K-nearest Neighbor

Announcements:

1. HW1 will be out today / early tomorrow and Due Sep 12

2. P1 will be out later this week

3. First paper reading quiz will be out later this week (for 5780)

Recap on ML basics

T/F: A hypothesis that achieves zero training error is always good

T/F: zero-one loss is a good loss function for regression

T/F: We can use validation dataset to check if our model overfits

Objective

Understand KNN — our first ML algorithm that can do both regression and classification

Outline for Today

1. The K-NN Algorithm

2. Why/When does K-NN work

3. Curse of dimensionality (i.e., when it can fail)

Input: classification training dataset $\{x_i, y_i\}_{i=1}^n$, and parameter $K \in \mathbb{N}^+$, and a distance metric d(x, x') (e.g., $||x - x'||_2$ euclidean distance)

K-NN Algorithm:

Input: classification training dataset $\{x_i, y_i\}_{i=1}^n$, and parameter $K \in \mathbb{N}^+$, and a distance metric d(x, x') (e.g., $||x - x'||_2$ euclidean distance)

K-NN Algorithm:

Store all training data

Input: classification training dataset $\{x_i, y_i\}_{i=1}^n$, and parameter $K \in \mathbb{N}^+$, and a distance metric d(x, x') (e.g., $||x - x'||_2$ euclidean distance)

K-NN Algorithm:

Store all training data

For any test point x:

Input: classification training dataset $\{x_i, y_i\}_{i=1}^n$, and parameter $K \in \mathbb{N}^+$, and a distance metric d(x, x') (e.g., $||x - x'||_2$ euclidean distance)

K-NN Algorithm:

Store all training data

For any test point x:

Find its top K nearest neighbors (under metric *d*)

Input: classification training dataset $\{x_i, y_i\}_{i=1}^n$, and parameter $K \in \mathbb{N}^+$, and a distance metric d(x, x') (e.g., $||x - x'||_2$ euclidean distance)

K-NN Algorithm:

Store all training data

For any test point x:

Find its top K nearest neighbors (under metric *d*)

Return the most common label among these K neighbors

Input: classification training dataset $\{x_i, y_i\}_{i=1}^n$, and parameter $K \in \mathbb{N}^+$, and a distance metric d(x, x') (e.g., $||x - x'||_2$ euclidean distance)

K-NN Algorithm:

Store all training data

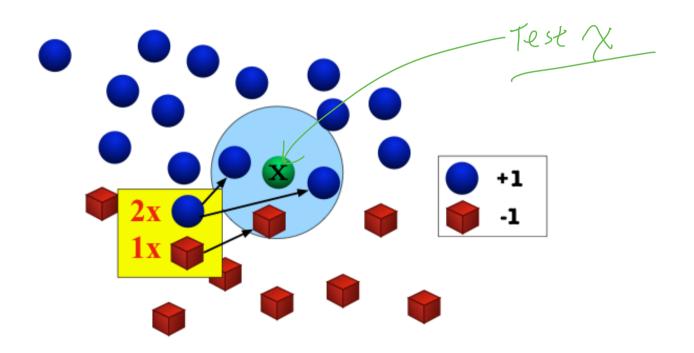
For any test point x:

Find its top K nearest neighbors (under metric *d*)

Return the most common label among these K neighbors

(If for regression, return the average value of the K neighbors)

Example: 3-NN for binary classification using Euclidean distance



The choice of metric

1. We assume our metric d captures similarities between examples:

Examples that are close to each other under distance d share similar labels

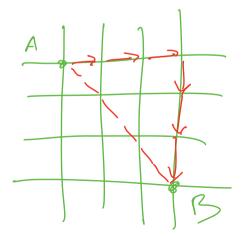
The choice of metric

1. We assume our metric d captures similarities between examples:

Examples that are close to each other under distance d share similar labels

Another example: Manhattan distance (ℓ_1)

$$d(x, x') = \sum_{j=1}^{d} |x[j] - x'[j]|$$



1. What if we set K very large?

1. What if we set *K* very large?

Top K-neighbors will include examples that are very far away...

1. What if we set *K* very large?

Top K-neighbors will include examples that are very far away...

2. What if we set K very small (K=1)?

1. What if we set *K* very large?

Top K-neighbors will include examples that are very far away...

2. What if we set K very small (K=1)?

label has noise (easily **overfit** to the noise)

1. What if we set *K* very large?

Top K-neighbors will include examples that are very far away...

2. What if we set K very small (K=1)?

label has noise (easily **overfit** to the noise)

(What about the training error when K = 1?)

