Boosting

Announcements

Recap on Bagging

Construct P, s.t., P(x, y,) = 1/n,Vi € [n]

Recap on Bagging

Construct P, s.t., P(x, y,) = 1/n,Vi € [n]

LN

Recap on Bagging
Construct P, s.t., P(x, y,) = 1/n,Vi € [n]

LN

Vo N

h,=I1D3(2,) h,=1D3(D,) h, =1D3(D,)

Recap on Bagging
Construct P, s.t., P(x, y,) = 1/n,Vi € [n]
@1 @2 o @m

h,=I1D3(2,) h,=1D3(D,) h, =1D3(Z,)

~o L T

=Y him
=1

Outline of Today

1. Gradient Descent without accurate gradient
2. Boosting as Approximate Gradient Descent

3. Example: the AdaBoost Algorithm

Gradient Descent without an accurate gradient

Consider minimizing the following function L(y),y € |

Gradient Descent without an accurate gradient

Consider minimizing the following function L(y),y € |

Gradient descent:

Yiel1 = Ve — HEss where g = VL(y,)

Gradient Descent without an accurate gradient

Consider minimizing the following function L(y),y € |

Gradient descent:

Yiel1 = Ve — HEp where g = VL(y,)

When 7 is small and g, # 0, we know L(y,, ;) < L(y,)

Gradient Descent without an accurate gradient

Consider minimizing the following function L(y),y € |

Approximate Gradient descent:

Yirl1 — Ve — N8 where g, # VL(y,)

Gradient Descent without an accurate gradient

Consider minimizing the following function L(y),y € |

Approximate Gradient descent:
Vel = Y — h8,, Where g, # VL(y,)

Q: Under what condition of g,, can we still guarantee L(y,,) < L(y,)?

Gradient Descent without an accurate gradient

Consider minimizing the following function L(y),y € |

Approximate Gradient descent:
Vel = Y — h8,, Where g, # VL(y,)

Q: Under what condition of g,, can we still guarantee L(y,,) < L(y,)?

A: As long as <§r9 VL(yt)> > 0

Gradient Descent without an accurate gradient

Yirl1 — Ve — N8 where g, # VL(y,)

=g,

Gradient Descent without an accurate gradient

Yirl1 — Ve — N8 where g, # VL(y,)

=g,

Gradient Descent without an accurate gradient

Yirl1 — Ve — N8 where g, # VL(y,)

=g,

Gradient Descent without an accurate gradient

Yirl1 — Ve — N8 where g, # VL(y,)

=g,

Gradient Descent without an accurate gradient

Yirl1 — Ve — N8 where g, # VL(y,)

=g,

Gradient Descent without an accurate gradient

Yirl1 — Ve — N8 where g, # VL(y,)

=g,

Gradient Descent without an accurate gradient

Yirl1 — Ve — N8 where g, # VL(y,)

=g,

A// = (g gt) — Af;
H&Hz

Gradient Descent without an accurate gradient

Yirl1 — Ve — N8 where g, # VL(y,)

=g,
Prove this via first order Taylor
expansion and the fact that ¢ g, > 0

A// = (g gt) —
HgtHZ

= ag;

Gradient Descent without an accurate gradient

Yirl1 — Ve — N8 where g, # VL(y,)

=g,

Prove this via first order Taylor

expansion and the fact that ¢ g, > 0

L(y,

)~ L(y,) — ﬂgtTgt

A// = (g gt) = ag;
HgtHZ

Gradient Descent without an accurate gradient

Yirl1 — Ve — N8 where g, # VL(y,)

=g,

Prove this via first order Taylor

expansion and the fact that ¢ g, > 0

L(y,

= L(y,) — ng, (agt T g%) A

)~ L(y,) — ﬂgtTgt

A// = (g gt) = ag;
HgtHZ

Gradient Descent without an accurate gradient

Yirl1 — Ve — N8 where g, # VL(y,)

