

Assessing Learning Results

CS4780/5780 – Machine Learning Fall 2011

Thorsten Joachims Cornell University

Reading:

- Mitchell Chapter 5
- Dietterich, T. G., (1998). Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms. Neural Computation, 10 (7) 1895-1924.

(http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.3325)

Outline

- What is the true error of classification rule h?
- Is rule h₁ more accurate than h₂?
- Is learning algorithm A1 better than A2?
- Cross Validation

Learning as Prediction

Definition: A particular instance of a learning problem is described by a probability distribution P(X,Y).

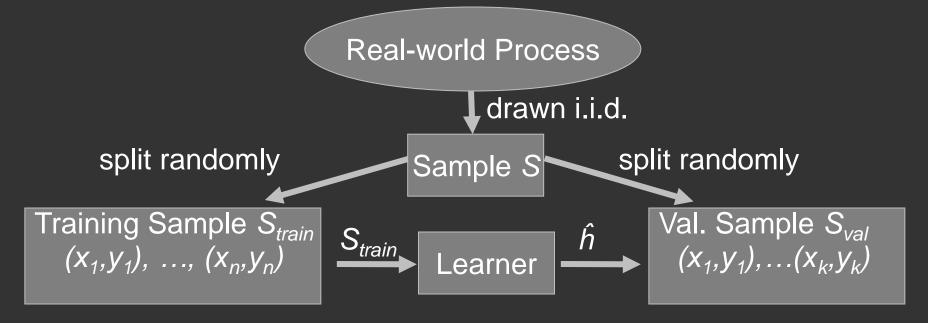
Definition: A sample $S = ((\vec{x}_1, y_1), ..., (\vec{x}_n, y_n))$ is independently identically distributed (i.i.d.) according to P(X, Y).

Definition: The error on sample S $Err_S(h)$ of a hypothesis h is $Err_S(h) = \frac{1}{n} \sum_{i=1}^n \Delta(h(\vec{x}_i), y_i)$.

Definition: The prediction/generalization/true error $Err_P(h)$ of a hypothesis h for a learning task P(X,Y) is

$$Err_P(h) = \sum_{\vec{x} \in X, y \in Y} \Delta(h(\vec{x}), y) P(X = \vec{x}, Y = y).$$

Evaluating Learned Hypotheses



- Goal: Find h with small prediction error $Err_P(h)$ over P(X,Y).
- Question: How good is $Err_{P}(\hat{h})$ of \hat{h} found on training sample S_{train}.
- Training Error: Error $Err_{S_{train}}(\hat{h})$ on training sample. Validation Error: Error $Err_{S_{val}}(\hat{h})$ is an estimate of $Err_{P}(\hat{h})$.

What is the True Error of a Hypothesis?

Given

- Sample of labeled instances S
- Learning Algorithm A

Setup

- Partition S randomly into S_{train} (70%) and S_{val} (30%)
- Train learning algorithm A on Strain, result is \hat{h} .
- Apply \hat{h} to S_{val} and compare predictions against true labels.

- Error on test sample $Err_{S_{val}}(\hat{h})$ is estimate of true error $Err_{P}(\hat{h})$.
- Compute confidence interval.

Training Sample
$$S_{train}$$
 $(x_1, y_1), ..., (x_n, y_n)$
Learner
$$\hat{h}$$

$$(x_1, y_1), ..., (x_k, y_k)$$

Binomial Distribution

The probability of observing x heads in a sample of n independent coin tosses, where in each toss the probability of heads is p, is

$$P(X = x|p,n) = \frac{n!}{x!(n-x)!}p^x(1-p)^{n-x}$$

- Normal approximation: For np(1-p)>=5 the binomial can be approximated by the normal distribution with
 - Expected value: E(X)=np Variance: Var(X)=np(1-p)
 - With probability δ , the observation x falls in the interval

$$E(X) \pm z_{\delta} \sqrt{Var(X)}$$

δ	50%	68%	80%	90%	95%	98%	99%
z_δ	0.67	1.00	1.28	1.64	1.96	2.33	2.58

Text Classification Example: Results

- Data
 - Training Sample: 2000 examples
 - Test Sample: 600 examples
- Unpruned Tree:
 - Size: 437 nodes Training Error: 0.0% Test Error: 11.0%
- Early Stopping Tree:
 - Size: 299 nodes Training Error: 2.6% Test Error: 9.8%
- Post-Pruned Tree:
 - Size: 167 nodes Training Error: 4.0% Test Error: 10.8%
- Rule Post-Pruning:
 - Size: 164 tests Training Error: 3.1% Test Error: 10.3%