Outline for Today

1. The K-NN Algorithm

2. Why/When does K-NN work

3. Curse of dimensionality (i.e., why it can fail in high-dimension data)

Assume our data is collected in an i.i.d fashion, i.e., $(x,y) \sim P$ (say $y \in \{-1,1\}$)

Assume our data is collected in an i.i.d fashion, i.e., $(x, y) \sim P$ (say $y \in \{-1, 1\}$)

Assume we know P(y | x) for now

Q: what label you would predict?

Assume our data is collected in an i.i.d fashion, i.e., $(x, y) \sim P$ (say $y \in \{-1, 1\}$)

Assume we know $P(y \mid x)$ for now

Q: what label you would predict?

A: we will simply predict the most-likely label,

$$h_{opt}(x) = \arg \max_{y \in \{-1,1\}} P(y | x)$$

Assume our data is collected in an i.i.d fashion, i.e., $(x, y) \sim P$ (say $y \in \{-1, 1\}$)

Assume we know $P(y \mid x)$ for now

Q: what label you would predict?

A: we will simply predict the most-likely label,

$$h_{opt}(x) = \arg \max_{y \in \{-1,1\}} P(y | x)$$

Bayes optimal predictor

Assume our data is collected in an i.i.d fashion, i.e., $(x, y) \sim P$ (say $y \in \{-1, 1\}$)

Bayes optimal predictor:
$$h_{opt}(x) = \arg \max_{y \in \{-1,1\}} P(y \mid x)$$

Example:

$$\begin{cases} P(1 \mid x) = 0.8 \\ P(-1 \mid x) = 0.2 \end{cases}$$

Assume our data is collected in an i.i.d fashion, i.e., $(x, y) \sim P$ (say $y \in \{-1, 1\}$)

Bayes optimal predictor:
$$h_{opt}(x) = \arg \max_{y \in \{-1,1\}} P(y \mid x)$$

Example:

$$\begin{cases} P(1 \mid x) = 0.8 \\ P(-1 \mid x) = 0.2 \end{cases}$$

$$y_b := h_{opt}(x) = 1$$

Assume our data is collected in an i.i.d fashion, i.e., $(x, y) \sim P$ (say $y \in \{-1, 1\}$)

Bayes optimal predictor:
$$h_{opt}(x) = \arg \max_{y \in \{-1,1\}} P(y \mid x)$$

Example:

$$\begin{cases} P(1 \mid x) = 0.8 \\ P(-1 \mid x) = 0.2 \end{cases}$$

$$y_b := h_{opt}(x) = 1$$

Q: What's the probability of h_{opt} making a mistake on x?

Assume our data is collected in an i.i.d fashion, i.e., $(x, y) \sim P$ (say $y \in \{-1, 1\}$)

Bayes optimal predictor:
$$h_{opt}(x) = \arg \max_{y \in \{-1,1\}} P(y \mid x)$$

Example:

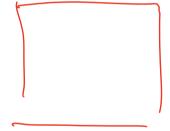
$$\begin{cases} P(1 \mid x) = 0.8 \\ P(-1 \mid x) = 0.2 \end{cases}$$

$$y_b := h_{opt}(x) = 1$$

Q: What's the probability of h_{opt} making a mistake on x?

$$\epsilon_{opt} = 1 - P(y_b \mid x) = 0.2$$

Assume $x \in [-1,1]^2$, P(x) has support everywhere $P(x) > 0, \forall x \in [-1,1]^2$

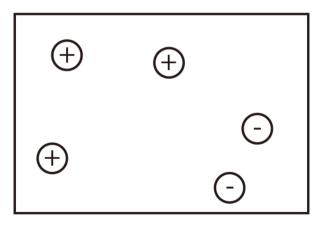


Assume $x \in [-1,1]^2$, P(x) has support everywhere $P(x) > 0, \forall x \in [-1,1]^2$

What does it look when $n \to \infty$?

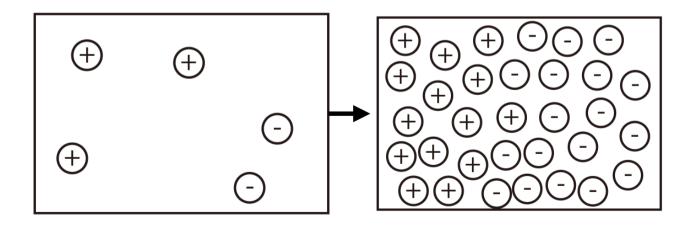
Assume $x \in [-1,1]^2$, P(x) has support everywhere $P(x) > 0, \forall x \in [-1,1]^2$

What does it look when $n \to \infty$?

