Empirical Risk Minimization
Announcements
Recap on Linear Regression

Given dataset \(\mathcal{D} = \{x_i, y_i\}, x_i \in \mathbb{R}^d, y_i \in \mathbb{R} \)
Recap on Linear Regression

Given dataset $\mathcal{D} = \{x_i, y_i\}, x_i \in \mathbb{R}^d, y_i \in \mathbb{R}$

Least Regression with squared loss:

$$\arg \min_w \sum_{i=1}^{n} (w^T x_i - y_i)^2$$
Recap on Linear Regression

Given dataset $\mathcal{D} = \{x_i, y_i\}, x_i \in \mathbb{R}^d, y_i \in \mathbb{R}$

Derivation of Normal equation:

$$L(w) := \sum_{i=1}^{n} (w^T x_i - y_i)^2$$

$$\nabla_w L(w) = \chi^T \chi w - \chi^T \gamma$$

$$\chi = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \quad \gamma = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$
Recap on SVM

Given dataset $\mathcal{D} = \{x_i, y_i\}, x_i \in \mathbb{R}^d, y_i \in \{+1, -1\}$

Hard margin SVM:

$$
\min_{w,b} \|w\|_2^2 \\
\forall i : y_i(w^T x_i + b) \geq 1
$$
Recap on SVM

Given dataset $\mathcal{D} = \{x_i, y_i\}, x_i \in \mathbb{R}^d, y_i \in \{+1, -1\}$

Hard margin SVM:

$$\min_{w, b} \|w\|_2^2$$

$$\forall i : y_i (w^T x_i + b) \geq 1$$

Width of the “street”: $\frac{1}{\|w\|_2}$
Recap on SVM

Given dataset $\mathcal{D} = \{x_i, y_i\}, x_i \in \mathbb{R}^d, y_i \in \{+1, -1\}$

Hard margin SVM:

$$\min_{w,b} \|w\|_2^2$$

$$\forall i : y_i(w^T x_i + b) \geq 1$$

Width of the “street”:

$$\frac{2}{\|w\|_2}$$
Recap on SVM

Given dataset $\mathcal{D} = \{x_i, y_i\}$, $x_i \in \mathbb{R}^d$, $y_i \in \{+1, -1\}$

Hard margin SVM:

$$
\min_{w,b} \|w\|_2^2
$$

$$
\forall i : y_i(w^T x_i + b) \geq 1
$$

Width of the “street”:

$$
\frac{2}{\|w\|_2}
$$

Find a “street” that has largest width, while keep all the points outside of the street.
Outline for Today

1. Empirical Risk Minimization

2. Examples on loss & hypothesis classes

3. Regularization
ERM

Recall the general supervised learning setting:
Recall the general supervised learning setting:

We have some distribution P, dataset $\mathcal{D} = \{x_i, y_i\}_{i=1}^n$
ERM

Recall the general supervised learning setting:

We have some distribution P, dataset $\mathcal{D} = \{x_i, y_i\}_{i=1}^n$

Each data point is i.i.d sampled from P, i.e., $x_i, y_i \sim P$
Recall the general supervised learning setting:

We have some distribution P, dataset $\mathcal{D} = \{x_i, y_i\}_{i=1}^n$

Each data point is i.i.d sampled from P, i.e., $x_i, y_i \sim P$

Hypothesis $h : \mathcal{X} \rightarrow \mathbb{R}$, & hypothesis class $\mathcal{H} := \{ h \} \subset \mathcal{X} \rightarrow \mathbb{R}$
Recall the general supervised learning setting:

We have some distribution P, dataset $\mathcal{D} = \{x_i, y_i\}_{i=1}^n$

Each data point is i.i.d sampled from P, i.e., $x_i, y_i \sim P$

Hypothesis $h : \mathcal{X} \rightarrow \mathbb{R}$, & hypothesis class $\mathcal{H} := \{h\} \subset \mathcal{X} \rightarrow \mathbb{R}$

