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Outline of Today

1. Gradient Descent without accurate gradient
2. Boosting as Approximate Gradient Descent

3. Example: the AdaBoost Algorithm
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Gradient Descent without an accurate gradient

Consider minimizing the following function L(y),y € |

Approximate Gradient descent:
Vel = Y — h8,, Where g, # VL(y,)

Q: Under what condition of g,, can we still guarantee L(y,, ) < L(y,)?

A: As long as <§r9 VL(yt)> > 0
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Gradient Descent without an accurate gradient

Vie1 = Y, — 18, Where g, # VL(y,)

=g,
Prove this via first order Taylor
expansion and the fact that ¢ g, > 0

L(y, ) ~ L(y,) —ng8,
— L(yt) — NE; (agt T g%) A

— L(yt) — na)gt_rgt A// = (¢ gt) H H = ag,
8tll2

Positive since a > 0
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Key question that Boosting answers:

Can weak learners be combined together to generate a strong
learner with low bias?

(Weak learners: classifiers whose accuracy is slightly above 50%)
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Setup

We have a binary classification data & = {x;, y;}._;, (x;,y;) ~ P

Hypothesis class #°, hypothesish : X — {—1, + 1}

Loss function £(h(x), y), e.g., exponential loss exp(—yh(x))

Goal: learn an ensemble H(x) = Z ah(x), where h, € A
=1



The Boosting Algorithm

Initialize Hy = hy €
Fort=1 ...

Find a new classifier 1, {, s.t., H,., = H,+ ah,, , has smaller
training error
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Training weak learners

Denote y = [Ht(xl),Ht(xz), ...,Ht()cn)]T e R"

Define L()Af) — Z A @i, y,-), where yi — Ht(xi)
i=1

L(y): the total training loss of ensemble H,

Q: To minimize L(Y), cannot we just do GD on y directly?

A: no, we want find y that minimizes L, but it needs to be from some ensemble H
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Training weak learners

Denote y = [Ht(xl),Ht(xz), ...,Ht()cn)]T e R”

Define L(y) = Z £(y;,y;), wherey, = H(x;)
i=1

Let us compute VL(Y) € R” — the ideal descent direction

— VL(Y)

ldea: find a h € #, such that
|h(x)), ...h()cn)]T is close to — V L(Y)
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Training weak learners

af A'a l af An’ n
~VL®@) = (ayy’.y),..., (gy y)]T
or 5. ) ’ "
are min hix,) s ————————
ghE%Z ( ) 3)71

=W,

— arg?;{;Z | w, | h(x) S|gn(w))

— arg min Z [w; | (1(h(x;) = sign(w,)) — 1(h(x,) # sign(w;)))
he

= arg 21;{?1; Z |w.| - 1(h(x;) = sign(w;)) = arg zrelg} Z [w; | - 1(A(x) # — sign(w,))



Training weak learners
af(yz’ yl) af(j\}n’ yn)

— VL) = | R 5 1"
0 (9, ) | "
aremin ) h(x;)  ——————
ghE% Z ( ) @j\il
= arg min Z |w: | h(x) Slgn(w))
hex Turned it to a
weighted
= arg min Z |w: | l(h(x) = sign(w,)) — 1(h(x;) # sign(w, ))) classification
he# problem!

— alg ggyl} Z |w; | - 1(h(x;) = sign(w;)) = arg zrelg} 2 |w.| - 1(h(x;) # — sign(w;))
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Training weak learners

— VL(y)

Finding [A(x;), ..., h(x,)]" thatis

close to — VL(y) can be done via
weighted binary classification: y y’

[ 1(xp)s - ht+1(xn)]T

A new training set: \

{pia Xisg — Sign(Wi)}a where P; — ‘ W, ‘ / Z ‘ W, ‘ 3‘,/ — 5‘7 4 a[ht+1(xl)v o ht+1(xn)]T
J=1
& T
= |H
h. . := arg min Z p; - 1(h(x;) # — sign(w;)) H(x) + ahy (x), ..., H(x,) + ah,(x,)]

I
S
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The Boosting Algorithm Revisit

Initialize H, = hy € Z
Fort=1 ...
Compute y; = H(x;), Vi € [n]

Compute w; := 0£(y,, y;)/dy,, and normalize p. = | w; \/Z [w; |, Vi
n J

Run classification: h,, ; = arg min Zpi - 1(h(x;) # — sign(w,))
i=1

Add hy, i Hiy = H, + ah,




The Boosting Algorithm Revisit

— VL(Y)

