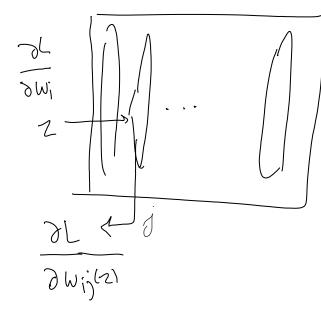
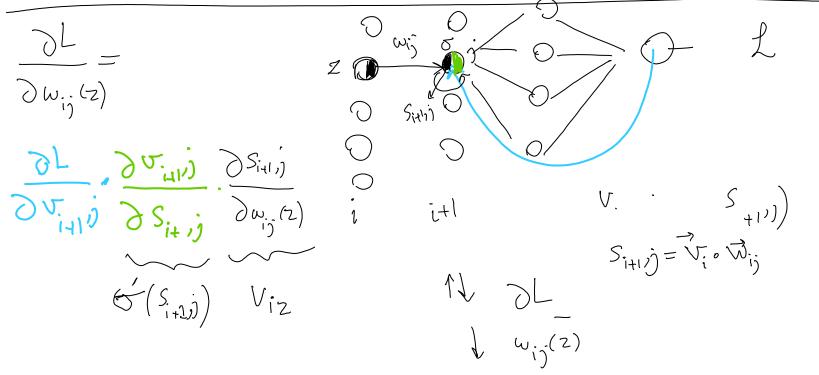

Lecture 10/17: Backpropagation


Thursday, October 17, 2019 2:48 PM



	/ ,	Ţ	~)
= 5	$\left(\right)$	Ŵ.	V.	
	١	·	. ,	/

V. J-1,1 W eight WJ-r1 ου.. 1 forward O VJ,1 \bigcirc W_{12} prediction \bigcirc $L(y',y) = \frac{1}{2}(y'-y)$ \mathcal{O} \bigcirc \bigcirc $\frac{\partial L}{\partial L} = \frac{\partial v_{j,1}}{\partial v_{j,1}} \left(\frac{1}{2} \left(v_{j,1} - \frac{2}{3} \right) \right)$ JVJ, JSJ, 25,1 du du 24-1,1 = $V_{1,-}$ $O(S_{J,1})$ $W_{1-1,1}(2)$ Wj_|,1 (2) ø YW → S⁺,1,1 20:+1 0 0 0 03:11,1 \bigcirc \mathbf{O}^{ϵ} 35: ଚ ZV. DC \odot \bigcirc layer DL Juit $\left| \widetilde{\mathcal{O}}(\widetilde{S}_{i+1}) \right|$ D \bigcirc $W_{\mathbf{U}}$

Ξſ И

 $\sum r$

 $k_{xk} \in W, N = \sum_{i+1}^{i}$ $\frac{\partial L}{\partial W_{i}} = \frac{\partial L}{\partial v_{i+1}} \cdot \frac{\partial v_{i+1}}{\partial S_{i+1}} \cdot \frac{\partial S_{i+1}}{\partial W_{i}}$

Kx1 a high level: keep track of $\vec{S} = \frac{\partial L}{\partial \vec{S}_{1}}$ $\vec{S} = \frac{\partial L}{\partial S_{1}}$ $\vec{S} = \frac{\partial L}{\partial S_{1}}$ $\vec{S} = \frac{\partial L}{\partial S_{1}}$ At a high level: At layer $l: \begin{bmatrix} \vec{z} \\ \vec{z} \\ l \end{bmatrix} = W \left(\begin{array}{c} (\vec{z}) \\ \vec{z} \\ \vec{z} \end{bmatrix} \\ \begin{pmatrix} \vec{z} \\ \vec{z} \\ l \end{bmatrix} \\ \begin{pmatrix} \vec{z} \\ \vec{z} \\ \vec{z} \end{bmatrix} \\ \begin{pmatrix} \vec{z} \\ \vec{z} \\ \vec{z} \\ \vec{z} \\ l \end{bmatrix} \\ \begin{pmatrix} \vec{z} \\ \vec{z} \\$ $W_{\ell} \leftarrow W_{\ell} - \eta \frac{\partial L}{\partial w_{\ell}} = W - \frac{\partial L}{\partial S_{\ell+1}} \cdot \frac{\partial S_{\ell+1}}{\partial w_{\ell}}$

. _____