Boosting

Announcements

Outline of Today

1. Gradient Descent without accurate gradient

2. Boosting as Approximate Gradient Descent

3. Example: the AdaBoost Algorithm

Consider minimizing the following function $L(y), y \in \mathbb{R}^n$

Consider minimizing the following function $L(y), y \in \mathbb{R}^n$

Gradient descent:

$$y_{t+1} = y_t - \eta g_t$$
, where $g_t = \nabla L(y_t)$

Consider minimizing the following function $L(y), y \in \mathbb{R}^n$

Gradient descent:

$$y_{t+1} = y_t - \eta g_t$$
, where $g_t = \nabla L(y_t)$

When η is small and $g_t \neq 0$, we know $L(y_{t+1}) < L(y_t)$

Consider minimizing the following function $L(y), y \in \mathbb{R}^n$

Approximate Gradient descent:

$$y_{t+1} = y_t - \eta \hat{g}_t$$
, where $\hat{g}_t \neq \nabla L(y_t)$

Consider minimizing the following function $L(y), y \in \mathbb{R}^n$

Approximate Gradient descent:

$$y_{t+1} = y_t - \eta \hat{g}_t$$
, where $\hat{g}_t \neq \nabla L(y_t)$

Q: Under what condition of \hat{g}_t , can we still guarantee $L(y_{t+1}) < L(y_t)$?

Consider minimizing the following function $L(y), y \in \mathbb{R}^n$

Approximate Gradient descent:

$$y_{t+1} = y_t - \eta \hat{g}_t$$
, where $\hat{g}_t \neq \nabla L(y_t)$

Q: Under what condition of \hat{g}_t , can we still guarantee $L(y_{t+1}) < L(y_t)$?

A: As long as
$$\langle \hat{g}_t, \nabla L(y_t) \rangle > 0$$

$$y_{t+1} = y_t - \eta \hat{g}_t$$
, where $\hat{g}_t \neq \nabla L(y_t)$

$$\vdots = g_t$$

$$y_{t+1} = y_t - \eta \hat{g}_t$$
, where $\hat{g}_t \neq \nabla L(y_t)$
 $\vdots = g_t$

$$y_{t+1} = y_t - \eta \hat{g}_t$$
, where $\hat{g}_t \neq \nabla L(y_t)$
 $\vdots = g_t$

$$y_{t+1} = y_t - \eta \hat{g}_t$$
, where $\hat{g}_t \neq \nabla L(y_t)$
 $\vdots = g_t$

$$y_{t+1} = y_t - \eta \hat{g}_t$$
, where $\hat{g}_t \neq \nabla L(y_t)$
 $\vdots = g_t$

$$y_{t+1} = y_t - \eta \hat{g}_t$$
, where $\hat{g}_t \neq \nabla L(y_t)$
 $\vdots = g_t$

$$y_{t+1} = y_t - \eta \hat{g}_t$$
, where $\hat{g}_t \neq \nabla L(y_t)$
 $\vdots = g_t$

$$\hat{g}_t^{\perp} \qquad \hat{g}_t \qquad \hat{g}_t'$$

$$\hat{g}_t = \hat{g}_t'' + \hat{g}_t^{\perp}$$

$$\hat{g}_t'' = (\hat{g}_t^{\top} g_t) \frac{g_t}{\|g_t\|_2} = \alpha g_t$$

$$y_{t+1} = y_t - \eta \hat{g}_t$$
, where $\hat{g}_t \neq \nabla L(y_t)$
 $\vdots = g_t$

$$\hat{g}_t^{\perp} \qquad \hat{g}_t \qquad \hat{g}_t \qquad \hat{g}_t$$

$$\hat{g}_t = \hat{g}_t'' + \hat{g}_t^{\perp}$$

$$\hat{g}_t'' = (\hat{g}_t^{\top} g_t) \frac{g_t}{\|g_t\|_2} = \alpha g_t$$

$$y_{t+1} = y_t - \eta \hat{g}_t$$
, where $\hat{g}_t \neq \nabla L(y_t)$
 $\vdots = g_t$

$$L(y_{t+1}) \approx L(y_t) - \eta g_t^{\mathsf{T}} \hat{g}_t$$

$$\hat{g}_t^{\perp} \qquad \hat{g}_t$$

$$\hat{g}_t = \hat{g}_t'' + \hat{g}_t^{\perp}$$

$$\hat{g}_t'' = (\hat{g}_t^{\top} g_t) \frac{g_t}{\|g_t\|_2} = \alpha g_t$$

$$y_{t+1} = y_t - \eta \hat{g}_t$$
, where $\hat{g}_t \neq \nabla L(y_t)$
 $\vdots = g_t$

