K-nearest Neighbor
Announcement:

1. HW1 will be out today / early tomorrow and Due Sep 13
Recap

\[D = \{ x_i, y_i \}_{i=1}^n \]

\[x = \begin{bmatrix} a_1 \\ \vdots \\ a_d \end{bmatrix} + \mathcal{N}(0,1) \quad y \in \{-1, +1\} \]

\[x_i, y_i \sim \mathcal{D} \]

\[h(x) = y \]

\[H = \{ h \} \]

\[E_x: \quad h(x) = \text{sign} (w^T x) \]

\[H = \{ \text{sign} (w^T x): \|w\|_2 \leq 1 \} \]

\[l(h, x, y) = \begin{cases} 1[y \neq h(x)] & \text{if } y \neq h(x) \\ 0 & \text{else} \end{cases} \]

\[\hat{h} = \arg \min_{h \in H} \sum_{i=1}^n l(h(x_i), y_i) \]

Generalization Error: \[E \sum_{x, y \in D} [l(h(x), y)] \]
Outline for Today

1. The K-NN Algorithm

2. Why/When does K-NN work

3. Curse of dimensionality (i.e., when it can fail)
The K-NN Algorithm

Input: classification training dataset \(\{x_i, y_i\}_{i=1}^n \), and parameter \(K \in \mathbb{N}^+ \), and a distance metric \(d(x, x') \) (e.g., \(\| x - x' \|_2 \) euclidean distance)

K-NN Algorithm:
The K-NN Algorithm

Input: classification training dataset \(\{x_i, y_i\}_{i=1}^n \), and parameter \(K \in \mathbb{N}^+ \), and a distance metric \(d(x, x') \) (e.g., \(\|x - x'\|_2 \) euclidean distance)

K-NN Algorithm:

Store all training data
The K-NN Algorithm

Input: classification training dataset \(\{x_i, y_i\}_{i=1}^{n} \), and parameter \(K \in \mathbb{N}^+ \), and a distance metric \(d(x, x') \) (e.g., \(\|x - x'\|_2 \) euclidean distance)

K-NN Algorithm:

Store all training data
For any test point \(x \):

\[K-\text{NN Algorithm:} \]

\[\text{Store all training data} \]
\[\text{For any test point } x : \]
The K-NN Algorithm

Input: classification training dataset \(\{x_i, y_i\}_{i=1}^n \), and parameter \(K \in \mathbb{N}^+ \), and a distance metric \(d(x, x') \) (e.g., \(\|x - x'\|_2 \) euclidean distance)

K-NN Algorithm:

Store all training data
For any test point \(x \):

Find its top \(K \) nearest neighbors (under metric \(d \))
The K-NN Algorithm

Input: classification training dataset \(\{x_i, y_i\}_{i=1}^n \), and parameter \(K \in \mathbb{N}^+ \), and a distance metric \(d(x, x') \) (e.g., \(\|x - x'\|_2 \) euclidean distance)

K-NN Algorithm:

Store all training data
For any test point \(x \):
 - Find its top K nearest neighbors (under metric \(d \))
 - Return the most common label among these K neighbors
The K-NN Algorithm

Input: classification training dataset \(\{x_i, y_i\}_{i=1}^n \), and parameter \(K \in \mathbb{N}^+ \), and a distance metric \(d(x, x') \) (e.g., \(\|x - x'\|_2 \) euclidean distance)

K-NN Algorithm:

1. Store all training data
2. For any test point \(x \):
 - Find its top \(K \) nearest neighbors (under metric \(d \))
 - Return the most common label among these \(K \) neighbors
 - (If for regression, return the average value of the \(K \) neighbors)
The K-NN Algorithm