Loss function: $\ell(h(x), y)$
ERM

The ultimate objective function:

\[
\arg \min_{h \in \mathcal{H}} \mathbb{E}_{x,y \sim P} \left[\ell(h(x), y) \right]
\]
The ultimate objective function:

$$\arg \min_{h \in \mathcal{H}} \mathbb{E}_{x,y \sim P} [\ell(h(x), y)]$$
The ultimate objective function:

$$\text{arg min}_{h \in \mathcal{H}} \mathbb{E}_{x,y \sim P}[\ell(h(x), y)]$$

Instead we have its \textit{empirical} version:

$$\text{arg min}_{h \in \mathcal{H}} \sum_{x,y} \ell(h(x), y)$$
The ultimate objective function:

$$\arg \min_{h \in \mathcal{H}} \mathbb{E}_{x,y \sim P} \left[\ell(h(x), y) \right]$$

Instead we have its **empirical** version

$$\arg \min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \left[\ell(h(x_i), y_i) \right]$$
The ultimate objective function:

$$\arg\min_{h \in \mathcal{H}} \mathbb{E}_{x,y \sim P}[\ell(h(x), y)]$$

Instead we have its empirical version

$$\arg\min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} [\ell(h(x_i), y_i)]$$

Empirical risk / Empirical error
The generalization error of ERM solution

\[\hat{h}_{ERM} := \arg \min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} [\ell(h(x_i), y_i)] \]
The generalization error of ERM solution

\[\hat{h}_{ERM} := \arg \min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell(h(x_i), y_i) \]

We often are interested in the true performance of \(\hat{h}_{ERM} \):
The generalization error of ERM solution

\[\hat{h}_{ERM} := \arg\min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} [\ell(h(x_i), y_i)] \]

We often are interested in the true performance of \(\hat{h}_{ERM} \):

\[\mathbb{E}_D \left[\mathbb{E}_{x,y \sim P} \ell (\hat{h}_{ERM}(x), y) \right] \]
The generalization error of ERM solution

\[\hat{h}_{ERM} := \arg \min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell(h(x_i), y_i) \]

We often are interested in the true performance of \(\hat{h}_{ERM} \):

\[\mathbb{E}_{\mathcal{D}} \left[\mathbb{E}_{x,y \sim P} \ell(\hat{h}_{ERM}(x), y) \right] \]

Note \(\hat{h}_{ERM} \) is a random quantity as it depends on data \(\mathcal{D} \).
The generalization error of ERM solution

\[\hat{h}_{ERM} := \arg \min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} [\ell(h(x_i), y_i)] \]

We often are interested in the true performance of \(\hat{h}_{ERM} \):

\[\mathbb{E}_D \left[\mathbb{E}_{x,y \sim P} \ell(\hat{h}_{ERM}(x), y) \right] \]

Note \(\hat{h}_{ERM} \) is a random quantity as it depends on data \(D \)

e.g., In LR: \(\hat{w} = (XX^T)^{-1}XY \).
The generalization error of ERM solution

Ideally, we want the true loss of ERM to be small:

$$\mathbb{E}_{\mathcal{D}} \left[\mathbb{E}_{x,y \sim P} \ell(\hat{h}_{ERM}(x), y) \right] \approx \min_{h \in \mathcal{H}} \mathbb{E}_{x,y \sim P} \ell(h(x), y)$$
The generalization error of ERM solution

Ideally, we want the true loss of ERM to be small:

\[
\mathbb{E}_\mathcal{D} \left[\mathbb{E}_{x,y \sim P} \ell(\hat{h}_{ERM}(x), y) \right] \approx \min_{h \in \mathcal{H}} \mathbb{E}_{x,y \sim P} \ell(h(x), y)
\]

The Minimum expected loss we could get if we knew \(P \)
The generalization error of ERM solution

Ideally, we want the true loss of ERM to be small:

\[
\mathbb{E}_\mathcal{D} \left[\mathbb{E}_{x,y \sim P} \ell(\hat{h}_{ERM}(x), y) \right] \approx \min_{h \in \mathcal{H}} \mathbb{E}_{x,y \sim P} \ell(h(x), y)
\]

The Minimum expected loss we could get if we knew \(P \)

However, this may not hold if we are not careful about designing \(\mathcal{H} \)
Example:

\[P: x \text{ uniformly distribution over the square;} \]
Label: blue if inside the smaller square, else red
Consider a hypothesis class \mathcal{H} contains ALL mappings from $x \rightarrow y$.