$$L(y_{t+1}) \approx L(y_t) - \eta g_t^{\mathsf{T}} \hat{g}_t$$
$$= L(y_t) - \eta g_t^{\mathsf{T}} (\alpha g_t + \hat{g}_t^{\mathsf{L}})$$

$$\hat{g}_t^{\perp} \qquad \hat{g}_t$$

$$\hat{g}_t = \hat{g}_t'' + \hat{g}_t^{\perp}$$

$$\hat{g}_t'' = (\hat{g}_t^{\top} g_t) \frac{g_t}{\|g_t\|_2} = \alpha g_t$$

$$y_{t+1} = y_t - \eta \hat{g}_t$$
, where $\hat{g}_t \neq \nabla L(y_t)$
 $\vdots = g_t$

$$L(y_{t+1}) \approx L(y_t) - \eta g_t^{\mathsf{T}} \hat{g}_t$$

$$= L(y_t) - \eta g_t^{\mathsf{T}} (\alpha g_t + \hat{g}_t^{\mathsf{L}})$$

$$= L(y_t) - (\eta \alpha) g_t^{\mathsf{T}} g_t$$

$$\hat{g}_t^{\perp} \qquad \hat{g}_t \qquad \hat{g}_t'$$

$$\hat{g}_t'' + \hat{g}_t^{\perp}$$

$$\hat{g}_t'' = (\hat{g}_t^{\top} g_t) \frac{g_t}{\|g_t\|_2} = \alpha g_t$$

$$y_{t+1} = y_t - \eta \hat{g}_t$$
, where $\hat{g}_t \neq \nabla L(y_t)$
 $\vdots = g_t$

$$L(y_{t+1}) \approx L(y_t) - \eta g_t^{\mathsf{T}} \hat{g}_t$$

$$= L(y_t) - \eta g_t^{\mathsf{T}} (\alpha g_t + \hat{g}_t^{\perp})$$

$$= L(y_t) - (\eta \alpha) g_t^{\mathsf{T}} g_t$$
Positive since $\alpha > 0$

$$\hat{g}_t^{\perp} \qquad \hat{g}_t \qquad \hat{g}_t$$

$$\hat{g}_t = \hat{g}_t'' + \hat{g}_t^{\perp}$$

$$\hat{g}_t'' = (\hat{g}_t^{\top} g_t) \frac{g_t}{\|g_t\|_2} = \alpha g_t$$

Outline of Today

1. Gradient Descent without accurate gradient

2. Boosting as Approximate Gradient Descent

3. Example: the AdaBoost Algorithm

Key question that Boosting answers:

Can weak learners be combined together to generate a strong learner with low bias?

(Weak learners: classifiers whose accuracy is slightly above 50%)

Setup

We have a binary classification data $\mathcal{D} = \{x_i, y_i\}_{i=1}^n, (x_i, y_i) \sim P$

Hypothesis class \mathcal{H} , hypothesis $h: X \mapsto \{-1, +1\}$

Setup

We have a binary classification data $\mathcal{D} = \{x_i, y_i\}_{i=1}^n, (x_i, y_i) \sim P$

Hypothesis class \mathcal{H} , hypothesis $h: X \mapsto \{-1, +1\}$

Loss function $\ell(h(x), y)$, e.g., exponential loss $\exp(-yh(x))$

Setup

We have a binary classification data $\mathcal{D} = \{x_i, y_i\}_{i=1}^n, (x_i, y_i) \sim P$

Hypothesis class \mathcal{H} , hypothesis $h: X \mapsto \{-1, +1\}$

Loss function $\ell(h(x), y)$, e.g., exponential loss $\exp(-yh(x))$

Goal: learn an ensemble
$$H(x) = \sum_{t=1}^{I} \alpha_t h_t(x)$$
, where $h_t \in \mathcal{H}$

The Boosting Algorithm

Initialize $H_1 = h_1 \in \mathcal{H}$

For $t = 1 \dots$

Find a new classifier h_{t+1} , s.t., $H_{t+1} = H_t + \alpha h_{t+1}$ has smaller training error

Denote
$$\hat{\mathbf{y}} = [H_t(x_1), H_t(x_2), ..., H_t(x_n)]^{\top} \in \mathbb{R}^n$$

Denote
$$\hat{\mathbf{y}} = [H_t(x_1), H_t(x_2), ..., H_t(x_n)]^{\top} \in \mathbb{R}^n$$