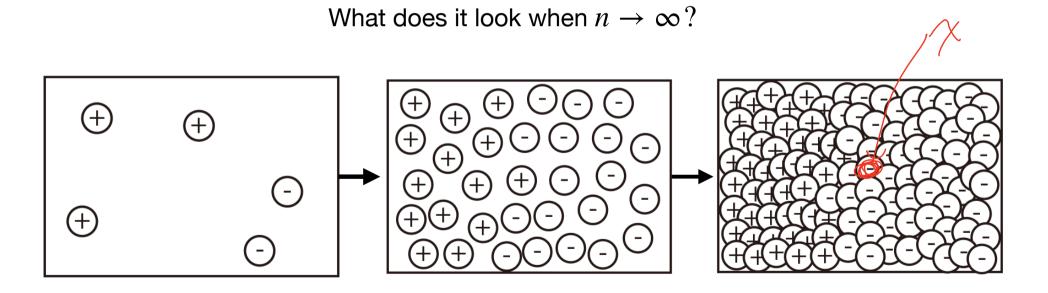


Assume $x \in [-1,1]^2$, P(x) has support everywhere $P(x) > 0, \forall x \in [-1,1]^2$

What does it look when $n \to \infty$?

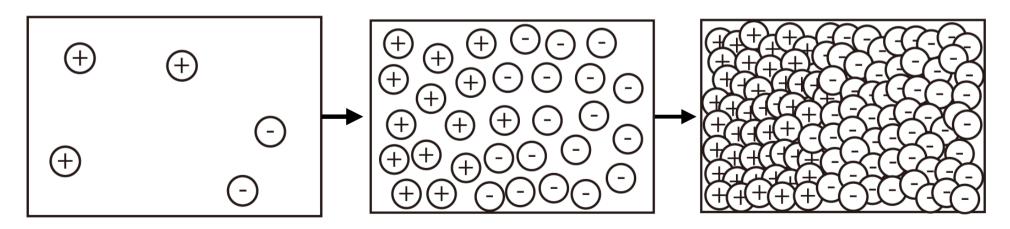


Assume $x \in [-1,1]^2$, P(x) has support everywhere $P(x) > 0, \forall x \in [-1,1]^2$



Assume $x \in [-1,1]^2$, P(x) has support everywhere $P(x) > 0, \forall x \in [-1,1]^2$

What does it look when $n \to \infty$?



Given test x, as $n \to \infty$, its nearest neighbor x_{NN} is super close, i.e., $d(x, x_{NN}) \to 0$!

Theorem: as $n \to \infty$, 1-NN prediction error is **no more than** twice of the error of the Bayes optimal classifier

Proof:

Theorem: as $n \to \infty$, 1-NN prediction error is **no more than** twice of the error of the Bayes optimal classifier

Proof:

1. Fix a test example x, denote its NN as x_{NN} . When $n \to \infty$, we have $x_{NN} \to x_{NN}$

Theorem: as $n \to \infty$, 1-NN prediction error is **no more than** twice of the error of the Bayes optimal classifier

Proof:

- 1. Fix a test example x, denote its NN as x_{NN} . When $n \to \infty$, we have $x_{NN} \to x$
- 2. WLOG assume for x, the Bayes optimal predicts $y_b = h_{opt}(x) = 1$

Theorem: as $n \to \infty$, 1-NN prediction error is **no more than** twice of the error of the Bayes optimal classifier

Proof:

- 1. Fix a test example x, denote its NN as x_{NN} . When $n \to \infty$, we have $x_{NN} \to x$
- 2. WLOG assume for x, the Bayes optimal predicts $y_b = h_{opt}(x) = 1$
- 3. Calculate the 1-NN's prediction error:

Theorem: as $n \to \infty$, 1-NN prediction error is **no more than** twice of the error of the Bayes optimal classifier

Proof:

- 1. Fix a test example x, denote its NN as x_{NN} . When $n \to \infty$, we have $x_{NN} \to x_{NN}$
- 2. WLOG assume for x, the Bayes optimal predicts $y_b = h_{opt}(x) = 1$
- 3. Calculate the 1-NN's prediction error:

Case 1 when
$$y_{NN} = 1$$
 (it happens w/ prob $P(1 \mid x_{NN}) = P(1 \mid x)$):

Theorem: as $n \to \infty$, 1-NN prediction error is **no more than** twice of the error of the Bayes optimal classifier

Proof:

- 1. Fix a test example x, denote its NN as x_{NN} . When $n \to \infty$, we have $x_{NN} \to x$
- 2. WLOG assume for x, the Bayes optimal predicts $y_b = h_{opt}(x) = 1$
- 3. Calculate the 1-NN's prediction error:

Case 1 when $y_{NN} = 1$ (it happens w/ prob $P(1 \mid x_{NN}) = P(1 \mid x)$):