Example: 3-NN for binary classification using Euclidean distance
The choice of metric

$$\|x - x'\|_2 = 0 \Rightarrow x = x'$$

1. We believe our metric d captures similarities between examples:

Examples that are close to each other share similar labels
The choice of metric

1. We believe our metric d captures similarities between examples:

Examples that are close to each other share similar labels

Another example: Manhattan distance (ℓ_1)

$$d(x, x') = \sum_{j=1}^{d} |x[j] - x'[j]|$$
The choice of K

1. What if we set K very large?
The choice of K

1. What if we set K very large?

Top K-neighbors will include examples that are very far away…
The choice of K

1. What if we set K very large?

Top K-neighbors will include examples that are very far away…

2. What if we set K very small ($K=1$)?
The choice of K

1. What if we set \(K \) very large?

Top K-neighbors will include examples that are very far away…

2. What if we set \(K \) very small (K=1)?

label has noise (easily overfit to the noise)
The choice of K

1. What if we set K very large?

Top K-neighbors will include examples that are very far away…

2. What if we set K very small (K=1)?

label has noise (easily overfit to the noise)

(What about the training error when $K = 1$?)
Outline for Today

1. The K-NN Algorithm

2. Why/When does K-NN work

3. Curse of dimensionality (i.e., why it can fail in high-dimension data)
Bayes Optimal Predictor

Assume our data is collected in an i.i.d fashion, i.e., $(x, y) \sim P$ (say $y \in \{-1,1\}$)
Bayes Optimal Predictor

Assume our data is collected in an i.i.d fashion, i.e., \((x, y) \sim P\) (say \(y \in \{-1, 1\}\))

Assume we know \(P(y | x)\) for now

Q: what label you would predict?
Bayes Optimal Predictor

Assume our data is collected in an i.i.d fashion, i.e., \((x, y) \sim P\) (say \(y \in \{-1, 1\}\))

Assume we know \(P(y|x)\) for now

Q: what label you would predict?

A: we will simply predict the most-likely label,

\[
h_{opt}(x) = \arg \max_{y \in \{-1, 1\}} P(y|x)
\]
Bayes Optimal Predictor

Assume our data is collected in an i.i.d fashion, i.e., \((x, y) \sim P\) (say \(y \in \{-1, 1\}\))

Assume we know \(P(y | x)\) for now

Q: what label you would predict?

A: we will simply predict the most-likely label,

\[
h_{opt}(x) = \arg \max_{y \in \{-1, 1\}} P(y | x)
\]

Bayes optimal predictor
Bayes Optimal Predictor

Assume our data is collected in an i.i.d fashion, i.e., \((x, y) \sim P\) (say \(y \in \{-1,1\}\))

Bayes optimal predictor: \(h_{opt}(x) = \arg \max_{y \in \{-1,1\}} P(y \mid x)\)

Example:

\[
\begin{cases}
P(1 \mid x) = 0.8 \\
P(-1 \mid x) = 0.2
\end{cases}
\]
Bayes Optimal Predictor

Assume our data is collected in an i.i.d fashion, i.e., \((x, y) \sim P\) (say \(y \in \{-1, 1\}\))

Bayes optimal predictor:

\[
 h_{opt}(x) = \arg \max_{y \in \{-1, 1\}} P(y \mid x)
\]

Example:

\[
\begin{cases}
 P(1 \mid x) = 0.8 \\
 P(-1 \mid x) = 0.2
\end{cases}
\]

\(y_b := h_{opt}(x) = 1\)
Bayes Optimal Predictor

Assume our data is collected in an i.i.d fashion, i.e., \((x, y) \sim P\) (say \(y \in \{-1, 1\}\))

Bayes optimal predictor:

\[
h_{opt}(x) = \arg \max_{y \in \{-1, 1\}} P(y | x)
\]

Example:

\[
\begin{cases}
P(1 | x) = 0.8 \\
P(-1 | x) = 0.2
\end{cases}
\]

Q: What’s the probability of \(h_{opt}\) making a mistake on \(x\)?

\[
y_b := h_{opt}(x) = 1
\]
Bayes Optimal Predictor

Assume our data is collected in an i.i.d fashion, i.e., \((x, y) \sim P\) (say \(y \in \{-1, 1\}\))

Bayes optimal predictor:
\[
h_{opt}(x) = \arg \max_{y \in \{-1, 1\}} P(y|x)
\]

Example:

\[
\begin{align*}
P(1|x) &= 0.8 \\
P(-1|x) &= 0.2
\end{align*}
\]

\(y_b := h_{opt}(x) = 1\)

Q: What’s the probability of \(h_{opt}\) making a mistake on \(x\)?