Define
$$L(\hat{\mathbf{y}}) = \sum_{i=1}^{n} \mathscr{C}(\hat{y}_i, y_i)$$
, where $\hat{y}_i = H_t(x_i)$

Denote
$$\hat{\mathbf{y}} = [H_t(x_1), H_t(x_2), ..., H_t(x_n)]^{\mathsf{T}} \in \mathbb{R}^n$$

Define
$$L(\hat{\mathbf{y}}) = \sum_{i=1}^{n} \ell(\hat{y}_i, y_i)$$
, where $\hat{y}_i = H_t(x_i)$

 $L(\hat{\mathbf{y}})$: the total training loss of ensemble H_t

Denote
$$\hat{\mathbf{y}} = [H_t(x_1), H_t(x_2), ..., H_t(x_n)]^{\top} \in \mathbb{R}^n$$

Define
$$L(\hat{\mathbf{y}}) = \sum_{i=1}^{n} \ell(\hat{y}_i, y_i)$$
, where $\hat{y}_i = H_t(x_i)$

 $L(\hat{\mathbf{y}})$: the total training loss of ensemble H_t

Q: To minimize $L(\hat{y})$, cannot we just do GD on \hat{y} directly?

Denote
$$\hat{\mathbf{y}} = \begin{bmatrix} H_t(x_1), H_t(x_2), \dots, H_t(x_n) \end{bmatrix}^\top \in \mathbb{R}^n$$

Define
$$L(\hat{\mathbf{y}}) = \sum_{i=1}^{n} \ell(\hat{y}_i, y_i)$$
, where $\hat{y}_i = H_t(x_i)$

 $L(\hat{\mathbf{y}})$: the total training loss of ensemble H_t

Q: To minimize $L(\hat{\mathbf{y}})$, cannot we just do GD on $\hat{\mathbf{y}}$ directly?

A: no, we want find $\hat{\mathbf{y}}$ that minimizes L, but it needs to be from some ensemble H

Denote
$$\hat{\mathbf{y}} = [H_t(x_1), H_t(x_2), ..., H_t(x_n)]^{\top} \in \mathbb{R}^n$$

Define
$$L(\hat{\mathbf{y}}) = \sum_{i=1}^{n} \mathscr{C}(\hat{y}_i, y_i)$$
, where $\hat{y}_i = H_t(x_i)$

Let us compute $\nabla L(\hat{\mathbf{y}}) \in \mathbb{R}^n$ — the ideal descent direction

Denote
$$\hat{\mathbf{y}} = \begin{bmatrix} H_t(x_1), H_t(x_2), \dots, H_t(x_n) \end{bmatrix}^\top \in \mathbb{R}^n$$

Define
$$L(\hat{\mathbf{y}}) = \sum_{i=1}^{n} \mathscr{C}(\hat{y}_i, y_i)$$
, where $\hat{y}_i = H_t(x_i)$

Let us compute $\nabla L(\hat{\mathbf{y}}) \in \mathbb{R}^n$ — the ideal descent direction

Denote
$$\hat{\mathbf{y}} = [H_t(x_1), H_t(x_2), ..., H_t(x_n)]^{\top} \in \mathbb{R}^n$$

Define
$$L(\hat{\mathbf{y}}) = \sum_{i=1}^{n} \mathcal{E}(\hat{y}_i, y_i)$$
, where $\hat{y}_i = H_t(x_i)$

Let us compute $\nabla L(\hat{\mathbf{y}}) \in \mathbb{R}^n$ — the ideal descent direction

$$\underset{h \in \mathcal{H}}{\operatorname{arg \, min}} \sum_{h \in \mathcal{H}}^{n} h(x_i) \cdot \frac{\partial \mathcal{E}(\hat{y}_i, y_i)}{\partial \hat{y}_i}$$

$$\vdots = w_i$$

$$\underset{h \in \mathcal{H}}{\operatorname{arg \, min}} \sum_{h \in \mathcal{H}}^{n} h(x_i) \cdot \frac{\partial \mathcal{E}(\hat{y}_i, y_i)}{\partial \hat{y}_i}$$

$$\vdots = w_i$$

$$= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} |w_i| \left(h(x_i) \cdot \operatorname{sign}(w_i) \right)$$

$$\underset{h \in \mathcal{H}}{\operatorname{arg \, min}} \sum_{h \in \mathcal{H}}^{n} h(x_i) \cdot \frac{\partial \mathcal{E}(\hat{y}_i, y_i)}{\partial \hat{y}_i}$$

$$\vdots = w_i$$

$$= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} |w_i| \left(h(x_i) \cdot \operatorname{sign}(w_i)\right)$$