P: x uniformly distribution over the square; Label: blue if inside the smaller square, else red.
Example:

Consider a hypothesis class \mathcal{H} contains ALL mappings from $x \rightarrow y$

Zero one loss $\ell(h(x), y) = 1(h(x) \neq y)$

P: x uniformly distribution over the square;
Label: blue if inside the smaller square, else red
Example:

Consider a hypothesis class \mathcal{H} contains ALL mappings from $x \to y$

Zero one loss $\ell(h(x), y) = 1(h(x) \neq y)$

Let us consider this solution that memorizes data:

P: x uniformly distribution over the square; Label: blue if inside the smaller square, else red
Example:

Consider a hypothesis class \mathcal{H} contains ALL mappings from $x \rightarrow y$

Zero one loss $\ell(h(x), y) = 1(h(x) \neq y)$

Let us consider this solution that memorizes data:

$$h(x) = \begin{cases}
 y_i & \text{if } \exists i, x_i = x \\
 +1 & \text{else}
\end{cases}$$
Example:

\[P: x \text{ uniformly distribution over the square; Label: blue if inside the dashed square, else red} \]

\[\hat{h}(x) = \begin{cases} y_i & \text{if } \exists i, x_i = x \\ +1 & \text{else} \end{cases} \]

\[\Rightarrow \frac{1}{n} \sum_{i=1}^{n} \ell(\hat{h}(x_i), y_i) = 0 \]
Example:

P: x uniformly distribution over the square;
Label: blue if inside the dashed square, else red

\[
\hat{h}(x) = \begin{cases}
 y_i & \text{if } \exists i, x_i = x \\
 +1 & \text{else}
\end{cases}
\]

\[
\Rightarrow \quad \frac{1}{n} \sum_{i=1}^{n} \ell(\hat{h}(x_i), y_i) = 0
\]

Q: But what’s the true expected error of this \hat{h}?
Example:

\[\hat{h}(x) = \begin{cases} y_i & \text{if } \exists i, x_i = x \\ +1 & \text{else} \end{cases} \]

\[\Rightarrow \frac{1}{n} \sum_{i=1}^{n} \ell(\hat{h}(x_i), y_i) = 0 \]

Q: But what’s the true expected error of this \(\hat{h} \)?

A: area of smaller box / total area
ERM with inductive bias

A common solution is to restrict the search space (i.e., hypothesis class)

\[\hat{h}_{ERM} := \arg \min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} [\ell(h(x_i), y_i)] \]
ERM with inductive bias

A common solution is to restrict the search space (i.e., hypothesis class)

\[\hat{h}_{ERM} := \arg \min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} [\ell(h(x_i), y_i)] \]

By restricting to \(\mathcal{H} \), we bias towards solutions from \(\mathcal{H} \)
Example:

\(P: x \) uniformly distribution over the square;
Label: blue if inside the dashed square, else red

Unrestricted hypothesis class did not work;
Example:

Unrestricted hypothesis class did not work;

However, if we restrict \mathcal{H} to contains ALL axis-aligned rectangles, then ERM will succeed, i.e.,
Example:

P: x uniformly distribution over the square; Label: blue if inside the dashed square, else red

Unrestricted hypothesis class did not work;

However, if we restrict \mathcal{H} to contains ALL axis-aligned rectangles, then ERM will succeed, i.e.,

$$\mathbb{E}_\mathcal{D} \left[\mathbb{E}_{x,y \sim P} \ell(\hat{h}_{\text{ERM}}(x), y) \right] \leq \min_{h \in \mathcal{H}} \mathbb{E}_{x,y \sim P} \ell(h(x), y) + O(1/\sqrt{n})$$

\[= 0\]
\(P: x \) uniformly distribution over the square; Label: blue if inside the dashed square, else red

Example:

Unrestricted hypothesis class did not work;

However, if we restrict \(\mathcal{H} \) to contains ALL axis-aligned rectangles, then ERM will succeed, i.e.,

\[
\mathbb{E}_\mathcal{D} \left[\mathbb{E}_{x,y \sim \mathcal{D}} (\hat{h}_{\text{ERM}}(x), y) \right] \\
\leq \min_{h \in \mathcal{H}} \mathbb{E}_{x,y \sim \mathcal{D}} (h(x), y) + O(1/\sqrt{n}) \\
\leq O(1/\sqrt{n})
\]
Example:

Unrestricted hypothesis class did not work;

However, if we restrict \mathcal{H} to contains ALL axis-aligned rectangles, then ERM will succeed, i.e.,

$$\mathbb{E}_\mathcal{D} \left[\mathbb{E}_{x,y \sim P} \ell(\hat{h}_{\text{ERM}}(x), y) \right] \leq \min_{h \in \mathcal{H}} \mathbb{E}_{x,y \sim P} \ell(h(x), y) + O(1/\sqrt{n})$$

$$\leq O(1/\sqrt{n})$$

(Exact proof out of the scope of this class — see CS 4783/5783)

P: x uniformly distribution over the square; Label: blue if inside the dashed square, else red
Summary so far

ERM with unrestricted hypothesis class could fail (i.e., overfitting)

To guarantee small test error, we need to restrict \mathcal{H}
Outline for Today

1. Empirical Risk Minimization

2. Examples on loss & hypothesis classes

3. Regularization
ERM with restricted hypothesis class

\[
\min_h \frac{1}{n} \sum_{i=1}^{n} [\ell(h(x_i), y_i)]
\]

s.t. \(h \in \mathcal{H} \)

Let’s go through several examples on Constraints under the linear regression context
Linear Regression: squared loss + ℓ_2 constraint

$$\min_w \frac{1}{n} \sum_{i=1}^{n} (w^T x_i - y_i)^2$$
Linear Regression: squared loss + ℓ_2 constraint

$$\min_w \frac{1}{n} \sum_{i=1}^{n} (w^T x_i - y_i)^2$$

s.t. $\|w\|^2_2 \leq B$
Linear Regression: squared loss + ℓ_2 constraint

\[
\min_{w} \frac{1}{n} \sum_{i=1}^{n} (w^T x_i - y_i)^2 \\
\text{s.t. } \|w\|_2^2 \leq B
\]
Linear Regression: squared loss + ℓ_1 constraint

$$\min_w \frac{1}{n} \sum_{i=1}^{n} (w^T x_i - y_i)^2$$

s.t. $\|w\|_1 \leq B$

$$\|w\|_1 = \sum_{i=1}^{d} |w_i|$$
Linear Regression: squared loss + ℓ_1 constraint

$$\min_w \frac{1}{n} \sum_{i=1}^{n} (w^T x_i - y_i)^2$$

s.t. $\|w\|_1 \leq B$

Advantage: give sparse solution
Linear Regression: squared loss + ℓ_p constraint

\[
\min_w \frac{1}{n} \sum_{i=1}^{n} (w^T x_i - y_i)^2 \quad \text{s.t. } \|w\|_p \leq B
\]

\[
0 < p < 1
\]

\[
\|w\|_p = \left(\sum_{i=1}^{d} |w_i|^p \right)^{\frac{1}{p}}
\]
Linear Regression: squared loss + ℓ_p constraint

$$\min_w \frac{1}{n} \sum_{i=1}^{n} (w^\top x_i - y_i)^2$$

s.t. $\|w\|_p \leq B$

$0 < p < 1$

Advantage of ℓ_p constraint: very sparse solution

Disadvantage: Non-convex
Constraints help avoid overfitting

Without constraint, we might overfit to an outlier
Constraints help avoid overfitting

Without constraint, we might overfit to an outlier

With constraint $\|w\|^2_2 \leq B$, we can avoid overfitting (i.e., force us to not pay too much attention to minimizing loss)
Constraints help avoid overfitting

Without constraint, we might overfit to an outlier

With constraint $\|w\|_2^2 \leq B$, we can avoid overfitting (i.e., force us to not pay too much attention to minimizing loss)
Constraints help avoid overfitting

Without constraint, we might overfit to an outlier

With constraint $\|w\|_2^2 \leq B$, we can avoid overfitting (i.e., force us to not pay too much attention to minimizing loss)

(More details in next lecture)
Other loss functions with linear regression

Absolute loss:

$$\min_{w} \frac{1}{n} \sum_{i=1}^{n} |w^T x_i - y_i|$$

s.t. $R(w) \leq B$

$R(w) = \|w\|_2$

$R(w) = \|w\|_1$

$z := w^T x - y$
Other loss functions with linear regression

Absolute loss:

$$\min_w \frac{1}{n} \sum_{i=1}^{n} |w^T x_i - y_i|$$

s.t. $R(w) \leq B$

Advantage: less sensitive to outliers
Other loss functions with linear regression