The probability of making a mistake: $\epsilon = P(y \neq 1 \mid x) = P(y = -1 \mid x)$

Theorem: as $n \to \infty$, 1-NN prediction error is **no more than** twice of the error of the Bayes optimal classifier

Proof:

- 1. Fix a test example x, denote its NN as x_{NN} . When $n \to \infty$, we have $x_{NN} \to x$
- 2. WLOG assume for x, the Bayes optimal predicts $y_b = h_{opt}(x) = 1$
- 3. Calculate the 1-NN's prediction error:

Case 1 when
$$y_{NN} = 1$$
 (it happens w/ prob $P(1 \mid x_{NN}) = P(1 \mid x)$):

The probability of making a mistake: $\epsilon = P(y \neq 1 \mid x) = P(y = -1 \mid x)$

$$=1-P(y_b|x)$$

Theorem: as $n \to \infty$, 1-NN prediction error is **no more than** twice of the error of the Bayes optimal classifier

Case 1 when $y_{NN} = 1$ (it happens w/ prob $P(1 \mid x_{NN}) = P(1 \mid x)$):

The probability of making a mistake: $\epsilon = 1 - P(y_h | x)$

Theorem: as $n \to \infty$, 1-NN prediction error is **no more than** twice of the error of the Bayes optimal classifier

Case 1 when
$$y_{NN} = 1$$
 (it happens w/ prob $P(1 \mid x_{NN}) = P(1 \mid x)$):

The probability of making a mistake: $\epsilon = 1 - P(y_h | x)$

Case 2 when
$$y_{NN} = -1$$
 (it happens w/ prob $P(-1|x_{NN}) = P(-1|x)$):

The probability of making a mistake: $\epsilon = P(y \neq -1 \mid x) = P(y = 1 \mid x) = P(y_h \mid x)$

$$P(1|x)(1 - P(y_b|x)) + P(-1|x)P(y_b|x)$$

Final prediction error at
$$x$$
:
$$P(1|x)(1-P(y_b|x)) + P(-1|x)P(y_b|x) = P(1|x)(1-P(y_b|x)) + (1-P(y_b|x))P(y_b|x)$$

$$\leq (1-P(y_b|x)) + (1-P(y_b|x)) = 2\epsilon_{opt}$$

$$\leq (1 - P(y_b|x)) + (1 - P(y_b|x)) = 2\epsilon_b$$

What happens if K is large?

(e.g.,
$$K = 1e6, n \rightarrow \infty$$
)

What happens if K is large?

(e.g., $K = 1e6, n \rightarrow \infty$)

A: Given any x, the K-NN should return the y_h — the solution of the Bayes optimal

Outline for Today

1. The K-NN Algorithm

2. Why/When does K-NN work

3. Curse of dimensionality (i.e., why it can fail in high-dimension data)

(Informal result and no proof)

(Informal result and no proof)

Fix $n \in \mathbb{N}^+$, assume $x \in [0,1]^d$, assume P(y|x) is Lipschitz continuous with respect to x, i.e., $|P(y|x) - P(y|x')| \le d(x,x')$

(Informal result and no proof)

Fix $n \in \mathbb{N}^+$, assume $x \in [0,1]^d$, assume P(y|x) is Lipschitz continuous with respect to x, i.e., $|P(y|x) - P(y|x')| \le d(x,x')$

Then, we have:

(Informal result and no proof)

Fix $n \in \mathbb{N}^+$, assume $x \in [0,1]^d$, assume P(y|x) is Lipschitz continuous with respect to x, i.e., $|P(y|x) - P(y|x')| \le d(x,x')$

Then, we have:
$$\mathbb{E}_{x,y \sim P} \left[\mathbf{1}(y \neq 1 \text{NN}(x)) \right] \leq 2 \mathbb{E}_{x,y \sim P} \left[\mathbf{1}(y \neq h_{opt}(x)) \right] + O\left(\left(\frac{1}{n}\right)^{1/d}\right)$$

(Informal result and no proof)

Fix $n \in \mathbb{N}^+$, assume $x \in [0,1]^d$, assume P(y|x) is Lipschitz continuous with respect to x, i.e., $|P(y|x) - P(y|x')| \le d(x,x')$

Then, we have:

$$\mathbb{E}_{x,y\sim P}\left[\mathbf{1}(y\neq 1\mathsf{NN}(x))\right] \leq 2\mathbb{E}_{x,y\sim P}\left[\mathbf{1}(y\neq h_{opt}(x))\right] + O\left(\left(\frac{1}{n}\right)^{1/d}\right)$$

The bound is meaningless when $d \to \infty$, while n is some finite number!