$$= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} |w_i| \left(\mathbf{1}(h(x_i) = \operatorname{sign}(w_i)) - \mathbf{1}(h(x_i) \neq \operatorname{sign}(w_i)) \right)$$

$$\underset{h \in \mathcal{H}}{\operatorname{arg \, min}} \sum_{h \in \mathcal{H}}^{n} h(x_i) \cdot \frac{\partial \mathcal{E}(\hat{y}_i, y_i)}{\partial \hat{y}_i}$$

$$\vdots = w$$

$$= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} |w_i| \left(h(x_i) \cdot \operatorname{sign}(w_i)\right)$$

$$= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} |w_i| \left(\mathbf{1}(h(x_i) = \operatorname{sign}(w_i)) - \mathbf{1}(h(x_i) \neq \operatorname{sign}(w_i)) \right)$$

$$= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} |w_i| \cdot \mathbf{1}(h(x_i) = \operatorname{sign}(w_i))$$

$$\underset{h \in \mathcal{H}}{\operatorname{arg \, min}} \sum_{h \in \mathcal{H}}^{n} h(x_i) \cdot \frac{\partial \mathcal{E}(\hat{y}_i, y_i)}{\partial \hat{y}_i}$$

$$\vdots = w$$

$$= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} |w_i| \left(h(x_i) \cdot \operatorname{sign}(w_i)\right)$$

$$= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} |w_i| \left(\mathbf{1}(h(x_i) = \operatorname{sign}(w_i)) - \mathbf{1}(h(x_i) \neq \operatorname{sign}(w_i)) \right)$$

$$= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} |w_i| \cdot \mathbf{1}(h(x_i) = \text{sign}(w_i)) = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} |w_i| \cdot \mathbf{1}(h(x_i) \neq -\text{sign}(w_i))$$

$$\underset{h \in \mathcal{H}}{\operatorname{arg \, min}} \sum_{h \in \mathcal{H}}^{n} h(x_i) \cdot \frac{\partial \mathcal{E}(\hat{y}_i, y_i)}{\partial \hat{y}_i}$$

$$\vdots = w_i$$

$$= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} |w_i| \left(h(x_i) \cdot \operatorname{sign}(w_i) \right)$$

$$= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} |w_i| \left(\mathbf{1}(h(x_i) = \operatorname{sign}(w_i)) - \mathbf{1}(h(x_i) \neq \operatorname{sign}(w_i)) \right)$$

Turned it to a weighted classification problem!

$$= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} |w_i| \cdot \mathbf{1}(h(x_i) = \text{sign}(w_i)) = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} |w_i| \cdot \mathbf{1}(h(x_i) \neq -\text{sign}(w_i))$$

Finding $[h(x_1), ..., h(x_n)]^{\mathsf{T}}$ that is close to $-\nabla L(\hat{\mathbf{y}})$ can be done via weighted binary classification:

Finding $[h(x_1), ..., h(x_n)]^{\mathsf{T}}$ that is close to $-\nabla L(\hat{\mathbf{y}})$ can be done via weighted binary classification:

$$\{p_i, x_i, -\operatorname{sign}(w_i)\}, \text{ where } p_i = |w_i| / \sum_{j=1}^n |w_i|$$

Finding $[h(x_1), ..., h(x_n)]^{\mathsf{T}}$ that is close to $-\nabla L(\hat{\mathbf{y}})$ can be done via weighted binary classification:

$$\{p_i, x_i, -\text{sign}(w_i)\}, \text{ where } p_i = |w_i| / \sum_{j=1}^n |w_i|$$

$$h_{t+1} := \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} p_i \cdot \mathbf{1}(h(x_i) \neq -\operatorname{sign}(w_i))$$

Finding $[h(x_1), ..., h(x_n)]^{\mathsf{T}}$ that is close to $-\nabla L(\hat{\mathbf{y}})$ can be done via weighted binary classification:

$$\{p_i, x_i, -\operatorname{sign}(w_i)\}, \text{ where } p_i = |w_i| / \sum_{j=1}^n |w_i|$$

$$h_{t+1} := \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} p_i \cdot \mathbf{1}(h(x_i) \neq -\operatorname{sign}(w_i))$$

Finding $[h(x_1), ..., h(x_n)]^{\mathsf{T}}$ that is close to $-\nabla L(\hat{\mathbf{y}})$ can be done via weighted binary classification:

$$\{p_i, x_i, -\operatorname{sign}(w_i)\}, \text{ where } p_i = |w_i| / \sum_{j=1}^n |w_i|$$

$$h_{t+1} := \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} p_i \cdot \mathbf{1}(h(x_i) \neq -\operatorname{sign}(w_i))$$