=g,
Prove this via first order Taylor
expansion and the fact that ¢ g, > 0

L(y,) ~ L(y,) —ng8,
— L(yt) — NE; (agt T g%) A

— L(yt) — (ﬂa)g;gt A// = (¢ gt) H H = ag,
8tll2

Gradient Descent without an accurate gradient

Vie1 = Y, — 18, Where g, # VL(y,)

=g,
Prove this via first order Taylor
expansion and the fact that ¢ g, > 0

L(y,) ~ L(y,) —ng8,
— L(yt) — NE; (agt T g%) A

— L(yt) — na)gt_rgt A// = (¢ gt) H H = ag,
8tll2

Positive since a > 0

Outline of Today

1. Gradient Descent without accurate gradient
2. Boosting as Approximate Gradient Descent

3. Example: the AdaBoost Algorithm

Key question that Boosting answers:

Can weak learners be combined together to generate a strong
learner with low bias?

(Weak learners: classifiers whose accuracy is slightly above 50%)

Setup

We have a binary classification data & = {x;, y;}._;, (x;,y;) ~ P

Hypothesis class #°, hypothesish : X — {—1,+ 1}

Setup

We have a binary classification data & = {x;, y;}._;, (x;,y;) ~ P

Hypothesis class #°, hypothesish : X — {—1,+ 1}

Loss function £(h(x), y), e.g., exponential loss exp(—yh(x))

Setup

We have a binary classification data & = {x;, y;}._;, (x;,y;) ~ P

Hypothesis class #°, hypothesish : X — {—1, + 1}

Loss function £(h(x), y), e.g., exponential loss exp(—yh(x))

Goal: learn an ensemble H(x) = Z ah(x), where h, € A
=1

The Boosting Algorithm

Initialize Hy = hy €
Fort=1 ...

Find a new classifier 1, {, s.t., H,., = H,+ ah,, , has smaller
training error

Training weak learners

Denote y = [Ht(xl),Ht(xz), ...,Ht(xn)]T e |

Training weak learners

Denote y = [Ht(xl),Ht(xz), ...,Ht(xn)]T e R"

Define L(§) = Z £($;,y,), where . = H/(x,)
=1

Training weak learners

Denote y = [Ht(xl),Ht(xz), ...,Ht()cn)]T e R"

Define L(§7) — Z A @i, yl-), where)A’i — Ht(xi)
i=1

L(y): the total training loss of ensemble H,

Training weak learners

Denote y = [Ht(xl),Ht(xz), ...,Ht()cn)]T e R"

Define L()Af) = Z A @i, yl-), where yi — Ht(xi)
i=1

L(y): the total training loss of ensemble H,

Q: To minimize L(Y), cannot we just do GD on y directly?

Training weak learners

Denote y = [Ht(xl),Ht(xz), ...,Ht()cn)]T e R"

Define L()Af) — Z A @i, y,-), where yi — Ht(xi)
i=1

L(y): the total training loss of ensemble H,

Q: To minimize L(Y), cannot we just do GD on y directly?

A: no, we want find y that minimizes L, but it needs to be from some ensemble H

Training weak learners

Denote y = [Ht(xl),Ht(xz), ...,Ht()cn)]T e R”

Define L()Af) - Z 4 @i, yl-), where j\/i — Ht(xi)
i=1

Let us compute VL(Y) € R” — the ideal descent direction

— VL(Y)

Training weak learners

Denote y = [Ht(xl),Ht(xz), ...,Ht()cn)]T e R”

Define L()Af) - Z 4 @i, yl-), where j\/i — Ht(xi)
i=1

Let us compute VL(Y) € R” — the ideal descent direction

— VL(Y)

Training weak learners

Denote y = [Ht(xl),Ht(xz), ...,Ht()cn)]T e R”

Define L(y) = Z £(y;,y;), wherey, = H(x;)
i=1

Let us compute VL(Y) € R” — the ideal descent direction

— VL(Y)

ldea: find a h € #, such that
|h(x)), ...h()cn)]T is close to — V L(Y)

