt}(x) = \arg \max_{y \in \{-1,1\}} P(y | x)$$

Assume our data is collected in an i.i.d fashion, i.e.,  $(x, y) \sim P$  (say  $y \in \{-1, 1\}$ )

Assume we know  $P(y \mid x)$  for now

Q: what label you would predict?

A: we will simply predict the most-likely label,

$$h_{opt}(x) = \arg \max_{y \in \{-1,1\}} P(y | x)$$

**Bayes optimal predictor** 

Assume our data is collected in an i.i.d fashion, i.e.,  $(x, y) \sim P$  (say  $y \in \{-1, 1\}$ )

Bayes optimal predictor: 
$$h_{opt}(x) = \arg \max_{y \in \{-1,1\}} P(y \mid x)$$

Example:

$$\begin{cases} P(1 \mid x) = 0.8 \\ P(-1 \mid x) = 0.2 \end{cases}$$

Assume our data is collected in an i.i.d fashion, i.e.,  $(x, y) \sim P$  (say  $y \in \{-1, 1\}$ )

Bayes optimal predictor: 
$$h_{opt}(x) = \arg \max_{y \in \{-1,1\}} P(y \mid x)$$

Example:

$$\begin{cases} P(1 \mid x) = 0.8 \\ P(-1 \mid x) = 0.2 \end{cases}$$

$$y_b := h_{opt}(x) = 1$$

Assume our data is collected in an i.i.d fashion, i.e.,  $(x, y) \sim P$  (say  $y \in \{-1, 1\}$ )

Bayes optimal predictor: 
$$h_{opt}(x) = \arg \max_{y \in \{-1,1\}} P(y \mid x)$$

Example:

$$\begin{cases} P(1 \mid x) = 0.8 \\ P(-1 \mid x) = 0.2 \end{cases}$$

$$y_b := h_{opt}(x) = 1$$

Q: What's the probability of  $h_{opt}$  making a mistake on x?

Assume our data is collected in an i.i.d fashion, i.e.,  $(x, y) \sim P$  (say  $y \in \{-1, 1\}$ )

Bayes optimal predictor: 
$$h_{opt}(x) = \arg \max_{y \in \{-1,1\}} P(y \mid x)$$

#### Example:

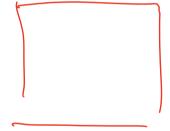
$$\begin{cases} P(1 \mid x) = 0.8 \\ P(-1 \mid x) = 0.2 \end{cases}$$

$$y_b := h_{opt}(x) = 1$$

Q: What's the probability of  $h_{opt}$  making a mistake on x?

$$\epsilon_{opt} = 1 - P(y_b \mid x) = 0.2$$

Assume  $x \in [-1,1]^2$ , P(x) has support everywhere  $P(x) > 0, \forall x \in [-1,1]^2$ 

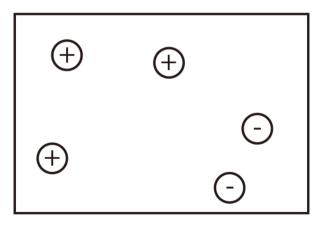


Assume  $x \in [-1,1]^2$ , P(x) has support everywhere  $P(x) > 0, \forall x \in [-1,1]^2$ 

What does it look when  $n \to \infty$ ?

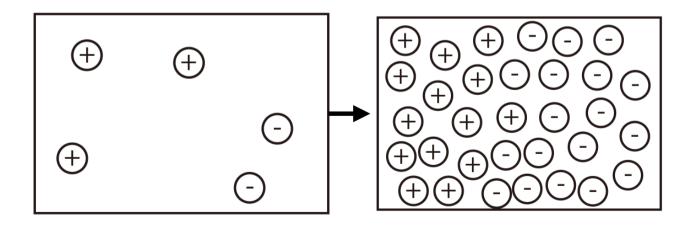
Assume  $x \in [-1,1]^2$ , P(x) has support everywhere  $P(x) > 0, \forall x \in [-1,1]^2$ 

What does it look when  $n \to \infty$ ?