Initialize H, = hy € Z

Fort=1 ... ")
aro max( — VL({¥))' h(xz)
Compute y; = H/(x;), Vi € [n] g he;fs( Y h( )

X

e w; := 0¢(y;,y;)/0y.,, and normalize p, = | w; \/Z |w; |, Vi

J
classification: /., | = arg min Zpl 1(h(x;) # — sign(w,))
=1

Add Ay y: H, = H + ahy,



Outline of Today

1. Gradient Descent without accurate gradient
2. Boosting as Approximate Gradient Descent

3. Example: the AdaBoost Algorithm



Train Weak learner

We will choose the exponential loss, i.e., £(),y) = exp(—y - V)




Train Weak learner

We will choose the exponential loss, i.e., £(),y) = exp(—y - V)

W; = or ()A’i, v/ ayi = = exp()A}iyi)yl-




Train Weak learner

We will choose the exponential loss, i.e., £(),y) = exp(—y - V)

W; = or ()A’i, v/ ayi = = exp()A}iyi)yl-

wi| = exp(=9y) pi= w1/ ) |wl
J




Train Weak learner

We will choose the exponential loss, i.e., £(),y) = exp(—y - V)

W; = or ()A’i, v/ 0&;‘ = = exp(fiiyi)yi

wi| = exp(=9y) pi= w1/ ) |wl
J

4 = arg min Zpll(h(x) # — sign(w,)




Train Weak learner

We will choose the exponential loss, i.e., £(),y) = exp(—y - V)

W; = or ()A’i, v/ ayi = = exp()?iyi)yi

wi| = exp(=9y) pi= w1/ ) |wl
J
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Train Weak learner

We will choose the exponential loss, i.e., £(),y) = exp(—y - V)

w, = 0C€(y;, v,)/ 0y, = — exp(y;y,)y;

| O 310 PV Binary classification on weighted data

wi| = exp(=9y) pi=w;l/ ) |w
J

by, = argmin ) p1(h(x) # — Sign(w,))
=1

he#

Q: what does it mean if p; is large?

= arg min Zpi - 1(A(x;) # ;)
he# 1
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Select the best learning rate
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=1
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Compute learning rate

Select the best learning rate

.y = arg %{72 gpi - 1(h(x;) # y;) H. ,=H + aht+1
Find the best learning rate via optimization:

arg min Z £(H(x;) + ah, (x;), y;)
=1

a>0 “

Compute the derivative wrt a, set it to zero, and solve for o
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Put everything together: AdaBoost

Initialize Hy = h) €
Fort=1 ...

Compute w;, = — y. exp(—H,(x;)y;), and normalize p, = | w; \/2 |w; |, Vi

J
n

Run classification: /,, ; = arg min Z p; - 1(h(x) # y.)

he# ]
n
Weak learner’s loss € = Z D // total weight of examples where A, ,
iyt () made a mistake
“Jl + l
1 1—¢€
H_ ,=H+—In -h.1  //thebesta = 0.5In((1 —¢€)/¢)




Analysis of AdaBoost

From weak learners to a strong learner that minimizes training error
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The definition of Weak learning

Each weaker learning optimizes its own data:

D = {pi,xi,yi}, where Zpi =1,p;, > 0,Vi

h, = arg g} ; p; - 1(h(x;) # y;)

n
1
Assume that weaker learner’s loss € := Zpl-l{htﬂ(xi) vy} < 5 Y, v >0
i=1

Q: assume # is symmetric, i.e., h € # iff —h € #, why does the above always hold?
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Weaker learnability implies approximating gradient well

n
1
Assume that weaker learner’s loss € := Zpil{htﬂ(xi) * vy} < 5 Y, v >0
i=1

— VL(Y)

ht+1(x1)]

(= VLE)' [
Ny 1(X,)

n
> () w2y >0
J=1 Within 90 degree, so
improve the objective!
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Formal Convergence of AdaBoost

Then after T iterations, for the original exp loss, we have
1 n
NT/2
— 2 exp(—Hr(x;) - y;) < n(l —4y7)
n -
=1
Note zero-one loss is upper bounded by exponential loss

n

Z exp(—H (x;) - y) < n(1 — 4},2)T/2
=1

n

1 +« 1
- Z 1{sign(H(x))) # y;} < —
=1

(Proof in lecture note, optional)
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Summary of AdaBoost

1. Every iteration, we train a weak learner via binary classification on a weighted data

n

by, = argmin ) p; - 1(h(x;) # y)

h
S

Note p; := exp(—H/(x,)y;), and learning rate depends on £, ;’s performance

2. Each weaker learner doing better than random coin toss (0.5 — y) implies
stronger learner at the end