Training weak learners

af A'a [af An’ n
VLG = | i Y1) (y y)]T

oy, OV

Training weak learners

af A'a [af An’ n
VLG = | i Y1) (y y)]T

oy, OV

. - af(j}p yz)
are min h(x,) » ———————
g heFA l=zl (l) ﬁyl

Training weak learners
af(j}z’ yl) af(j\}n’ yn)

—VLE) = 5 % 1"
| 0£(51.y,) | "
arg min h(x.
ghe% Z %) 0y,
-

— argzrelg}z | w, | h(x) S|gn(w))

Training weak learners

ot A'a i ot An’ n
~VLE) = | (ayyy) %”]T
O£ (§1.7,) | "
aremin) h(x,) ————
ghE%z () ﬁj}l
=W,
= arg mmz |w: | h(x) Slgn(w))

he#

— arg min Z [w; | (1(h(x;) = sign(w,)) — 1(h(x,) # sign(w;)))
he#

Training weak learners

AR (Y, Yy
— VL) = (ayyl.y),..., (gy y)]T
azfﬂ(j}iayi) | n
arg min h(x,) —————
ghe%z () a)A’i
=W,
= arg mmz |w; | (R(x;) - sign(w;))

he#

— arg min Z [w; | (1(h(x;) = sign(w,)) — 1(h(x,) # sign(w;)))
he#

= arg min Z [w;| - 1(h(x;,) = sign(w,))

Training weak learners

af A'a l af An’ n
~VL®@) = (ayy’.y),..., (gy y)]T
or 5.) ’ "
are min hix,) s ————————
ghE%Z () 3)71

=W,

— arg?;{;Z | w, | h(x) S|gn(w))

— arg min Z [w; | (1(h(x;) = sign(w,)) — 1(h(x,) # sign(w;)))
he

= arg 21;{?1; Z |w.| - 1(h(x;) = sign(w;)) = arg zrelg} Z [w; | - 1(A(x) # — sign(w,))

Training weak learners
af(yz’ yl) af(j\}n’ yn)

— VL) = | R 5 1"
0 (9,) | "
aremin) h(x;) ——————
ghE% Z () @j\il
= arg min Z |w: | h(x) Slgn(w))
hex Turned it to a
weighted
= arg min Z |w: | l(h(x) = sign(w,)) — 1(h(x;) # sign(w,))) classification
he# problem!

— alg ggyl} Z |w; | - 1(h(x;) = sign(w;)) = arg zrelg} 2 |w.| - 1(h(x;) # — sign(w;))

Training weak learners

— VL(y)

Finding [A(x;), ..., h(x,)]" thatis
close to — VL(y) can be done via
weighted binary classification: y 2

Training weak learners

— VL(y)

Finding [A(x;), ..., h(x,)]" thatis
close to — VL(y) can be done via
weighted binary classification: y 2

A new training set: T

n
{piaxia T Sign(wi)}9 Wherepi — ‘Wl‘/z ‘Wl‘
j=1

Training weak learners

— VL(y)

Finding [A(x;), ..., h(x,)]" thatis
close to — VL(y) can be done via
weighted binary classification: y 2

A new training set: \

{piaxia T Sign(wi)}9 Wherepi — ‘WZ‘/Z ‘Wl‘
i=1
Ry i= argmin Zpi - 1(h(x;) # — sign(w)))

he# -
=1

Training weak learners

— VL(y)

Finding [A(x;), ..., h(x,)]" thatis
close to — VL(y) can be done via /
weighted binary classification: V @&

[1(xp)s - ht+1(xn)]T

A new training set: \

{piaxia T Sign(wi)}9 Wherepi — ‘WZ‘/Z ‘Wl‘
i=1
Ry i= argmin Zpi - 1(h(x;) # — sign(w)))

he# -
=1

Training weak learners

— VL(y)

Finding [A(x;), ..., h(x,)]" thatis

close to — VL(y) can be done via
weighted binary classification:

A new training set:

{piaxia T Sign(wi)}9 Wherepi — ‘WZ‘/Z ‘Wl‘
i=1
Ry i= argmin Zpi - 1(h(x;) # — sign(w)))

he# -
=1

Training weak learners

— VL(y)