Finding $[h(x_1), ..., h(x_n)]^{\mathsf{T}}$ that is close to $-\nabla L(\hat{\mathbf{y}})$ can be done via weighted binary classification:

$$\{p_i, x_i, -\operatorname{sign}(w_i)\}, \text{ where } p_i = |w_i| / \sum_{j=1}^n |w_i|$$

$$h_{t+1} := \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} p_i \cdot \mathbf{1}(h(x_i) \neq -\operatorname{sign}(w_i))$$

Finding $[h(x_1), ..., h(x_n)]^{\mathsf{T}}$ that is close to $-\nabla L(\hat{\mathbf{y}})$ can be done via weighted binary classification:

$$\{p_i, x_i, -\operatorname{sign}(w_i)\}, \text{ where } p_i = |w_i| / \sum_{j=1}^n |w_i|$$

$$h_{t+1} := \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} p_i \cdot \mathbf{1}(h(x_i) \neq -\operatorname{sign}(w_i))$$

$$\hat{\mathbf{y}}' = \hat{\mathbf{y}} + \alpha [h_{t+1}(x_1), \dots, h_{t+1}(x_n)]^{\mathsf{T}}$$

$$= \left[H_t(x_1) + \alpha h_{t+1}(x_1), \dots, H_t(x_n) + \alpha h_{t+1}(x_n) \right]^{\top}$$

Initialize $H_1 = h_1 \in \mathcal{H}$

For $t = 1 \dots$

Initialize
$$H_1 = h_1 \in \mathcal{H}$$

For
$$t = 1 ...$$

Compute
$$\hat{y}_i = H_t(x_i), \forall i \in [n]$$

Initialize $H_1 = h_1 \in \mathcal{H}$

For t = 1 ...

Compute $\hat{y}_i = H_t(x_i), \forall i \in [n]$

Compute $w_i := \partial \mathcal{E}(\hat{y}_i, y_i)/\partial \hat{y}_i$, and normalize $p_i = |w_i|/\sum_j |w_j|$, $\forall i$

Initialize
$$H_1 = h_1 \in \mathcal{H}$$

For $t = 1 \dots$

Compute
$$\hat{y}_i = H_t(x_i), \forall i \in [n]$$

Compute
$$w_i := \partial \mathcal{E}(\hat{y}_i, y_i)/\partial \hat{y}_i$$
, and normalize $p_i = |w_i|/\sum_j |w_j|, \forall i$

Run classification:
$$h_{t+1} = \arg\min \sum_{i=1}^{n} p_i \cdot \mathbf{1}(h(x_i) \neq -\operatorname{sign}(w_i))$$

Initialize $H_1 = h_1 \in \mathcal{H}$

For $t = 1 \dots$

Compute $\hat{y}_i = H_t(x_i), \forall i \in [n]$

Compute $w_i := \partial \mathcal{E}(\hat{y}_i, y_i)/\partial \hat{y}_i$, and normalize $p_i = |w_i|/\sum_j |w_j|$, $\forall i$

Run classification: $h_{t+1} = \arg\min \sum_{i=1}^{n} p_i \cdot \mathbf{1}(h(x_i) \neq -\operatorname{sign}(w_i))$

Add h_{t+1} : $H_{t+1} = H_t + \alpha h_{t+1}$

Initialize
$$H_1 = h_1 \in \mathcal{H}$$

For $t = 1 \dots$

Compute
$$\hat{y}_i = H_t(x_i), \forall i \in [n]$$

$$\underset{h \in \mathcal{H}}{\operatorname{arg max}} (-\nabla L(\hat{\mathbf{y}}))^{\top} \begin{bmatrix} h(x_1) \\ h(x_2) \\ \dots \\ h(x_n) \end{bmatrix}$$

Compute
$$w_i := \partial \mathcal{E}(\hat{y}_i, y_i) / \partial \hat{y}_i$$
, and normalize $p_i = |w_i| / \sum_j |w_j|, \forall i$

Run classification:
$$h_{t+1} = \arg\min \sum_{i=1}^{\infty} p_i \cdot \mathbf{1}(h(x_i) \neq -\operatorname{sign}(w_i))$$