\(\epsilon_{opt} = 1 - P(y_b|x) = 0.2\)
Guarantee of KNN when \(K = 1 \) and \(n \to \infty \)

Assume \(x \in [-1,1]^2 \), \(P(x) \) has support everywhere \(P(x) > 0, \forall x \in [-1,1]^2 \)

\[
P_C(x, y) = p(x, +1) + p(x, -1)
\]
Guarantee of KNN when $K = 1$ and $n \to \infty$

Assume $x \in [-1,1]^2$, $P(x)$ has support everywhere $P(x) > 0, \forall x \in [-1,1]^2$

What does it look when $n \to \infty$?
Guarantee of KNN when \(K = 1 \) and \(n \to \infty \)

Assume \(x \in [-1,1]^2 \), \(P(x) \) has support everywhere \(P(x) > 0, \forall x \in [-1,1]^2 \)

What does it look when \(n \to \infty \)?
Guarantee of KNN when $K = 1$ and $n \to \infty$

Assume $x \in [-1,1]^2$, $P(x)$ has support everywhere $P(x) > 0$, $\forall x \in [-1,1]^2$

What does it look when $n \to \infty$?
Guarantee of KNN when $K = 1$ and $n \to \infty$

Assume $x \in [-1,1]^2$, $P(x)$ has support everywhere $P(x) > 0$, $\forall x \in [-1,1]^2$

What does it look when $n \to \infty$?
Guarantee of KNN when $K = 1$ and $n \to \infty$

Assume $x \in [-1,1]^2$, $P(x)$ has support everywhere $P(x) > 0$, $\forall x \in [-1,1]^2$

What does it look when $n \to \infty$?

Given test x, as $n \to \infty$, its nearest neighbor x_{NN} is super close, i.e., $d(x, x_{NN}) \to 0$!
Guarantee of KNN when $K = 1$ and $n \to \infty$

Theorem: as $n \to \infty$, 1-NN prediction error is no more than twice of the error of the Bayes optimal classifier

Proof:
Guarantee of KNN when $K = 1$ and $n \to \infty$

Theorem: as $n \to \infty$, 1-NN prediction error is no more than twice of the error of the Bayes optimal classifier.

Proof:
1. Fix a test example x, denote its NN as x_{NN}. When $n \to \infty$, we have $x_{NN} \to x$.

\[x \approx \hat{x}_{NN} \]
Guarantee of KNN when $K = 1$ and $n \to \infty$

Theorem: as $n \to \infty$, 1-NN prediction error is no more than twice of the error of the Bayes optimal classifier

Proof:
1. Fix a test example x, denote its NN as x_{NN}. When $n \to \infty$, we have $x_{NN} \to x$
2. WLOG assume for x, the Bayes optimal predicts $y_b = h_{opt}(x) = 1$
Guarantee of KNN when $K = 1$ and $n \to \infty$

Theorem: as $n \to \infty$, 1-NN prediction error is no more than twice of the error of the Bayes optimal classifier.

Proof:
1. Fix a test example x, denote its NN as x_{NN}. When $n \to \infty$, we have $x_{NN} \to x$.
2. WLOG assume for x, the Bayes optimal predicts $y_b = h_{opt}(x) = 1$.
3. Calculate the 1-NN’s prediction error:
Theorem: as \(n \to \infty \), 1-NN prediction error is no more than twice of the error of the Bayes optimal classifier.

Proof:
1. Fix a test example \(x \), denote its NN as \(x_{NN} \). When \(n \to \infty \), we have \(x_{NN} \to x \).
2. WLOG assume for \(x \), the Bayes optimal predicts \(y_b = h_{opt}(x) = 1 \).
3. Calculate the 1-NN’s prediction error:
 \[x_{NN} = \cdot \]
 Case 1 when \(y_{NN} = 1 \) (it happens w/ prob \(P(1 \mid x_{NN}) = P(1 \mid x) \)):

Guarantee of KNN when $K = 1$ and $n \to \infty$

Theorem: as $n \to \infty$, 1-NN prediction error is no more than twice of the error of the Bayes optimal classifier.