Absolute loss:

$$\min_{w} \frac{1}{n} \sum_{i=1}^{n} |w^T x_i - y_i|$$

s.t. $R(w) \leq B$

Advantage: less sensitive to outliers

Disadvantage: no closed-form solution, non-differentiable at 0
Other loss functions with linear regression

Huber loss:

\[
\min_w \frac{1}{n} \sum_{i=1}^{n} L_\delta(w^T x - y)
\]

s.t. \(R(w) \leq B \)

Where

\[
L_\delta(z) = \begin{cases}
 z^2/2 & \text{if } |z| \leq \delta \\
 \delta(|z| - \delta/2) & \text{else}
\end{cases}
\]
Other loss functions with linear regression

Huber loss:

$$\min_w \frac{1}{n} \sum_{i=1}^{n} L_\delta(w^T x - y)$$

s.t. $R(w) \leq B$

Where

$$L_\delta(z) = \begin{cases}
\frac{z^2}{2} & |z| \leq \delta \\
\delta(|z| - \delta/2) & \text{else}
\end{cases}$$

Advantage: best of both worlds
Other loss functions with linear regression

Huber loss:

\[
\min_w \frac{1}{n} \sum_{i=1}^{n} L_\delta(w^T x - y)
\]

s.t. \(R(w) \leq B \)

Where

\[
L_\delta(z) = \begin{cases}
 \frac{z^2}{2} & |z| \leq \delta \\
 \delta(|z| - \delta/2) & \text{else}
\end{cases}
\]

Advantage: best of both worlds

Disadvantage: additional parameter \(\delta \) to tune
Linear classification: Hinge loss + constraint

\[
\min_{w,b} \frac{1}{n} \sum_{i=1}^{n} \max \left\{ 0, 1 - y_i (w^T x_i + b) \right\}
\]

\[
\text{s.t. } \|w\|_2^2 \leq B
\]
Linear classification: Hinge loss + constraint

\[
\min_{w,b} \frac{1}{n} \sum_{i=1}^{n} \max\{0, 1 - y_i(w^T x_i + b)\}
\]

s.t. \(\|w\|_2^2 \leq B \)

\(z := y(w^T x + b) \)

(Correct)
Linear classification: Hinge loss + constraint

\[
\min_{w,b} \frac{1}{n} \sum_{i=1}^{n} \max \left\{ 0, 1 - y_i(w^T x_i + b) \right\}
\]

s.t. \(\|w\|_2^2 \leq B \)

Constraint avoids overfit:
(Recall: small \(\|w\|_2 \) should have large street width)

\[z := y(w^T x + b) \]

(max\{0,1 − z\})

(wrong)

(Correct)
Linear classification: Log-loss + constraints

$$\min_{w,b} \frac{1}{n} \sum_{i=1}^{n} \ln \left(1 + \exp(-y_i(w^T x_i + b)) \right)$$

s.t. $\|w\|_2^2 \leq B$
Linear classification: Log-loss + constraints

\[
\min_{w,b} \frac{1}{n} \sum_{i=1}^{n} \ln \left(1 + \exp(-y_i(w^T x_i + b)) \right) \\
\text{s.t. } \|w\|_2^2 \leq B
\]
Linear classification: Exponential loss + constraints

$$\min_{w,b} \frac{1}{n} \sum_{i=1}^{n} \exp \left(-y_i (w^T x_i + b) \right)$$

s.t. $\|w\|_2^2 \leq B$
Linear classification: Exponential loss + constraints

\[
\min_{w,b} \frac{1}{n} \sum_{i=1}^{n} \exp \left(-y_i (w^T x_i + b) \right)
\]

s.t. \(\|w\|_2^2 \leq B \)

(Later, AdaBoost uses this loss)
Linear classification: Exponential loss + constraints

\[
\min_{w,b} \frac{1}{n} \sum_{i=1}^{n} \exp \left(-y_i (w^T x_i + b) \right)
\]

s.t. \(\|w\|_2^2 \leq B \)