Add
$$h_{t+1}$$
: $H_{t+1} = H_t + \alpha h_{t+1}$

Outline of Today

1. Gradient Descent without accurate gradient

2. Boosting as Approximate Gradient Descent

3. Example: the AdaBoost Algorithm

$$w_i = \partial \mathcal{E}(\hat{y}_i, y_i) / \partial \hat{y}_i = -\exp(\hat{y}_i y_i) y_i$$

$$w_i = \partial \mathcal{E}(\hat{y}_i, y_i) / \partial \hat{y}_i = -\exp(\hat{y}_i y_i) y_i$$
$$|w_i| = \exp(-\hat{y}_i y_i) \quad p_i = |w_i| / \sum_j |w_j|$$

$$\begin{aligned} w_i &= \partial \mathcal{E}(\hat{y}_i, y_i) / \partial \hat{y}_i = -\exp(\hat{y}_i y_i) y_i \\ |w_i| &= \exp(-\hat{y}_i y_i) \quad p_i = |w_i| / \sum_j |w_j| \\ h_{t+1} &= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^n p_i \mathbf{1}(h(x_i) \neq -\operatorname{sign}(w_i)) \end{aligned}$$

$$\begin{aligned} w_i &= \partial \mathcal{E}(\hat{y}_i, y_i) / \partial \hat{y}_i = -\exp(\hat{y}_i y_i) y_i \\ |w_i| &= \exp(-\hat{y}_i y_i) \quad p_i = |w_i| / \sum_j |w_j| \\ h_{t+1} &= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^n p_i \mathbf{1}(h(x_i) \neq -\operatorname{sign}(w_i)) \\ &= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^n p_i \cdot \mathbf{1}(h(x_i) \neq y_i) \end{aligned}$$

We will choose the exponential loss, i.e., $\ell(\hat{y}, y) = \exp(-y \cdot \hat{y})$

$$\begin{aligned} w_i &= \partial \ell(\hat{y}_i, y_i) / \partial \hat{y}_i = -\exp(\hat{y}_i y_i) y_i \\ |w_i| &= \exp(-\hat{y}_i y_i) \quad p_i = |w_i| / \sum_j |w_j| \\ h_{t+1} &= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^n p_i \mathbf{1}(h(x_i) \neq -\operatorname{sign}(w_i)) \\ &= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^n p_i \cdot \mathbf{1}(h(x_i) \neq y_i) \end{aligned}$$

Binary classification on weighted data

$$\widetilde{\mathcal{D}} = \{p_i, x_i, y_i\}, \text{ where } \sum_i p_i = 1, p_i \ge 0, \forall i$$

We will choose the exponential loss, i.e., $\ell(\hat{y}, y) = \exp(-y \cdot \hat{y})$

$$\begin{aligned} w_i &= \partial \mathcal{E}(\hat{y}_i, y_i) / \partial \hat{y}_i = -\exp(\hat{y}_i y_i) y_i \\ |w_i| &= \exp(-\hat{y}_i y_i) \quad p_i = |w_i| / \sum_j |w_j| \\ h_{t+1} &= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^n p_i \mathbf{1}(h(x_i) \neq -\operatorname{sign}(w_i)) \\ &= \arg\min_{h \in \mathcal{H}} \sum_{i=1}^n p_i \cdot \mathbf{1}(h(x_i) \neq y_i) \end{aligned}$$

Binary classification on weighted data

$$\widetilde{\mathcal{D}} = \{p_i, x_i, y_i\}, \text{ where } \sum_i p_i = 1, p_i \ge 0, \forall i$$

Q: what does it mean if p_i is large?

Compute learning rate

Select the best learning rate α

$$h_{t+1} = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} p_i \cdot \mathbf{1}(h(x_i) \neq y_i)$$
 $H_{t+1} = H_t + \alpha h_{t+1}$

Compute learning rate

Select the best learning rate α

$$h_{t+1} = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} p_i \cdot \mathbf{1}(h(x_i) \neq y_i)$$
 $H_{t+1} = H_t + \alpha h_{t+1}$

Find the best learning rate via optimization:

$$\underset{\alpha>0}{\arg\min} \sum_{i=1}^{n} \mathcal{E}(H_t(x_i) + \alpha h_{t+1}(x_i), y_i)$$

Compute learning rate

Select the best learning rate α

$$h_{t+1} = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} p_i \cdot \mathbf{1}(h(x_i) \neq y_i)$$
 $H_{t+1} = H_t + \alpha h_{t+1}$

Find the best learning rate via optimization:

$$\underset{\alpha>0}{\arg\min} \sum_{i=1}^{n} \mathcal{E}(H_t(x_i) + \alpha h_{t+1}(x_i), y_i)$$