(Informal result and no proof)

Fix
$$n \in \mathbb{N}^+$$
, assume $x \in [0,1]^d$, assume $P(y|x)$ is Lipschitz continuous with respect to x , i.e., $|P(y|x) - P(y|x')| \le d(x,x')$

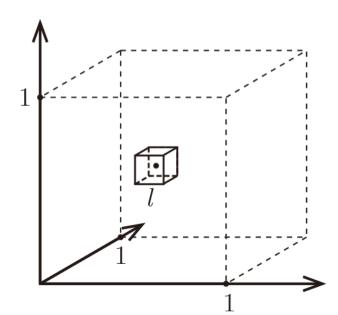
Then, we have:

$$\mathbb{E}_{x,y\sim P}\left[\mathbf{1}(y\neq 1\mathsf{NN}(x))\right] \leq 2\mathbb{E}_{x,y\sim P}\left[\mathbf{1}(y\neq h_{opt}(x))\right] + O\left(\left(\frac{1}{n}\right)^{1/d}\right)$$

Curse of dimensionality!

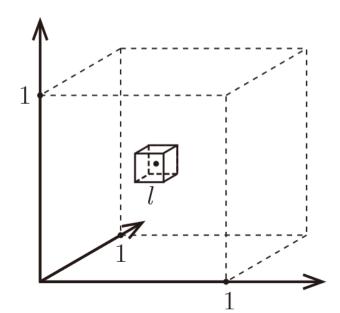
The bound is meaningless when $d \to \infty$, while n is some finite number!

Key problem: in high dimensional space, points that are draw from a distribution tends to be far away from each other!



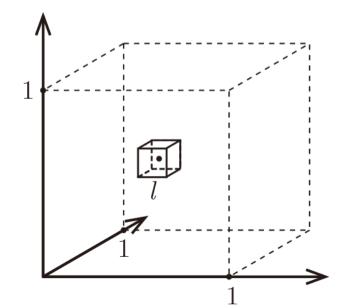
Key problem: in high dimensional space, points that are draw from a distribution tends to be far away from each other!

Example: let us consider uniform distribution over a cube $[0,1]^d$



Key problem: in high dimensional space, points that are draw from a distribution tends to be far away from each other!

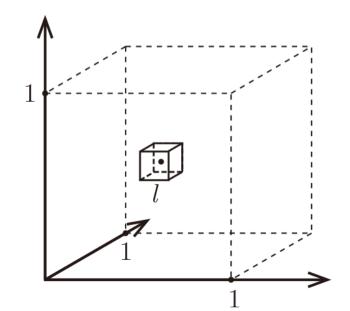
Example: let us consider uniform distribution over a cube $[0,1]^d$



Q: sample *x* uniformly, what is the probability that *x* is inside the small cube?

Key problem: in high dimensional space, points that are draw from a distribution tends to be far away from each other!

Example: let us consider uniform distribution over a cube $[0,1]^d$

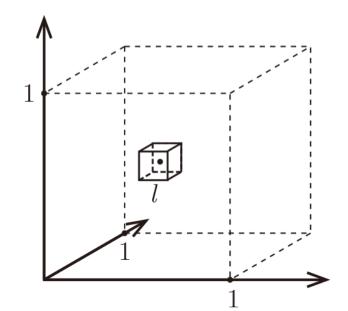


Q: sample *x* uniformly, what is the probability that *x* is inside the small cube?

A: Volume(small cube)/volume($[0,1]^d$)

Key problem: in high dimensional space, points that are draw from a distribution tends to be far away from each other!

Example: let us consider uniform distribution over a cube $[0,1]^d$

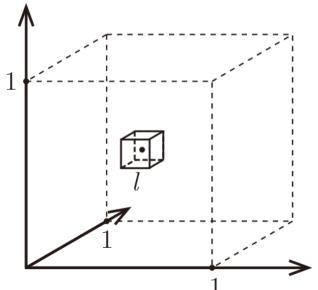


Q: sample *x* uniformly, what is the probability that *x* is inside the small cube?