Finding [A(x;), ..., h(x,)]" thatis

close to — VL(y) can be done via
weighted binary classification: y y’

[1(xp)s - ht+1(xn)]T

A new training set: \

n
{P»X;, — sign(w;) }, where p; = |w, ‘/Z A V' =§+alh(x), ... h ()]
=1
h.. ., := are min . 1(h(x — sign(w:.
1 ghe%Zp, (h(x;) # — sign(w,))

=1

Training weak learners

— VL(y)

Finding [A(x;), ..., h(x,)]" thatis

close to — VL(y) can be done via
weighted binary classification: y y’

[1(xp)s - ht+1(xn)]T

A new training set: \

{pia Xisg — Sign(Wi)}a where P; — ‘ W, ‘ / Z ‘ W, ‘ 3‘,/ — 5‘7 4 a[ht+1(xl)v o ht+1(xn)]T
J=1
& T
= |H
h. . := arg min Z p; - 1(h(x;) # — sign(w;)) H(x) + ahy (x), ..., H(x,) + ah,(x,)]

I
S

The Boosting Algorithm Revisit

Initialize H, = hy € Z

Fort=1 ...

The Boosting Algorithm Revisit

Initialize H, = hy € Z
Fort=1 ...

Compute y; = H(x;), Vi € [n]

The Boosting Algorithm Revisit

Initialize H, = hy € Z
Fort=1 ...
Compute y; = H(x;), Vi € [n]

Compute w; := 9¢(y,, y;)/dy;, and normalize p, = | w; \/Z [w; |, Vi
J

The Boosting Algorithm Revisit

Initialize H, = hy € Z
Fort=1 ...
Compute y; = H(x;), Vi € [n]

Compute w; := 0£(y,, y;)/dy,, and normalize p. = | w; \/Z [w; |, Vi
n J

Run classification: h,, ; = arg min Zpi - 1(h(x;) # — sign(w,))
i=1

The Boosting Algorithm Revisit

Initialize H, = hy € Z
Fort=1 ...
Compute y; = H(x;), Vi € [n]

Compute w; := 0£(y,, y;)/dy,, and normalize p. = | w; \/Z [w; |, Vi
n J

Run classification: h,, ; = arg min Zpi - 1(h(x;) # — sign(w,))
i=1

Add hy, i Hiy = H, + ah,

The Boosting Algorithm Revisit

— VL(Y)

Initialize H, = hy € Z

Fort=1 ... ")
aro max(— VL({¥))' h(xz)
Compute y; = H/(x;), Vi € [n] g he;fs(Y h()

X

e w; := 0¢(y;,y;)/0y.,, and normalize p, = | w; \/Z |w; |, Vi

J
classification: /., | = arg min Zpl 1(h(x;) # — sign(w,))
=1

Add Ay y: H, = H + ahy,

Outline of Today

1. Gradient Descent without accurate gradient
2. Boosting as Approximate Gradient Descent

3. Example: the AdaBoost Algorithm

Train Weak learner

We will choose the exponential loss, i.e., £(),y) = exp(—y - V)

Train Weak learner

We will choose the exponential loss, i.e., £(),y) = exp(—y - V)

W; = or ()A’i, v/ ayi = = exp()A}iyi)yl-

Train Weak learner

We will choose the exponential loss, i.e., £(),y) = exp(—y - V)

W; = or ()A’i, v/ ayi = = exp()A}iyi)yl-

wi| = exp(=9y) pi= w1/) |wl
J

Train Weak learner

We will choose the exponential loss, i.e., £(),y) = exp(—y - V)

W; = or ()A’i, v/ 0&;‘ = = exp(fiiyi)yi

wi| = exp(=9y) pi= w1/) |wl
J

4 = arg min Zpll(h(x) # — sign(w,)

Train Weak learner

We will choose the exponential loss, i.e., £(),y) = exp(—y - V)