Proof:

1. Fix a test example x, denote its NN as x_{NN}. When $n \to \infty$, we have $x_{NN} \to x$.

2. WLOG assume for x, the Bayes optimal predicts $y_b = h_{opt}(x) = 1$.

3. Calculate the 1-NN’s prediction error:

 Case 1 when $y_{NN} = 1$ (it happens w/ prob $P(1 \mid x_{NN}) = P(1 \mid x)$):

 The probability of making a mistake: $\epsilon = P(y \neq 1 \mid x) = P(y = -1 \mid x)$.
Guarantee of KNN when $K = 1$ and $n \to \infty$

Theorem: as $n \to \infty$, 1-NN prediction error is **no more than twice** of the error of the Bayes optimal classifier

Proof:
1. Fix a test example x, denote its NN as x_{NN}. When $n \to \infty$, we have $x_{NN} \to x$

2. WLOG assume for x, the Bayes optimal predicts $y_b = h_{opt}(x) = 1$

3. Calculate the 1-NN’s prediction error:

 Case 1 when $y_{NN} = 1$ (it happens w/ prob $P(1 \mid x_{NN}) = P(1 \mid x)$):

 The probability of making a mistake: $\epsilon = P(y \neq 1 \mid x) = P(y = -1 \mid x)$

 $= 1 - P(y_b \mid x)$
Guarantee of KNN when $K = 1$ and $n \to \infty$

Theorem: as $n \to \infty$, 1-NN prediction error is no more than twice of the error of the Bayes optimal classifier

Case 1 when $y_{NN} = 1$ (it happens w/ prob $P(1 \mid x_{NN}) = P(1 \mid x)$):

The probability of making a mistake: $e = 1 - P(y_b \mid x)$
Guarantee of KNN when \(K = 1 \) and \(n \to \infty \)

Theorem: as \(n \to \infty \), 1-NN prediction error is no more than twice of the error of the Bayes optimal classifier

Case 1 when \(y_{NN} = 1 \) (it happens w/ prob \(P(1 \mid x_{NN}) = P(1 \mid x) \)):

The probability of making a mistake: \(\epsilon = 1 - P(y_b \mid x) \)

Case 2 when \(y_{NN} = -1 \) (it happens with prob \(P(-1 \mid x_{NN}) = P(-1 \mid x) \)):

\[y_{NN} = x \]
Guarantee of KNN when $K = 1$ and $n \to \infty$

Theorem: as $n \to \infty$, 1-NN prediction error is no more than twice of the error of the Bayes optimal classifier.

Case 1 when $y_{NN} = 1$ (it happens w/ prob $P(1 \mid x_{NN}) = P(1 \mid x)$):

The probability of making a mistake: $\epsilon = 1 - P(y_b \mid x)$

Case 2 when $y_{NN} = -1$ (it happens w/ prob $P(-1 \mid x_{NN}) = P(-1 \mid x)$):

The probability of making a mistake: $\epsilon = P(y \neq -1 \mid x) = P(y = 1 \mid x)$
Guarantee of KNN when $K = 1$ and $n \to \infty$

Theorem: as $n \to \infty$, 1-NN prediction error is no more than twice of the error of the Bayes optimal classifier

Case 1 when $y_{NN} = 1$ (it happens w/ prob $P(1 \mid x_{NN}) = P(1 \mid x)$):

The probability of making a mistake: $\epsilon = 1 - P(y_b \mid x)$

Case 2 when $y_{NN} = -1$ (it happens w/ prob $P(-1 \mid x_{NN}) = P(-1 \mid x)$):

The probability of making a mistake: $\epsilon = P(y \neq -1 \mid x) = P(y = 1 \mid x) = P(y_b \mid x)$

\[(y_b = 1) \]

Bayes opt
Guarantee of KNN when $K = 1$ and $n \to \infty$

Theorem: as $n \to \infty$, 1-NN prediction error is no more than twice of the error of the Bayes optimal classifier

Case 1 when $y_{NN} = 1$ (it happens w/ prob $P(1 \mid x_{NN}) = P(1 \mid x)$):