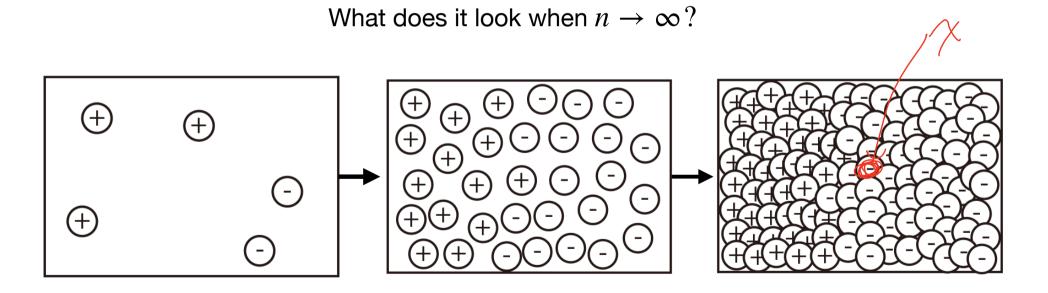


Assume  $x \in [-1,1]^2$ , P(x) has support everywhere  $P(x) > 0, \forall x \in [-1,1]^2$ 

What does it look when  $n \to \infty$ ?

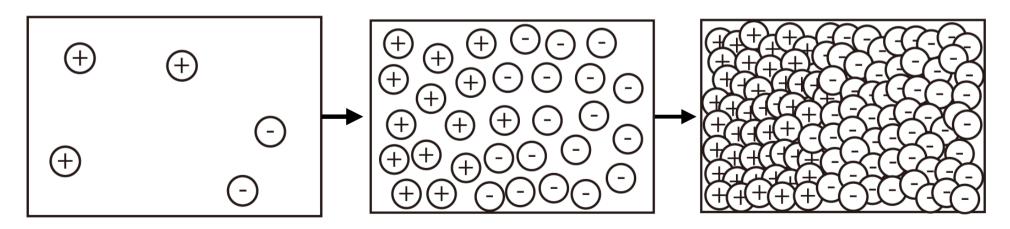


Assume  $x \in [-1,1]^2$ , P(x) has support everywhere  $P(x) > 0, \forall x \in [-1,1]^2$ 



Assume  $x \in [-1,1]^2$ , P(x) has support everywhere  $P(x) > 0, \forall x \in [-1,1]^2$ 

What does it look when  $n \to \infty$ ?



Given test x, as  $n \to \infty$ , its nearest neighbor  $x_{NN}$  is super close, i.e.,  $d(x, x_{NN}) \to 0$ !

Theorem: as  $n \to \infty$ , 1-NN prediction error is **no more than** twice of the error of the Bayes optimal classifier

Proof:

Theorem: as  $n \to \infty$ , 1-NN prediction error is **no more than** twice of the error of the Bayes optimal classifier

#### Proof:

1. Fix a test example x, denote its NN as  $x_{NN}$ . When  $n \to \infty$ , we have  $x_{NN} \to x_{NN}$ 

Theorem: as  $n \to \infty$ , 1-NN prediction error is **no more than** twice of the error of the Bayes optimal classifier

#### Proof:

- 1. Fix a test example x, denote its NN as  $x_{NN}$ . When  $n \to \infty$ , we have  $x_{NN} \to x$
- 2. WLOG assume for x, the Bayes optimal predicts  $y_b = h_{opt}(x) = 1$

Theorem: as  $n \to \infty$ , 1-NN prediction error is **no more than** twice of the error of the Bayes optimal classifier

#### Proof:

- 1. Fix a test example x, denote its NN as  $x_{NN}$ . When  $n \to \infty$ , we have  $x_{NN} \to x$
- 2. WLOG assume for x, the Bayes optimal predicts  $y_b = h_{opt}(x) = 1$
- 3. Calculate the 1-NN's prediction error:

Theorem: as  $n \to \infty$ , 1-NN prediction error is **no more than** twice of the error of the Bayes optimal classifier

#### Proof:

- 1. Fix a test example x, denote its NN as  $x_{NN}$ . When  $n \to \infty$ , we have  $x_{NN} \to x_{NN}$
- 2. WLOG assume for x, the Bayes optimal predicts  $y_b = h_{opt}(x) = 1$
- 3. Calculate the 1-NN's prediction error:

Case 1 when 
$$y_{NN} = 1$$
 (it happens w/ prob  $P(1 \mid x_{NN}) = P(1 \mid x)$ ):

Theorem: as  $n \to \infty$ , 1-NN prediction error is **no more than** twice of the error of the Bayes optimal classifier

#### Proof:

- 1. Fix a test example x, denote its NN as  $x_{NN}$ . When  $n \to \infty$ , we have  $x_{NN} \to x$
- 2. WLOG assume for x, the Bayes optimal predicts  $y_b = h_{opt}(x) = 1$
- 3. Calculate the 1-NN's prediction error:

Case 1 when  $y_{NN} = 1$  (it happens w/ prob  $P(1 \mid x_{NN}) = P(1 \mid x)$ ):

The probability of making a mistake:  $\epsilon = P(y \neq 1 \mid x) = P(y = -1 \mid x)$ 

Theorem: as  $n \to \infty$ , 1-NN prediction error is **no more than** twice of the error of the Bayes optimal classifier

#### Proof:

- 1. Fix a test example x, denote its NN as  $x_{NN}$ . When  $n \to \infty$ , we have  $x_{NN} \to x$
- 2. WLOG assume for x, the Bayes optimal predicts  $y_b = h_{opt}(x) = 1$
- 3. Calculate the 1-NN's prediction error:

Case 1 when 
$$y_{NN} = 1$$
 (it happens w/ prob  $P(1 \mid x_{NN}) = P(1 \mid x)$ ):

The probability of making a mistake:  $\epsilon = P(y \neq 1 \mid x) = P(y = -1 \mid x)$ 

$$=1-P(y_b|x)$$

Theorem: as  $n \to \infty$ , 1-NN prediction error is **no more than** twice of the error of the Bayes optimal classifier

Case 1 when  $y_{NN} = 1$  (it happens w/ prob  $P(1 \mid x_{NN}) = P(1 \mid x)$ ):

The probability of making a mistake:  $\epsilon = 1 - P(y_h | x)$ 

Theorem: as  $n \to \infty$ , 1-NN prediction error is **no more than** twice of the error of the Bayes optimal classifier

Case 1 when 
$$y_{NN} = 1$$
 (it happens w/ prob  $P(1 \mid x_{NN}) = P(1 \mid x)$ ):

The probability of making a mistake:  $\epsilon = 1 - P(y_h | x)$ 

Case 2 when 
$$y_{NN} = -1$$
 (it happens w/ prob  $P(-1|x_{NN}) = P(-1|x)$ ):

The probability of making a mistake:  $\epsilon = P(y \neq -1 \mid x) = P(y = 1 \mid x) = P(y_h \mid x)$ 

$$P(1|x)(1 - P(y_b|x)) + P(-1|x)P(y_b|x)$$

Final prediction error at 
$$x$$
:
$$P(1|x)(1-P(y_b|x)) + P(-1|x)P(y_b|x) = P(1|x)(1-P(y_b|x)) + (1-P(y_b|x))P(y_b|x)$$

$$\leq (1-P(y_b|x)) + (1-P(y_b|x)) = 2\epsilon_{opt}$$

$$\leq (1 - P(y_b|x)) + (1 - P(y_b|x)) = 2\epsilon_b$$

# What happens if K is large?

(e.g., 
$$K = 1e6, n \rightarrow \infty$$
)



## What happens if K is large?

(e.g.,  $K = 1e6, n \rightarrow \infty$ )

A: Given any x, the K-NN should return the  $y_h$  — the solution of the Bayes optimal

## **Outline for Today**

1. The K-NN Algorithm

2. Why/When does K-NN work

3. Curse of dimensionality (i.e., why it can fail in high-dimension data)

(Informal result and no proof)

#### (Informal result and no proof)

Fix  $n \in \mathbb{N}^+$ , assume  $x \in [0,1]^d$ , assume P(y|x) is Lipschitz continuous with respect to x, i.e.,  $|P(y|x) - P(y|x')| \le d(x,x')$ 