(Later, AdaBoost uses this loss)

Very aggressive loss (but may overfit w/ noisy data)
Outline for Today

1. Empirical Risk Minimization

2. Examples on loss & hypothesis classes

3. Regularization
Regularization

We can turn constraint optimization problem into unconstrained using Lagrange multiplier

Example:
Regularization

We can turn constraint optimization problem into unconstrained using Lagrange multiplier

Example:

\[
\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} (\mathbf{w}^\top \mathbf{x}_i - y_i)^2 \\
\text{s.t. } \|\mathbf{w}\|_1 \leq B
\]
Regularization

We can turn constraint optimization problem into unconstrained using Lagrange multiplier

Example:

\[
\min_w \frac{1}{n} \sum_{i=1}^{n} (w^T x_i - y_i)^2 \\
\text{s.t. } \|w\|_1 \leq B
\]

\[
\min_w \frac{1}{n} \sum_{i=1}^{n} (w^T x_i - y_i)^2 + \lambda \|w\|_2^2
\]
Regularization

We can turn constraint optimization problem into unconstrained using Lagrange multiplier

Example:

$$\min_w \frac{1}{n} \sum_{i=1}^{n} (w^T x_i - y_i)^2$$

s.t. $\|w\|_1 \leq B$

$$\min_w \frac{1}{n} \sum_{i=1}^{n} (w^T x_i - y_i)^2 + \lambda \|w\|_2^2$$

(More details about Lagrange multiplier in Anil’s optimization class CS4220)
Examples:

Soft-margin SVM:

$$\min_{w,b} \sum_{i=1}^{n} \max \left\{ 0, 1 - y_i(w^T x_i + b) \right\} + \lambda \|w\|_2^2$$
Examples:

Soft-margin SVM:

\[
\min_{w,b} \sum_{i=1}^{n} \max \left\{ 0, 1 - y_i (w^T x_i + b) \right\} + \lambda \|w\|_2^2
\]

Ridge Linear Regression

\[
\min_{w} \sum_{i=1}^{n} (w^T x_i - y_i)^2 + \lambda \|w\|_2^2
\]
Examples:

Soft-margin SVM:

\[
\min_{w,b} \sum_{i=1}^{n} \max \left\{ 0, 1 - y_i(w^T x_i + b) \right\} + \lambda \|w\|_2^2
\]

Ridge Linear Regression

\[
\min_{w} \sum_{i=1}^{n} (w^T x_i - y_i)^2 + \lambda \|w\|_2^2
\]

Lasso:

\[
\min_{w} \sum_{i=1}^{n} (w^T x_i - y_i)^2 + \lambda \|w\|_1
\]
Examples:

Soft-margin SVM:

\[
\min_{w, b} \sum_{i=1}^{n} \max \left\{ 0, 1 - y_i(w^T x_i + b) \right\} + \lambda \|w\|_2^2
\]

Ridge Linear Regression

\[
\min_{w} \sum_{i=1}^{n} (w^T x_i - y_i)^2 + \lambda \|w\|_2^2
\]

Lasso:

\[
\min_{w} \sum_{i=1}^{n} (w^T x_i - y_i)^2 + \lambda \|w\|_1
\]

Returned solution is often sparse!
Examples:

Soft-margin SVM:

$$\min_{w,b} \sum_{i=1}^{n} \max \left\{ 0, 1 - y_i(w^T x_i + b) \right\} + \lambda \|w\|_2^2$$

Ridge Linear Regression

$$\min_{w} \sum_{i=1}^{n} (w^T x_i - y_i)^2 + \lambda \|w\|_2^2$$

Lasso:

$$\min_{w} \sum_{i=1}^{n} (w^T x_i - y_i)^2 + \lambda \|w\|_1$$

Returned solution is often sparse!

Good for feature selection!
Summary for today

1. Empirical risk minimization framework
Summary for today

1. Empirical risk minimization framework

2. Need to restrict our hypothesis class:

Select hypothesis that is simple while can also explain the data reasonably well
Summary for today

1. Empirical risk minimization framework

2. Need to restrict our hypothesis class:
 Select hypothesis that is simple while can also explain the data reasonably well

3. Examples of loss functions & Regularizations