W; = or ()A’i, v/ ayi = = exp()?iyi)yi

wi| = exp(=9y) pi= w1/) |wl
J

ey = argmin) pA(h(x) # = sign(w,)
=1

= arg min Zpi - 1(h(x;) # y;)
he# 1

Train Weak learner

We will choose the exponential loss, i.e., £(),y) = exp(—y - V)

w, = 03, y))109; = — exp(P,y)y;
(i, yi)/ 9y PO Binary classification on weighted data

wi| = exp(=9y) pi=w;l/) |w
J

by, = argmin) p1(h(x) # — Sign(w,))
=1

he#

= arg min Zpi - 1(A(x;) # ;)
he# 1

Train Weak learner

We will choose the exponential loss, i.e., £(),y) = exp(—y - V)

w, = 0C€(y;, v,)/ 0y, = — exp(y;y,)y;

| O 310 PV Binary classification on weighted data

wi| = exp(=9y) pi=w;l/) |w
J

by, = argmin) p1(h(x) # — Sign(w,))
=1

he#

Q: what does it mean if p; is large?

= arg min Zpi - 1(A(x;) # ;)
he# 1

Compute learning rate

Select the best learning rate

oy = argmin) p - 1h5) #3) Hyyy = H, + ahy,,
=1

Compute learning rate

Select the best learning rate

.y = arg %{;} ;pi - 1(h(x;) # y;) H. ,=H + aht+1
Find the best learning rate via optimization:

arg min Z £(H(x;) + ah, (x;), y;)
=1

a>0 “

Compute learning rate

Select the best learning rate

.y = arg %{72 gpi - 1(h(x;) # y;) H. ,=H + aht+1
Find the best learning rate via optimization:

arg min Z £(H(x;) + ah, (x;), y;)
=1

a>0 “

Compute the derivative wrt a, set it to zero, and solve for o

Put everything together: AdaBoost

Initialize Hy = h) €
Fort=1 ...

Put everything together: AdaBoost

Initialize Hy = h) €
Fort=1 ...

Compute w;, = — y. exp(—H,(x;)y;), and normalize p, = | w; \/2 |w; |, Vi
J

Put everything together: AdaBoost

Initialize Hy = h) €
Fort=1 ...

Compute w; = — y.exp(—H(x;)y,), and normalize p, = | w; \/Z |w; |, Vi

J
n

Run classification: /,, ; = arg min Zpi - 1(h(x;) # ;)
he#]

Put everything together: AdaBoost

Initialize Hy = h) €
Fort=1 ...

Compute w; = — y.exp(—H,(x;)y;), and normalize p; = | w, \/Z |w; |, Vi
J

Run classification: /,, | = arg min Zpl 1(h(x;) # y;)
he

Weak learner’s loss € = Z P;
i:yﬁéh}ﬁl(x)

Put everything together: AdaBoost

Initialize Hy = h) €
Fort=1 ...

Compute w; = — y.exp(—H(x;)y,), and normalize p, = | w; \/2 |w; |, Vi
J

Run classification: /,, ; = arg min Zpl 1(h(x;) # ;)
he#

Weak learner’s loss € = Z D // total weight of examples where A, ,
jryh, . (x) made a mistake

Put everything together: AdaBoost

Initialize Hy = h) €
Fort=1 ...

Compute w; = — y.exp(—H(x;)y,), and normalize p, = | w; \/2 |w; |, Vi

J
n

Run classification: /,, ; = arg min Z p; - 1(h(x) # y.)

he#x]
n
Weak learner’s loss € = Z D // total weight of examples where A, ,
jryh, . (x) made a mistake
1 1-—¢€
H, =H+—-In Ny

Put everything together: AdaBoost

Initialize Hy = h) €
Fort=1 ...