#### (Informal result and no proof)

Fix  $n \in \mathbb{N}^+$ , assume  $x \in [0,1]^d$ , assume P(y|x) is Lipschitz continuous with respect to x, i.e.,  $|P(y|x) - P(y|x')| \le d(x,x')$ 

Then, we have:

#### (Informal result and no proof)

Fix  $n \in \mathbb{N}^+$ , assume  $x \in [0,1]^d$ , assume P(y|x) is Lipschitz continuous with respect to x, i.e.,  $|P(y|x) - P(y|x')| \le d(x,x')$ 

Then, we have: 
$$\mathbb{E}_{x,y \sim P} \left[ \mathbf{1}(y \neq 1 \text{NN}(x)) \right] \leq 2 \mathbb{E}_{x,y \sim P} \left[ \mathbf{1}(y \neq h_{opt}(x)) \right] + O\left(\left(\frac{1}{n}\right)^{1/d}\right)$$

#### (Informal result and no proof)

Fix  $n \in \mathbb{N}^+$ , assume  $x \in [0,1]^d$ , assume P(y|x) is Lipschitz continuous with respect to x, i.e.,  $|P(y|x) - P(y|x')| \le d(x,x')$ 

Then, we have:

$$\mathbb{E}_{x,y\sim P}\left[\mathbf{1}(y\neq 1\mathsf{NN}(x))\right] \leq 2\mathbb{E}_{x,y\sim P}\left[\mathbf{1}(y\neq h_{opt}(x))\right] + O\left(\left(\frac{1}{n}\right)^{1/d}\right)$$

The bound is meaningless when  $d \to \infty$ , while n is some finite number!

#### (Informal result and no proof)

Fix 
$$n \in \mathbb{N}^+$$
, assume  $x \in [0,1]^d$ , assume  $P(y|x)$  is Lipschitz continuous with respect to  $x$ , i.e.,  $|P(y|x) - P(y|x')| \le d(x,x')$ 

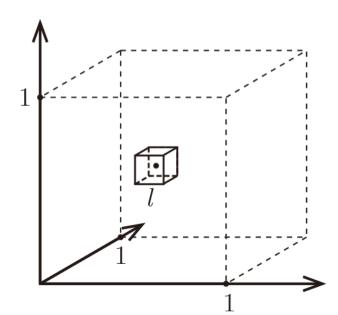
Then, we have:

$$\mathbb{E}_{x,y\sim P}\left[\mathbf{1}(y\neq 1\mathsf{NN}(x))\right] \leq 2\mathbb{E}_{x,y\sim P}\left[\mathbf{1}(y\neq h_{opt}(x))\right] + O\left(\left(\frac{1}{n}\right)^{1/d}\right)$$

## **Curse of dimensionality!**

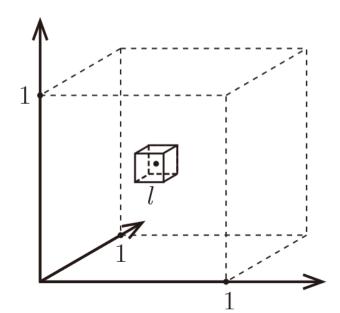
The bound is meaningless when  $d \to \infty$ , while n is some finite number!

Key problem: in high dimensional space, points that are draw from a distribution tends to be far away from each other!



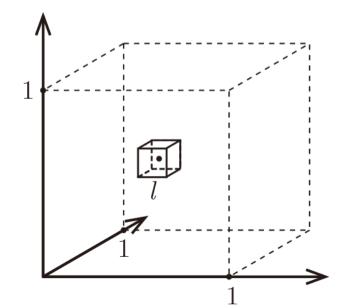
Key problem: in high dimensional space, points that are draw from a distribution tends to be far away from each other!

Example: let us consider uniform distribution over a cube  $[0,1]^d$ 



Key problem: in high dimensional space, points that are draw from a distribution tends to be far away from each other!