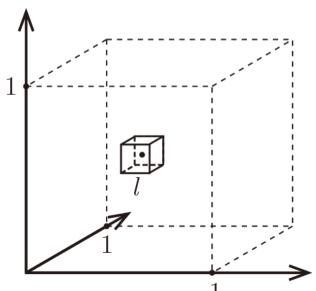
A: Volume(small cube)/volume($[0,1]^d$) = l^d

Example: let us consider uniform distribution over a cube $[0,1]^d$

Now assume we sampled n points uniform randomly, and we observed K points fall inside the small cube



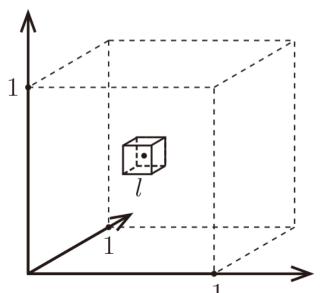
Example: let us consider uniform distribution over a cube $[0,1]^d$



Now assume we sampled n points uniform randomly, and we observed K points fall inside the small cube

So empirically, the probability of sampling a point inside the small cube is roughly K/n

Example: let us consider uniform distribution over a cube $[0,1]^d$

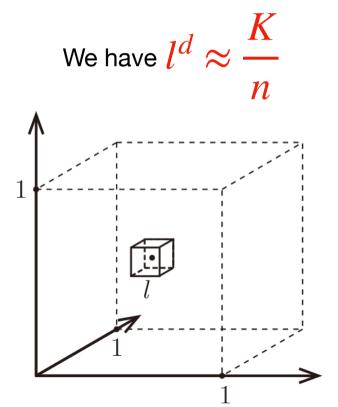


Now assume we sampled n points uniform randomly, and we observed K points fall inside the small cube

So empirically, the probability of sampling a point inside the small cube is roughly K/n

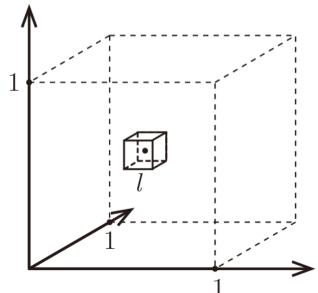
Thus, we have
$$l^d \approx \frac{K}{n}$$

Example: let us consider uniform distribution over a cube $[0,1]^d$



Example: let us consider uniform distribution over a cube $[0,1]^d$

We have
$$l^d \approx \frac{K}{n}$$

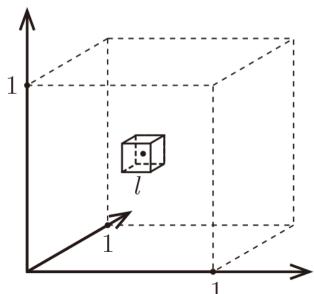


Q: how large we should set l, s.t., we will have K examples (out of n) fall inside the small cube?

$$l = \left(\frac{k}{n}\right)^d$$

Example: let us consider uniform distribution over a cube $[0,1]^d$

We have
$$l^d \approx \frac{K}{n}$$

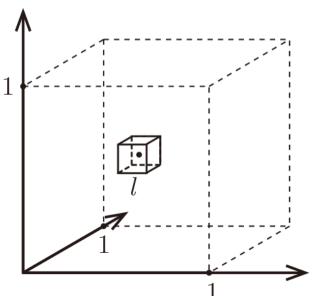


Q: how large we should set l, s.t., we will have K examples (out of n) fall inside the small cube?

$$l \approx (K/n)^{1/d}$$

Example: let us consider uniform distribution over a cube $[0,1]^d$

We have
$$l^d \approx \frac{K}{n}$$

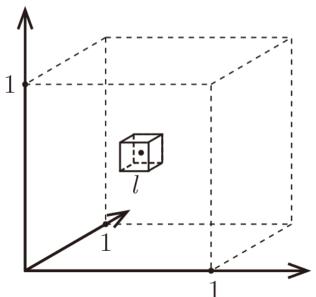


Q: how large we should set l, s.t., we will have K examples (out of n) fall inside the small cube?

$$l \approx (K/n)^{1/d} \rightarrow 1$$
, as $d \rightarrow \infty$

Example: let us consider uniform distribution over a cube $[0,1]^d$

We have
$$l^d \approx \frac{K}{n}$$



Q: how large we should set l, s.t., we will have K examples (out of n) fall inside the small cube?

$$l \approx (K/n)^{1/d} \rightarrow 1$$
, as $d \rightarrow \infty$

Bad news: when $d \to \infty$, the K nearest neighbors will be all over the place! (Cannot trust them, as they are not nearby points anymore!)



```
In [0,1]^d, we uniformly sample two points x, x', calculate d(x,x') = ||x-x'||_2
```

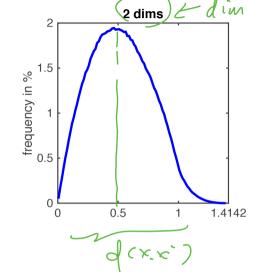
In $[0,1]^d$, we uniformly sample two points x, x', calculate $d(x,x') = \|x - x'\|_2$