Compute the derivative wrt α , set it to zero, and solve for α

Put everything together: AdaBoost

Initialize $H_1 = h_1 \in \mathcal{H}$

For $t = 1 \dots$

Put everything together: AdaBoost

Initialize $H_1 = h_1 \in \mathcal{H}$

For $t = 1 \dots$

Compute $w_i = -y_i \exp(-H_t(x_i)y_i)$, and normalize $p_i = |w_i| / \sum_j |w_j|$, $\forall i$

Initialize $H_1 = h_1 \in \mathcal{H}$

For $t = 1 \dots$

Compute $w_i = -y_i \exp(-H_t(x_i)y_i)$, and normalize $p_i = |w_i| / \sum_j |w_j|$, $\forall i$

Run classification: $h_{t+1} = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} p_i \cdot \mathbf{1}(h(x_i) \neq y_i)$

Initialize $H_1 = h_1 \in \mathcal{H}$

Compute
$$w_i = -y_i \exp(-H_t(x_i)y_i)$$
, and normalize $p_i = |w_i|/\sum_j |w_j|$, $\forall i$

Run classification:
$$h_{t+1} = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} p_i \cdot \mathbf{1}(h(x_i) \neq y_i)$$

Weak learner's loss
$$\epsilon = \sum_{i:y_i \neq h_{h+1}(x_i)}^{n} p_i$$

Initialize $H_1 = h_1 \in \mathcal{H}$

Compute
$$w_i = -y_i \exp(-H_t(x_i)y_i)$$
, and normalize $p_i = |w_i|/\sum_j |w_j|$, $\forall i$

Run classification:
$$h_{t+1} = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} p_i \cdot \mathbf{1}(h(x_i) \neq y_i)$$

Weak learner's loss
$$\epsilon = \sum_{i:y_i \neq h_{b+1}(x_i)}^n p_i$$
 // total weight of examples where h_{t+1} made a mistake

Initialize
$$H_1 = h_1 \in \mathcal{H}$$

Compute
$$w_i = -y_i \exp(-H_t(x_i)y_i)$$
, and normalize $p_i = |w_i|/\sum_j |w_j|$, $\forall i$

Run classification:
$$h_{t+1} = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} p_i \cdot \mathbf{1}(h(x_i) \neq y_i)$$

Weak learner's loss
$$e = \sum_{i:y_i \neq h_{h+1}(x_i)}^{n} p_i$$
 // total weight of examples where h_{t+1} made a mistake

$$H_{t+1} = H_t + \frac{1}{2} \ln \frac{1 - \epsilon}{\epsilon} \cdot h_{t+1}$$

Initialize $H_1 = h_1 \in \mathcal{H}$

Compute
$$w_i = -y_i \exp(-H_t(x_i)y_i)$$
, and normalize $p_i = |w_i|/\sum_j |w_j|$, $\forall i$

Run classification:
$$h_{t+1} = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} p_i \cdot \mathbf{1}(h(x_i) \neq y_i)$$

Weak learner's loss
$$\epsilon = \sum_{i:y_i \neq h_{b+1}(x_i)}^{n} p_i$$
 // total weight of examples where h_{t+1} made a mistake

$$H_{t+1} = H_t + \frac{1}{2} \ln \frac{1 - \epsilon}{\epsilon} \cdot h_{t+1} \qquad \text{// the best } \alpha = 0.5 \ln((1 - \epsilon)/\epsilon)$$

Analysis of AdaBoost

From weak learners to a strong learner that minimizes training error

The definition of Weak learning

Each weaker learning optimizes its own data:

$$\widetilde{\mathcal{D}} = \{p_i, x_i, y_i\}, \text{ where } \sum_i p_i = 1, p_i \ge 0, \forall i$$

$$h_{t+1} = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} p_i \cdot \mathbf{1}(h(x_i) \neq y_i)$$

The definition of Weak learning

Each weaker learning optimizes its own data:

$$\widetilde{\mathcal{D}} = \{p_i, x_i, y_i\}, \text{ where } \sum_i p_i = 1, p_i \ge 0, \forall i$$

$$h_{t+1} = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} p_i \cdot \mathbf{1}(h(x_i) \neq y_i)$$

Assume that weaker learner's loss
$$\epsilon := \sum_{i=1}^n p_i \mathbf{1}\{h_{t+1}(x_i) \neq y_i\} \leq \frac{1}{2} - \gamma, \ \gamma > 0$$

The definition of Weak learning

Each weaker learning optimizes its own data:

$$\widetilde{\mathcal{D}} = \{p_i, x_i, y_i\}, \text{ where } \sum_i p_i = 1, p_i \ge 0, \forall i$$

$$h_{t+1} = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} p_i \cdot \mathbf{1}(h(x_i) \neq y_i)$$

Assume that weaker learner's loss
$$\epsilon := \sum_{i=1}^n p_i \mathbf{1}\{h_{t+1}(x_i) \neq y_i\} \leq \frac{1}{2} - \gamma, \ \gamma > 0$$

Q: assume \mathcal{H} is symmetric, i.e., $h \in \mathcal{H}$ iff $-h \in \mathcal{H}$, why does the above always hold?