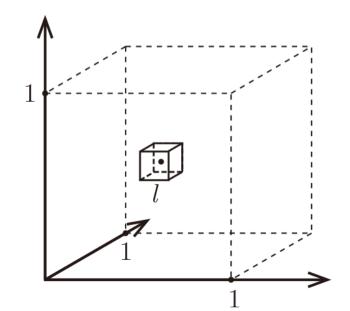
Example: let us consider uniform distribution over a cube  $[0,1]^d$ 



Q: sample *x* uniformly, what is the probability that *x* is inside the small cube?

Key problem: in high dimensional space, points that are draw from a distribution tends to be far away from each other!

Example: let us consider uniform distribution over a cube  $[0,1]^d$ 

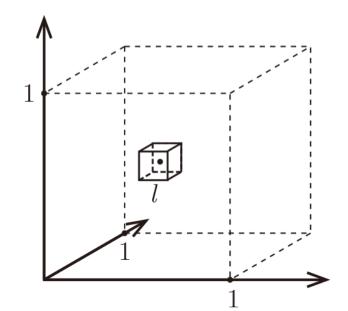


Q: sample *x* uniformly, what is the probability that *x* is inside the small cube?

A: Volume(small cube)/volume( $[0,1]^d$ )

Key problem: in high dimensional space, points that are draw from a distribution tends to be far away from each other!

Example: let us consider uniform distribution over a cube  $[0,1]^d$ 

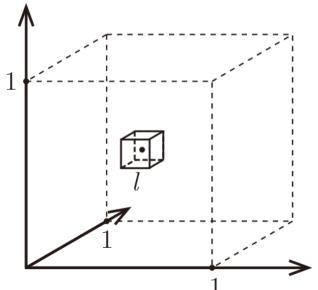


Q: sample *x* uniformly, what is the probability that *x* is inside the small cube?

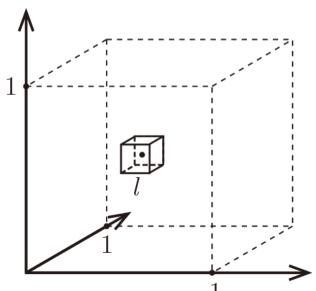
A: Volume(small cube)/volume( $[0,1]^d$ ) =  $l^d$ 

Example: let us consider uniform distribution over a cube  $[0,1]^d$ 

Now assume we sampled n points uniform randomly, and we observed K points fall inside the small cube



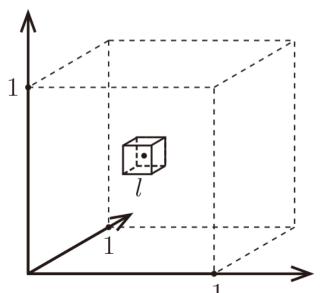
Example: let us consider uniform distribution over a cube  $[0,1]^d$ 



Now assume we sampled n points uniform randomly, and we observed K points fall inside the small cube

So empirically, the probability of sampling a point inside the small cube is roughly K/n

Example: let us consider uniform distribution over a cube  $[0,1]^d$ 

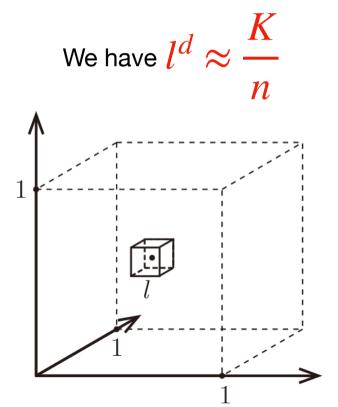


Now assume we sampled n points uniform randomly, and we observed K points fall inside the small cube

So empirically, the probability of sampling a point inside the small cube is roughly K/n

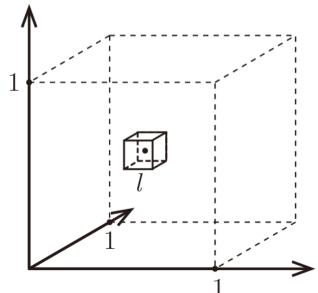
Thus, we have 
$$l^d \approx \frac{K}{n}$$