The probability of making a mistake: $\epsilon = 1 - P(y_b \mid x)$

Case 2 when $y_{NN} = -1$ (it happens w/ prob $P(-1 \mid x_{NN}) = P(-1 \mid x)$):

The probability of making a mistake: $\epsilon = P(y \neq -1 \mid x) = P(y = 1 \mid x) = P(y_b \mid x)$
Guarantee of KNN when $K = 1$ and $n \to \infty$

Theorem: as $n \to \infty$, 1-NN prediction error is no more than twice of the error of the Bayes optimal classifier

Case 1 when $y_{NN} = 1$ (it happens w/ prob $P(1 | x_{NN}) = P(1 | x)$):

The probability of making a mistake: $\epsilon = 1 - P(y_b | x)$

Case 2 when $y_{NN} = -1$ (it happens w/ prob $P(-1 | x_{NN}) = P(-1 | x)$):

The probability of making a mistake: $\epsilon = P(y \neq -1 | x) = P(y = 1 | x) = P(y_b | x)$

Our prediction error at x:

$$P(1|x) \left(1 - P(y_b | x)\right) + P(-1|x) P(y_b | x)$$
Guarantee of KNN when $K = 1$ and $n \to \infty$

Theorem: as $n \to \infty$, 1-NN prediction error is no more than twice of the error of the Bayes optimal classifier.

Case 1 when $y_{NN} = 1$ (it happens w/ prob $P(1 \mid x_{NN}) = P(1 \mid x)$):

The probability of making a mistake: $\epsilon = 1 - P(y_b \mid x)$

Case 2 when $y_{NN} = -1$ (it happens w/ prob $P(-1 \mid x_{NN}) = P(-1 \mid x)$):

The probability of making a mistake: $\epsilon = P(y \neq -1 \mid x) = P(y = 1 \mid x) = P(y_b \mid x)$

Our prediction error at x:

$$P(1 \mid x)(1 - P(y_b \mid x)) + P(-1 \mid x)P(y_b \mid x) \leq (1 - P(y_b \mid x)) + (1 - P(y_b \mid x))$$
Guarantee of KNN when $K = 1$ and $n \to \infty$

Theorem: as $n \to \infty$, 1-NN prediction error is no more than twice of the error of the Bayes optimal classifier

Case 1 when $y_{NN} = 1$ (it happens w/ prob $P(1 \mid x_{NN}) = P(1 \mid x)$):

The probability of making a mistake: $\epsilon = 1 - P(y_b \mid x)$

Case 2 when $y_{NN} = -1$ (it happens w/ prob $P(-1 \mid x_{NN}) = P(-1 \mid x)$):

The probability of making a mistake: $\epsilon = P(y \neq -1 \mid x) = P(y = 1 \mid x) = P(y_b \mid x)$

Our prediction error at x:

$$P(1 \mid x)(1 - P(y_b \mid x)) + P(-1 \mid x)P(y_b \mid x) \leq (1 - P(y_b \mid x)) + (1 - P(y_b \mid x)) = 2\epsilon_{opt}$$
What happens if K is large?
(e.g., $K = 1e6$, $n \to \infty$)
\[
\frac{K}{n} = 0
\]

\# of +1: 1e6 x 80%
\# of -1: 1e6 x 20%

\[P(y=+1|x) = 80\% \]
\[P(y=-1|x) = 20\% \]
What happens if K is large?
(e.g., $K = 1e6$, $n \to \infty$)

A: Given any x, the K-NN should return the y_b — the solution of the Bayes optimal
Outline for Today

1. The K-NN Algorithm ✓
2. Why/When does K-NN work ✓
3. Curse of dimensionality (i.e., why it can fail in high-dimension data)
Finite sample error rate of 1-NN in high-dimension setting

(Informal result and no proof)
Finite sample error rate of 1-NN in high-dimension setting

(Informal result and no proof)

Fix $n \in \mathbb{N}^+$, assume $x \in [0,1]^d$, assume $P(y | x)$ is Lipschitz continuous with respect to x, i.e., $|P(y | x) - P(y | x')| \leq d(x, x')$
Finite sample error rate of 1-NN in high-dimension setting

(Informal result and no proof)