Compute w;, = — y. exp(—H,(x;)y;), and normalize p, = | w; \/2 |w; |, Vi

J
n

Run classification: /,, ; = arg min Z p; - 1(h(x) # y.)

he#]
n
Weak learner’s loss € = Z D // total weight of examples where A, ,
iyt () made a mistake
“Jl + l
1 1—¢€
H_ ,=H+—In -h.1 //thebesta = 0.5In((1 —¢€)/¢)

Analysis of AdaBoost

From weak learners to a strong learner that minimizes training error

The definition of Weak learning

Each weaker learning optimizes its own data:

D = {pi,xi,yl-}, where Zpl- =1,p;, > 0,Vi

h, = arg %{;{} ; p; - 1(h(x;) # y;)

The definition of Weak learning

Each weaker learning optimizes its own data:

D = {pi,xi,yl-}, where Zpi =1,p;, > 0,Vi

h, = arg g; ; p; - 1(h(x;) # y;)

n
1
Assume that weaker learner’s loss € := Zpil{htﬂ(xi) vy} < 5 Y, v >0
i=1

The definition of Weak learning

Each weaker learning optimizes its own data:

D = {pi,xi,yi}, where Zpi =1,p;, > 0,Vi

h, = arg g} ; p; - 1(h(x;) # y;)

n
1
Assume that weaker learner’s loss € := Zpl-l{htﬂ(xi) vy} < 5 Y, v >0
i=1

Q: assume # is symmetric, i.e., h € # iff —h € #, why does the above always hold?

Weaker learnability implies approximating gradient well

n
1
Assume that weaker learner’s loss € := Zpil{htﬂ(xi) * vy} < 5 Y, v >0
i=1

— VL(Y)

Weaker learnability implies approximating gradient well

n
1
Assume that weaker learner’s loss € := Zpil{htﬂ(xi) * vy} < 5 Y, v >0
i=1

— VL(Y)

ht+1(x1)]

(= VLE)' [
Ny 1(X,)

Weaker learnability implies approximating gradient well

n
1
Assume that weaker learner’s loss € := Zpil{htﬂ(xi) * vy} < 5 Y, v >0
i=1

— VL(Y)

ht+1(x1)]

(= VLE)' [
Ny 1(X,)

> (), 1w)2y >0
j=1

Weaker learnability implies approximating gradient well

n
1
Assume that weaker learner’s loss € := Zpil{htﬂ(xi) * vy} < 5 Y, v >0
i=1

— VL(Y)

ht+1(x1)]

(= VLE)' [
Ny 1(X,)

n
> () w2y >0
J=1 Within 90 degree, so
improve the objective!

Formal Convergence of AdaBoost

Then after T iterations, for the original exp loss, we have

1 n
— 3 exp(—Hi(x) - 3) < (1 = 4"
=1

(Proof in lecture note, optional)

Formal Convergence of AdaBoost

Then after T iterations, for the original exp loss, we have

1 n
— 3 exp(—Hi(x) - 3) < (1 = 4"
=1

Note zero-one loss is upper bounded by exponential loss

(Proof in lecture note, optional)

Formal Convergence of AdaBoost

Then after T iterations, for the original exp loss, we have
1 n
NT/2
— 2 exp(—Hr(x;) - y;) < n(l —4y7)
n -
=1
Note zero-one loss is upper bounded by exponential loss

n

Z exp(—H (x;) - y) < n(1 — 4},2)T/2
=1

n

1 +« 1
- Z 1{sign(H(x))) # y;} < —
=1

(Proof in lecture note, optional)

Summary of AdaBoost

1. Every iteration, we train a weak learner via binary classification on a weighted data

n

by, = argmin) p; - 1(h(x;) # y)

h
S

Summary of AdaBoost

1. Every iteration, we train a weak learner via binary classification on a weighted data

n

by, = argmin) p; - 1(h(x;) # y)

hew
=7 io

Note p; := exp(—H/(x,)y;), and learning rate depends on £, ;’s performance

Summary of AdaBoost

1. Every iteration, we train a weak learner via binary classification on a weighted data

n

by, = argmin) p; - 1(h(x;) # y)

h
S

Note p; := exp(—H/(x,)y;), and learning rate depends on £, ;’s performance

2. Each weaker learner doing better than random coin toss (0.5 — y) implies
stronger learner at the end