Example: let us consider uniform distribution over a cube  $[0,1]^d$ 



Example: let us consider uniform distribution over a cube  $[0,1]^d$ 

We have 
$$l^d \approx \frac{K}{n}$$

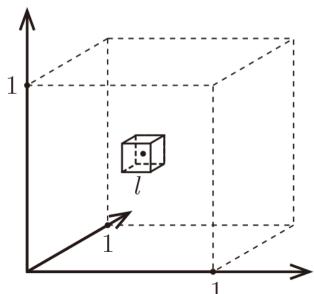


Q: how large we should set l, s.t., we will have K examples (out of n) fall inside the small cube?

$$l = \left(\frac{k}{n}\right)^d$$

Example: let us consider uniform distribution over a cube  $[0,1]^d$ 

We have 
$$l^d \approx \frac{K}{n}$$

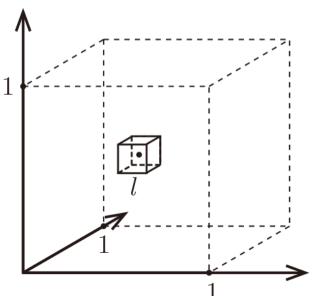


Q: how large we should set l, s.t., we will have K examples (out of n) fall inside the small cube?

$$l \approx (K/n)^{1/d}$$

Example: let us consider uniform distribution over a cube  $[0,1]^d$ 

We have 
$$l^d \approx \frac{K}{n}$$

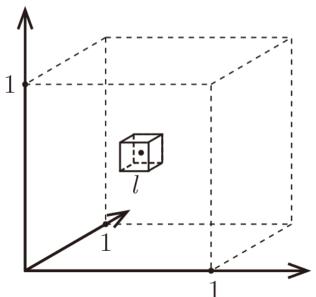


Q: how large we should set l, s.t., we will have K examples (out of n) fall inside the small cube?

$$l \approx (K/n)^{1/d} \rightarrow 1$$
, as  $d \rightarrow \infty$ 

Example: let us consider uniform distribution over a cube  $[0,1]^d$ 

We have 
$$l^d \approx \frac{K}{n}$$



Q: how large we should set l, s.t., we will have K examples (out of n) fall inside the small cube?

$$l \approx (K/n)^{1/d} \rightarrow 1$$
, as  $d \rightarrow \infty$ 

Bad news: when  $d \to \infty$ , the K nearest neighbors will be all over the place! (Cannot trust them, as they are not nearby points anymore!)



```
In [0,1]^d, we uniformly sample two points x, x', calculate d(x,x') = ||x-x'||_2
```

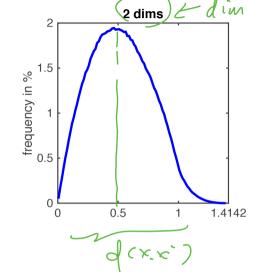
In  $[0,1]^d$ , we uniformly sample two points x, x', calculate  $d(x,x') = \|x - x'\|_2$ 

Let's plot the distribution of such distance:

d ∈ Rondon = number

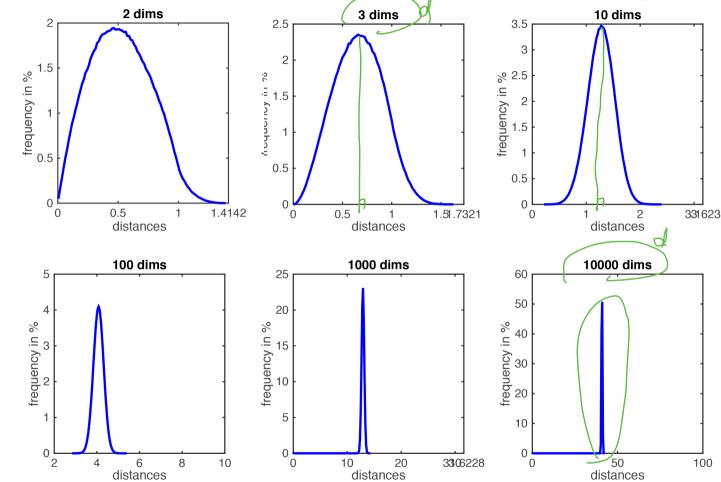
In  $[0,1]^d$ , we uniformly sample two points x, x', calculate  $d(x,x') = \|x - x'\|_2$ 

Let's plot the distribution of such distance:



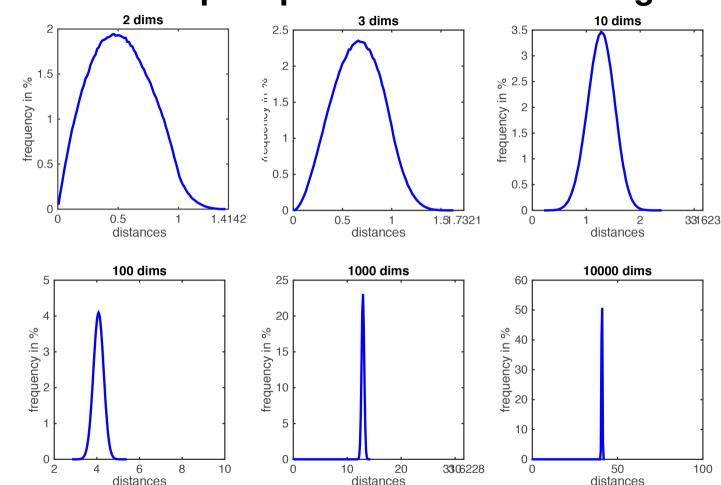
In  $[0,1]^d$ , we uniformly sample two points x, x', calculate  $d(x, x') = ||x - x'||_2$ 

Let's plot the distribution of such distance:



In  $[0,1]^d$ , we uniformly sample two points x, x', calculate  $d(x, x') = ||x - x'||_2$ 

Let's plot the distribution of such distance:

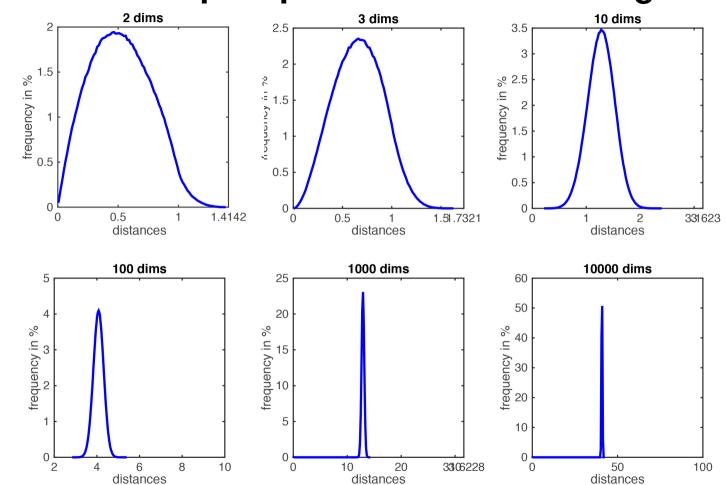


Distance increases as  $d \to \infty$ 

In  $[0,1]^d$ , we uniformly sample two points x, x', calculate  $d(x, x') = ||x - x'||_2$ 

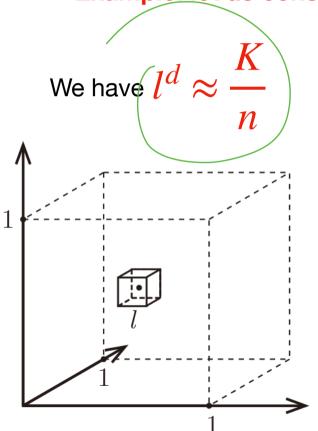
Let's plot the distribution of such distance:

Q: can you compute  $\mathbb{E}_{x,x'} ||x - x'||_2^2$  ?