Fix $n \in \mathbb{N}^+$, assume $x \in [0,1]^d$, assume $P(y \mid x)$ is Lipschitz continuous with respect to x, i.e., $|P(y \mid x) - P(y \mid x')| \leq d(x, x')$

Then, we have:
Finite sample error rate of 1-NN in high-dimension setting

(Informal result and no proof)

Fix $n \in \mathbb{N}^+$, assume $x \in [0,1]^d$, assume $P(y \mid x)$ is Lipschitz continuous with respect to x, i.e., $|P(y \mid x) - P(y \mid x')| \leq d(x, x')$

Then, we have:

$$
\mathbb{E}_{x,y \sim P} \left[1(y \neq 1\text{NN}(x)) \right] \leq 2\mathbb{E}_{x,y \sim P} \left[1(y \neq h_{opt}(x)) \right] + O \left(\left(\frac{1}{n} \right)^{1/d} \right)
$$

Δ Bayes opt

$n \to \infty$ diis fixed
Finite sample error rate of 1-NN in high-dimension setting

(Informal result and no proof)

Fix $n \in \mathbb{N}^+$, assume $x \in [0,1]^d$, assume $P(y \mid x)$ is Lipschitz continuous with respect to x, i.e., $|P(y \mid x) - P(y \mid x')| \leq d(x, x')$

Then, we have:

$$
\mathbb{E}_{x,y \sim P} \left[1(y \neq 1\text{NN}(x)) \right] \leq 2\mathbb{E}_{x,y \sim P} \left[1(y \neq h_{\text{opt}}(x)) \right] + O \left(\left(\frac{1}{n} \right)^{1/d} \right)
$$

The bound is meaningless when $d \to \infty$, while n is some finite number!
Finite sample error rate of 1-NN in high-dimension setting

(Informal result and no proof)

Fix $n \in \mathbb{N}^+$, assume $x \in [0,1]^d$, assume $P(y \mid x)$ is Lipschitz continuous with respect to x, i.e., $|P(y \mid x) - P(y \mid x')| \leq d(x, x')$

Then, we have:

$$\mathbb{E}_{x,y \sim P} \left[1(y \neq 1\text{NN}(x)) \right] \leq 2\mathbb{E}_{x,y \sim P} \left[1(y \neq h_{opt}(x)) \right] + O \left(\left(\frac{1}{n} \right)^{1/d} \right)$$

Curse of dimensionality!

The bound is meaningless when $d \to \infty$, while n is some finite number!
Curse of Dimensionality Explanation

Key problem: in high dimensional space, points that are draw from a distribution tends to be far away from each other!
Curse of Dimensionality Explanation

Key problem: in high dimensional space, points that are draw from a distribution tends to be far away from each other!

Example: let us consider uniform distribution over a cube $[0,1]^d$
Curse of Dimensionality Explanation

Key problem: in high dimensional space, points that are drawn from a distribution tend to be far away from each other!

Example: let us consider uniform distribution over a cube $[0,1]^d$

Q: sample x uniformly, what is the probability that x is inside the small cube?
Curse of Dimensionality Explanation

Key problem: in high dimensional space, points that are drawn from a distribution tends to be far away from each other!

Example: let us consider uniform distribution over a cube $[0,1]^d$

Q: sample x uniformly, what is the probability that x is inside the small cube?

A: $\frac{\text{Volume(small cube)}}{\text{volume}([0,1]^d)}$
Curse of Dimensionality Explanation

Key problem: in high dimensional space, points that are drawn from a distribution tend to be far away from each other!

Example: let us consider uniform distribution over a cube $[0,1]^d$

Q: sample x uniformly, what is the probability that x is inside the small cube?

A: $\frac{\text{Volume(small cube)}}{\text{volume}([0,1]^d)} = l^d$
Curse of Dimensionality Explanation

Example: let us consider uniform distribution over a cube $[0,1]^d$

Now assume we sample n points uniform randomly, and we observe K points fall inside the small cube.
Curse of Dimensionality Explanation

Example: let us consider uniform distribution over a cube $[0,1]^d$

Now assume we sample n points uniform randomly, and we observe K points fall inside the small cube.