Assume that weaker learner's loss
$$\epsilon := \sum_{i=1}^n p_i \mathbf{1}\{h_{t+1}(x_i) \neq y_i\} \leq \frac{1}{2} - \gamma, \ \gamma > 0$$

Assume that weaker learner's loss
$$\epsilon := \sum_{i=1}^n p_i \mathbf{1}\{h_{t+1}(x_i) \neq y_i\} \leq \frac{1}{2} - \gamma, \ \gamma > 0$$

$$(-\nabla L(\hat{\mathbf{y}}))^{\mathsf{T}} \begin{bmatrix} h_{t+1}(x_1) \\ \cdots \\ h_{h+1}(x_n) \end{bmatrix}$$

Assume that weaker learner's loss $\epsilon := \sum_{i=1}^n p_i \mathbf{1}\{h_{t+1}(x_i) \neq y_i\} \leq \frac{1}{2} - \gamma, \ \gamma > 0$

$$(-\nabla L(\hat{\mathbf{y}}))^{\mathsf{T}} \begin{bmatrix} h_{t+1}(x_1) \\ \cdots \\ h_{h+1}(x_n) \end{bmatrix}$$

$$\geq (\sum_{j=1}^{n} |w_j|) 2\gamma > 0$$

Assume that weaker learner's loss $\epsilon := \sum_{i=1}^n p_i \mathbf{1}\{h_{t+1}(x_i) \neq y_i\} \leq \frac{1}{2} - \gamma, \ \gamma > 0$

$$(-\nabla L(\hat{\mathbf{y}}))^{\mathsf{T}} \begin{bmatrix} h_{t+1}(x_1) \\ \cdots \\ h_{h+1}(x_n) \end{bmatrix}$$

$$\geq (\sum_{j=1}^{n} |w_j|) 2\gamma > 0$$

$$j=1$$

Within 90 degree, so improve the objective!

Formal Convergence of AdaBoost

Then after T iterations, for the original exp loss, we have

$$\frac{1}{n} \sum_{i=1}^{n} \exp(-H_T(x_i) \cdot y_i) \le n(1 - 4\gamma^2)^{T/2}$$

Formal Convergence of AdaBoost

Then after T iterations, for the original exp loss, we have

$$\frac{1}{n} \sum_{i=1}^{n} \exp(-H_T(x_i) \cdot y_i) \le n(1 - 4\gamma^2)^{T/2}$$

Note zero-one loss is upper bounded by exponential loss

Formal Convergence of AdaBoost

Then after T iterations, for the original exp loss, we have

$$\frac{1}{n} \sum_{i=1}^{n} \exp(-H_T(x_i) \cdot y_i) \le n(1 - 4\gamma^2)^{T/2}$$

Note zero-one loss is upper bounded by exponential loss

$$\frac{1}{n} \sum_{i=1}^{n} \mathbf{1} \{ \operatorname{sign}(H_T(x_i)) \neq y_i \} \le \frac{1}{n} \sum_{i=1}^{n} \exp(-H_T(x_i) \cdot y_i) \le n(1 - 4\gamma^2)^{T/2}$$

(Proof in lecture note, optional)

Summary of AdaBoost

1. Every iteration, we train a weak learner via binary classification on a weighted data

$$h_{t+1} = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} p_i \cdot \mathbf{1}(h(x_i) \neq y_i)$$

Summary of AdaBoost

1. Every iteration, we train a weak learner via binary classification on a weighted data

$$h_{t+1} = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} p_i \cdot \mathbf{1}(h(x_i) \neq y_i)$$

Note $p_i := \exp(-H_t(x_i)y_i)$, and learning rate depends on h_{t+1} 's performance

Summary of AdaBoost

1. Every iteration, we train a weak learner via binary classification on a weighted data

$$h_{t+1} = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} p_i \cdot \mathbf{1}(h(x_i) \neq y_i)$$

Note $p_i := \exp(-H_t(x_i)y_i)$, and learning rate depends on h_{t+1} 's performance

2. Each weaker learner doing better than random coin toss $(0.5 - \gamma)$ implies stronger learner at the end