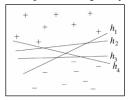
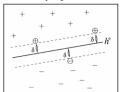
Optimal Hyperplanes

CS4780 – Machine Learning Fall 2009

> Thorsten Joachims Cornell University


Reading: Schoelkopf/Smola Chapter 7.1-7.3, 7.5 (online)


Outline

- · Optimal hyperplanes and margins
- · Hard-margin Support Vector Machine
- · Primal optimization problem
- · Soft-margin Support Vector Machine

Optimal Hyperplanes Linear Hard-Margin Support Vector Machine

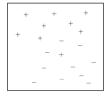
Assumption: Training examples are linearly separable.

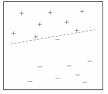
Hard-Margin Separation

Goal: Find hyperplane with the largest distance to the closest training examples.

$\begin{array}{ll} \textbf{Optimization Problem (Primal):} \\ \min_{\vec{w},b} & \frac{1}{2}\vec{w}\cdot\vec{w} \\ s.t. & y_1(\vec{w}\cdot\vec{x}_1+b) \geq 1 \end{array}$

 $y_n(\vec{w}\cdot\vec{x}_n+b)\geq 1$


18 18


 $\textbf{Support Vectors:} \ Examples \ with \ minimal \ distance \ (i.e. \ margin).$

Non-Separable Training Data

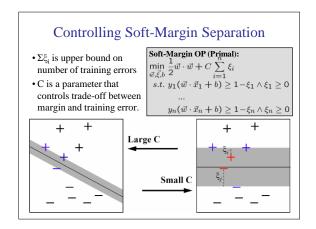
$Limitations\ of\ hard-margin\ formulation$

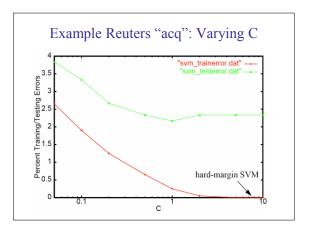
- For some training data, there is no separating hyperplane.
- Complete separation (i.e. zero training error) can lead to suboptimal prediction error.

Soft-Margin Separation

Idea: Maximize margin and minimize training error.

Hard-Margin OP (Primal):


$$\min_{\vec{w},b} \frac{1}{2} \vec{w} \cdot \vec{w}$$


$$s.t. \quad y_1(\vec{w} \cdot \vec{x}_1 + b) \ge 1$$
...
$$y_n(\vec{w} \cdot \vec{x}_n + b) > 1$$

$$\begin{split} & \overline{\textbf{Soft-Margin OP (Primal):}} \\ & \min_{\vec{w}, \vec{\xi}, b} \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum_{i=1} \xi_i \\ & s.t. \ y_1(\vec{w} \cdot \vec{x}_1 + b) \geq 1 - \xi_1 \wedge \xi_1 \geq 0 \\ & \cdots \\ & y_n(\vec{w} \cdot \vec{x}_n + b) \geq 1 - \xi_n \wedge \xi_n \geq 0 \end{split}$$

- Slack variable ξ_i measures by how much (x_i, y_i) fails to achieve margin δ
- $\Sigma \xi_i$ is upper bound on number of training errors
- C is a parameter that controls trade-off between margin and training error.

Training	$ec{x}$							у
Sample S_{train}	x_1	x_2	x_3	x_4	x_5	x_6	x_7	
(\vec{x}_1, y_1)	1	0	0	1	0	0	0	1
(\vec{x}_2, y_2)	1	0	0	0	1	0	0	1
(\vec{x}_3, y_3)	0	1	0	0	0	1	0	-1
(\vec{x}_4, y_4)	0	1	0	0	0	0	1	-1
		$ec{w}$						
	w_{I}	w ₂	w ₃	w_4	w ₅	w_6	w ₇	
Hyperplane 1	1	1	0	0	0	0	0	2
Hyperplane 2	0	0	0	1	1	-1	-1	0
Hyperplane 3	1	-1	1	0	0	0	0	0
Hyperplane 4	0.5	-0.5	0	0	0	0	0	0
Hyperplane 5	1	-1	0	0	0	0	0	0
Hyperplane 6	0.95	-0.95	0	0.05	0.05	-0.05	-0.05	0