So empirically, the probability of sampling a point inside the small cube is roughly K/n.
Curse of Dimensionality Explanation

Example: let us consider uniform distribution over a cube $[0,1]^d$

Now assume we sample n points uniform randomly, and we observe K points fall inside the small cube

So empirically, the probability of sampling a point inside the small cube is roughly $\frac{K}{n}$

Thus, we have $l^d \approx \frac{K}{n}$
Curse of Dimensionality Explanation

Example: let us consider uniform distribution over a cube \([0,1]^d\)

We have

\[l^d \approx \frac{K}{n} \]
Curse of Dimensionality Explanation

Example: let us consider uniform distribution over a cube $[0, 1]^d$

We have $l^d \approx \frac{K}{n}$

Q: how large we should set l, s.t., we will have K examples (out of n) fall inside the small cube?
Curse of Dimensionality Explanation

Example: let us consider uniform distribution over a cube $[0,1]^d$

We have $l^d \approx \frac{K}{n}$

Q: how large we should set l, s.t., we will have K examples (out of n) fall inside the small cube?

$$l \approx (K/n)^{1/d}$$
Curse of Dimensionality Explanation

Example: let us consider uniform distribution over a cube $[0,1]^d$

We have $l^d \approx \frac{K}{n}$

Q: how large we should set l, s.t., we will have K examples (out of n) fall inside the small cube?

$$l \approx (K/n)^{1/d} \rightarrow 1, \text{ as } d \rightarrow \infty$$
Curse of Dimensionality Explanation

Example: let us consider uniform distribution over a cube $[0,1]^d$

We have $l^d \approx \frac{K}{n}$

Q: how large we should set l, s.t., we will have K examples (out of n) fall inside the small cube?

$$l \approx (K/n)^{1/d} \to 1, \text{ as } d \to \infty$$

Bad news: when $d \to \infty$, the K nearest neighbors will be all over the place! (Cannot trust them, as they are not nearby points anymore!)
The distance between two sampled points increases as d grows.
The distance between two sampled points increases as d grows.

In $[0,1]^d$, we uniformly sample two points x, x', calculate
\[
d(x, x') = \|x - x'\|_2
\]
The distance between two sampled points increases as d grows.

In $[0, 1]^d$, we uniformly sample two points x, x', calculate

$$d(x, x') = \|x - x'\|_2$$

Let's plot the distribution of such distance:
The distance between two sampled points increases as d grows.

In $[0,1]^d$, we uniformly sample two points x, x', calculate

$$d(x, x') = \|x - x'\|_2$$

Let's plot the distribution of such distance:
The distance between two sampled points increases as d grows.

In $[0,1]^d$, we uniformly sample two points x, x', and calculate

$$d(x, x') = \|x - x'\|_2$$

Let's plot the distribution of such distance:
The distance between two sampled points increases as d grows.

In $[0, 1]^d$, we uniformly sample two points x, x', calculate

$$d(x, x') = \|x - x'\|_2$$

Let’s plot the distribution of such distance:

Distance increases as $d \to \infty$
Luckily, real world data often has low-dimensional structure!

Data lives in 2-d manifold
Luckily, real world data often has low-dimensional structure!

Example: face images

Data lives in 2-d manifold
Luckily, real world data often has low-dimensional structure!

Example: face images

Data lives in 2-d manifold

Original image: \mathbb{R}^{64^2}
Luckily, real world data often has low-dimensional structure!

Example: face images

Data lives in 2-d manifold

Original image: \mathbb{R}^{64^2}

Next week: we will see that these faces approximately live in 100-d space!
Summary for Today

1. K-NN: the simplest ML algorithm (very good baseline, should always try!)
Summary for Today

1. K-NN: the simplest ML algorithm (very good baseline, should always try!)

 2. Works well when data is low-dimensional (e.g., can compare against the Bayes optimal)
Summary for Today

1. K-NN: the simplest ML algorithm (very good baseline, should always try!)

2. Works well when data is low-dimensional (e.g., can compare against the Bayes optimal)

3. Suffer when data is high-dimensional, due to the fact that in high-dimension space, data tends to spread far away from each other