Let's plot the distribution of such distance:

d ∈ Rondon = number

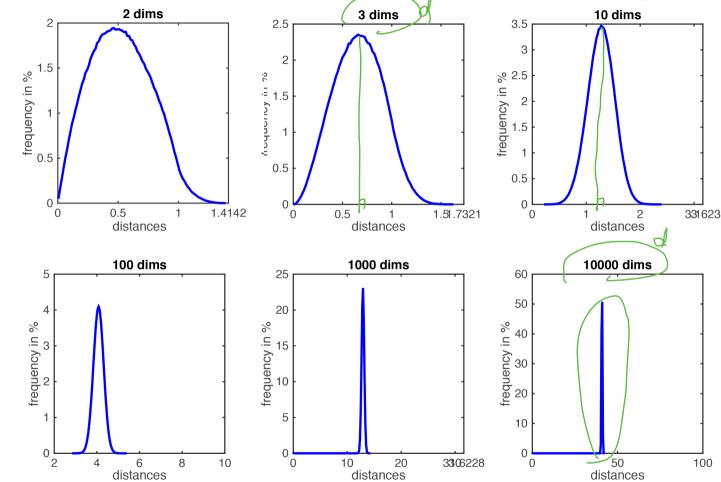
In $[0,1]^d$, we uniformly sample two points x, x', calculate $d(x,x') = \|x - x'\|_2$

Let's plot the distribution of such distance:



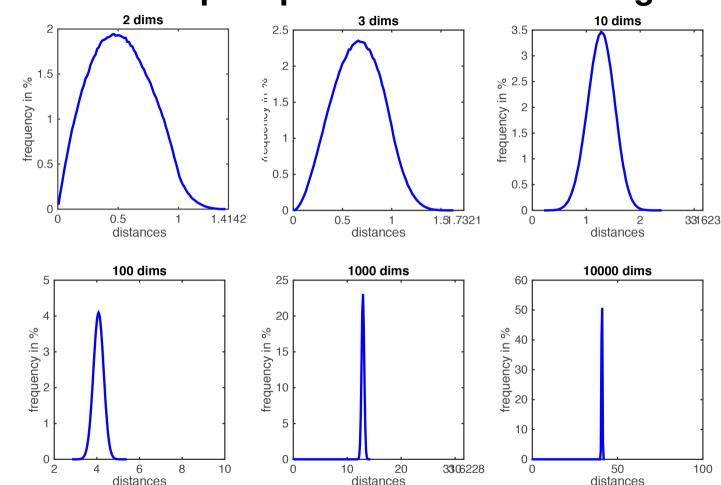
In $[0,1]^d$, we uniformly sample two points x, x', calculate $d(x, x') = ||x - x'||_2$

Let's plot the distribution of such distance:



In $[0,1]^d$, we uniformly sample two points x, x', calculate $d(x, x') = ||x - x'||_2$

Let's plot the distribution of such distance:

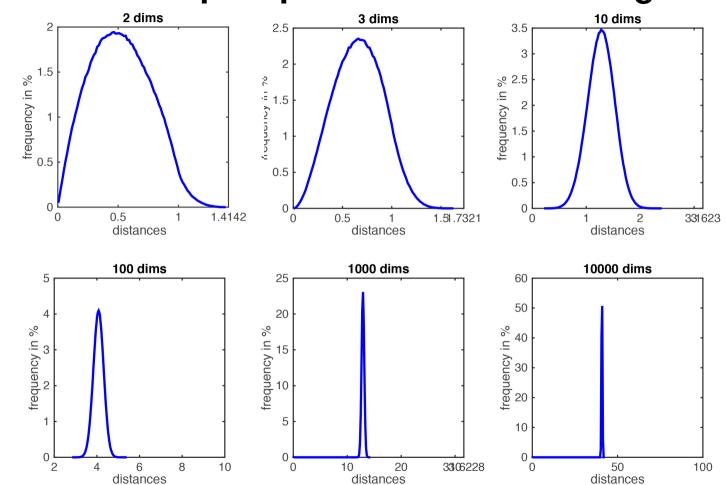


Distance increases as $d \to \infty$

In $[0,1]^d$, we uniformly sample two points x, x', calculate $d(x, x') = ||x - x'||_2$

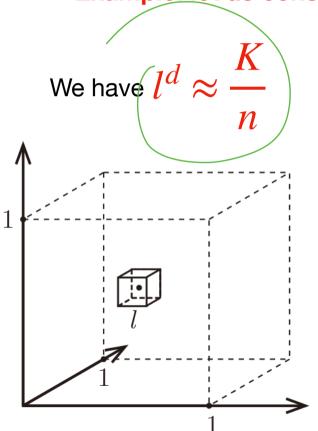
Let's plot the distribution of such distance:

Q: can you compute $\mathbb{E}_{x,x'} ||x - x'||_2^2$?