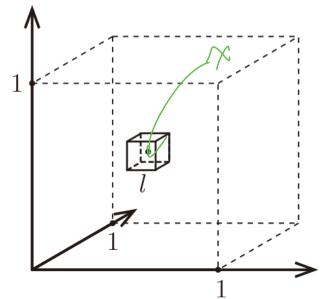
Distance increases as  $d \to \infty$ 

Example: let us consider uniform distribution over a cube  $[0,1]^d$ 



Example: let us consider uniform distribution over a cube  $[0,1]^d$ 

We have 
$$l^d \approx \frac{K}{n}$$



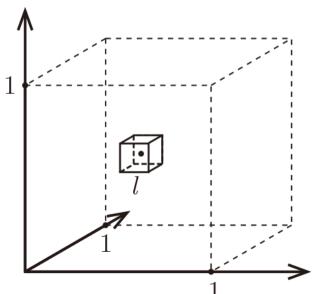
Q: to make sure that we have one sample inside a small cube, how large *n* needs to be?

$$N = \sqrt{2}d \qquad k = 1$$

$$= \sqrt{2}d$$

Example: let us consider uniform distribution over a cube  $[0,1]^d$ 

We have 
$$l^d \approx \frac{K}{n}$$

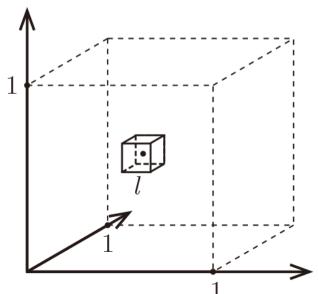


Q: to make sure that we have one sample inside a small cube, how large *n* needs to be?

Set 
$$\ell = 0.1$$
,  $K = 1$ , then  $n = 1/(0.1)^d = 10^d$ 

Example: let us consider uniform distribution over a cube  $[0,1]^d$ 

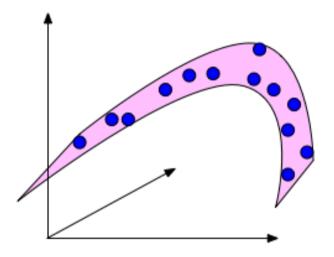
We have 
$$l^d \approx \frac{K}{n}$$



Q: to make sure that we have one sample inside a small cube, how large *n* needs to be?

Set 
$$\ell = 0.1$$
,  $K = 1$ , then  $n = 1/(0.1)^d = 10^d$ 

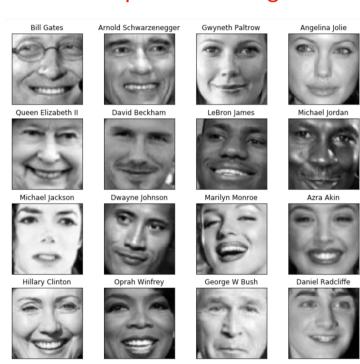
Bad news: when  $d \ge 100$ , # of samples needs to be larger than total # of atoms in the universe!



Data lives in 2-d manifold

Data lives in 2-d manifold

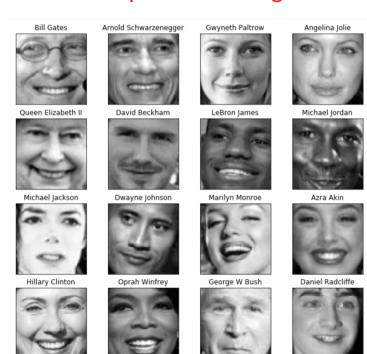
#### Example: face images

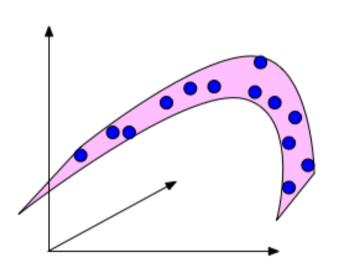


Data lives in 2-d manifold

#### Example: face images

Original image:  $\mathbb{R}^{64^2}$ 





Data lives in 2-d manifold

#### Example: face images

















Original image:  $\mathbb{R}^{64^2}$ 

Next week: we will see that these faces approximately live in 100d space!

#### **Summary for Today**

1. K-NN: the simplest ML algorithm (very good baseline, should always try!)

#### **Summary for Today**

1. K-NN: the simplest ML algorithm (very good baseline, should always try!)

2. Works well when data is low-dimensional (e.g., can compare against the Bayes optimal)

#### **Summary for Today**

- 1. K-NN: the simplest ML algorithm (very good baseline, should always try!)
  - 2. Works well when data is low-dimensional (e.g., can compare against the Bayes optimal)
  - 3. Suffer when data is high-dimensional, due to the fact that in high-dimension space, data tends to spread far away from each other