Is Rule h₁ More Accurate than h₂? (Same Validation Sample)

Given

- Sample of labeled instances S
- Learning Algorithms A₁ and A₂

Setup

- Partition S randomly into S_{train} (70%) and S_{val} (30%)
- Train learning algorithms A_1 and A_2 on S_{train} , result are \hat{h}_1 and \hat{h}_2 .
- Apply \hat{h}_1 and \hat{h}_2 to S_{val} and compute $Err_{S_{val}}(\hat{h}_1)$ and $Err_{S_{val}}(\hat{h}_2)$.

- Decide, if $Err_P(\hat{h}_1) \neq Err_P(\hat{h}_2)$?
- Null Hypothesis: $Err_{S_{val}}(\hat{h}_1)$ and $Err_{S_{val}}(\hat{h}_2)$ come from binomial distributions with same p.
 - → Binomial Sign Test (McNemar's Test)

Is Rule h₁ More Accurate than h₂? (Different Validation Samples)

Given

- Samples of labeled instances S₁ and S₂
- Learning Algorithms A₁ and A₂

Setup

- Partition S_1 randomly into S_{train1} (70%) and S_{val1} (30%) Partition S_2 randomly into S_{train2} (70%) and S_{val2} (30%)
- Train learning algorithm A_1 on S_{train1} and A_2 on S_{train2} , result are \hat{h}_1 and \hat{h}_2 .
- Apply \hat{h}_1 to S_{val1} and \hat{h}_2 to S_{val2} and get $Err_{S_{val1}}(\hat{h}_1)$ and $Err_{S_{val2}}(\hat{h}_2)$.

- Decide, if $Err_P(\hat{h}_1) \neq Err_P(\hat{h}_2)$?
- Null Hypothesis: $Err_{S_{val1}}(\hat{h}_1)$ and $Err_{S_{val2}}(\hat{h}_2)$ come from binomial distributions with same p.
 - → t-Test (z-Test)

Is Learning Algorithm A₁ better than A₂?

Given

- -k samples $S_1 \dots S_k$ of labeled instances, all i.i.d. from P(X,Y).
- Learning Algorithms A_1 and A_2

Setup

- For *i* from 1 to *k*
 - Partition S_i randomly into S_{train} (70%) and S_{val} (30%)
 - Train learning algorithms A_1 and A_2 on S_{train} , result are \hat{h}_1 and \hat{h}_2 .
 - Apply \hat{h}_1 and \hat{h}_2 to S_{val} and compute $Err_{S_{val}}(\hat{h}_1)$ and $Err_{S_{val}}(\hat{h}_2)$.

- Decide, if $E_S(Err_P(A_1(S_{train}))) \neq E_S(Err_P(A_2(S_{train})))$?
- Null Hypothesis: $Err_{S_{val}}(A_1(S_{train}))$ and $Err_{S_{val}}(A_2(S_{train}))$ come from same distribution over samples S.
 - → t-Test (z-Test) or Wilcoxon Signed-Rank Test

K-fold Cross Validation

Given

- Sample of labeled instances S
- Learning Algorithms A₁ and A₂

Compute

- Randomly partition S into k equally sized subsets $S_1 \dots S_k$
- For *i* from 1 to *k*
 - Train A_1 and A_2 on $S_1 \dots S_{i-1} S_{i+1} \dots S_k$ and get \hat{h}_1 and \hat{h}_2 .
 - Apply \hat{h}_1 and \hat{h}_2 to S_i and compute $Err_{S_i}(\hat{h}_1)$ and $Err_{S_i}(\hat{h}_2)$.

Estimate

- Average $Err_{S_i}(\hat{h}_1)$ is estimate of $E_S(Err_P(A_1(S_{train})))$
- Average $Err_{S_i}(\hat{h}_2)$ is estimate of $E_S(Err_P(A_2(S_{train})))$
- Count how often $Err_{S_i}(\hat{h}_1) > Err_{S_i}(\hat{h}_2)$ and $Err_{S_i}(\hat{h}_1) < Err_{S_i}(\hat{h}_2)$