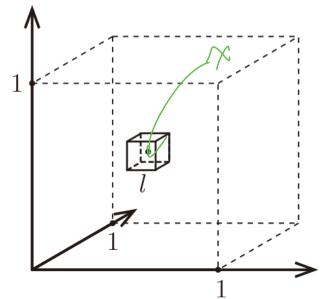
Distance increases as $d \to \infty$

Example: let us consider uniform distribution over a cube $[0,1]^d$



Example: let us consider uniform distribution over a cube $[0,1]^d$

We have
$$l^d \approx \frac{K}{n}$$



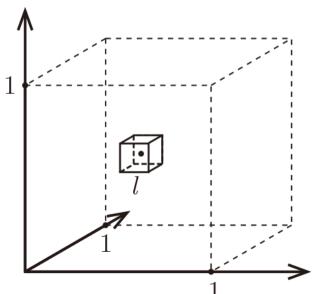
Q: to make sure that we have one sample inside a small cube, how large *n* needs to be?

$$N = \sqrt{2}d \qquad k = 1$$

$$= \sqrt{2}d$$

Example: let us consider uniform distribution over a cube $[0,1]^d$

We have
$$l^d \approx \frac{K}{n}$$

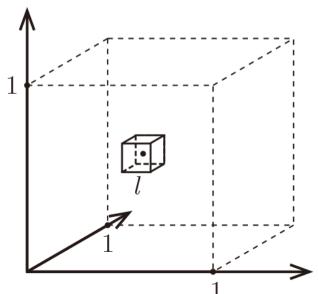


Q: to make sure that we have one sample inside a small cube, how large *n* needs to be?

Set
$$\ell = 0.1$$
, $K = 1$, then $n = 1/(0.1)^d = 10^d$

Example: let us consider uniform distribution over a cube $[0,1]^d$

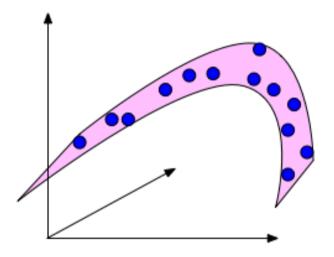
We have
$$l^d \approx \frac{K}{n}$$



Q: to make sure that we have one sample inside a small cube, how large *n* needs to be?

Set
$$\ell = 0.1$$
, $K = 1$, then $n = 1/(0.1)^d = 10^d$

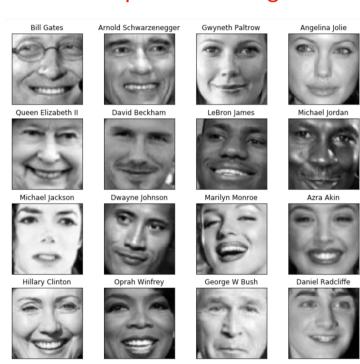
Bad news: when $d \ge 100$, # of samples needs to be larger than total # of atoms in the universe!



Data lives in 2-d manifold

Data lives in 2-d manifold

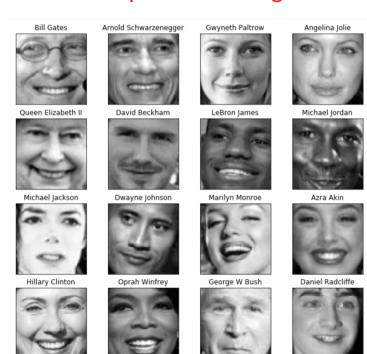
Example: face images

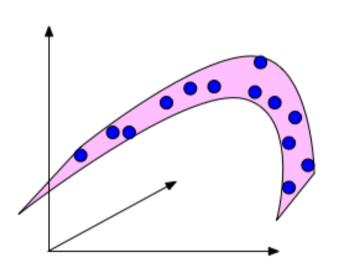


Data lives in 2-d manifold

Example: face images

Original image: \mathbb{R}^{64^2}





Data lives in 2-d manifold

Example: face images

Original image: \mathbb{R}^{64^2}

Next week: we will see that these faces approximately live in 100d space!

Summary for Today

1. K-NN: the simplest ML algorithm (very good baseline, should always try!)

Summary for Today

1. K-NN: the simplest ML algorithm (very good baseline, should always try!)

2. Works well when data is low-dimensional (e.g., can compare against the Bayes optimal)

Summary for Today

- 1. K-NN: the simplest ML algorithm (very good baseline, should always try!)
 - 2. Works well when data is low-dimensional (e.g., can compare against the Bayes optimal)
 - 3. Suffer when data is high-dimensional, due to the fact that in high-dimension space, data tends to spread far away from each other