Assessing Learning Results

CS4780 - Machine Learning Fall 2009

Thorsten Joachims Cornell University

Reading: Mitchell Chapter 5

Outline

- · What is the true error of classification rule h?
- Is rule h₁ more accurate than h₂?
- · Is learning algorithm A1 better than A2?
- · Cross Validation

Learning as Prediction

Definition: A particular instance of a learning prob**lem** is described by a probability distribution P(X,Y).

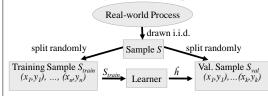
Definition: A sample $S = ((\vec{x}_1, y_1), ..., (\vec{x}_n, y_n))$ is independently identically distributed (i.i.d.) according to P(X,Y).

Definition: The error on sample S $Err_S(h)$ of a hypothesis h is $Err_S(h) = \frac{1}{n} \sum_{i=1}^n \Delta(h(\vec{x}_i), y_i)$.

Definition: The prediction/generalization/true error $Err_P(h)$ of a hypothesis h for a learning task P(X,Y) is

$$Err_P(h) = \sum_{\vec{x} \in X, y \in Y} \Delta(h(\vec{x}), y) P(X = \vec{x}, Y = y).$$

Evaluating Learned Hypotheses



- **Goal:** Find h with small prediction error $Err_P(h)$ over P(X,Y).
- **Question:** How good is $Err_P(\hat{h})$ of \hat{h} found on training sample S_{train} .
- Training Error: Error $Err_{S_{train}}(\hat{h})$ on training sample. Validation Error: Error $Err_{S_{val}}(\hat{h})$ is an estimate of $Err_p(\hat{h})$.

What is the True Error of an Hypothesis?

- - Sample of labeled instances S
 - Learning Algorithm A
- - Partition S randomly into S_{train} (70%) and S_{val} (30%)
 - Train learning algorithm A on S_{train}, result is ĥ.
 - Apply \(\hat{h} \) to \(S_{val} \) and compare predictions against true labels.
- - Error on test sample Err_{Sym}(ĥ) is estimate of true error Err_p(ĥ).
 - Compute confidence interval.

Binomial Distribution

• The probability of observing x heads in a sample of nindependent coin tosses, where in each toss the probability of heads is p, is

$$P(X = x|p, n) = \frac{n!}{x!(n-x)!}p^x(1-p)^{n-x}$$

- **Normal approximation:** For np(1-p) > = 5 the binomial can be approximated by the normal distribution with
 - Expected value: E(X)=np Variance: Var(X) = np(1-p)
 - With probability δ , the observation x falls in the interval

$$E(X) \pm z_{\delta} \sqrt{Var(X)}$$

δ	50%	68%	80%	90%	95%	98%	99%
Ze	0.67	1.00	1.28	1.64	1.96	2.33	2.58

1

Text Classification Example: Results

- Data
 - Training Sample: 2000 examples
 - Test Sample: 600 examples
- · Unpruned Tree:
 - Size: 437 nodes Training Error: 0.0% Test Error: 11.0%
- · Early Stopping Tree:
 - Size: 299 nodes Training Error: 2.6% Test Error: 9.8%
- · Post-Pruned Tree:
 - Size: 167 nodes Training Error: 4.0% Test Error: 10.8%
- · Rule Post-Pruning:
 - Size: 164 tests Training Error: 3.1% Test Error: 10.3%

Is Rule h₁ More Accurate than h₂? (Same Validation Sample)

Given

- Sample of labeled instances S
- Learning Algorithms A_1 and A_2

Setup

- Partition S randomly into S_{train} (70%) and S_{val} (30%)
- Train learning algorithms A_1 and A_2 on S_{train} , result are \hat{h}_1 and \hat{h}_2 .
- Apply $\hat{h_1}$ and $\hat{h_2}$ to S_{val} and compute $Err_{S_{val}}(\hat{h_1})$ and $Err_{S_{val}}(\hat{h_2})$.

Test

- Decide, if $Err_p(\hat{h}_1) \neq Err_p(\hat{h}_2)$?
- Null Hypothesis: $Err_{S_{val}}(\hat{h_1})$ and $Err_{S_{val}}(\hat{h_2})$ come from binomial distributions with same p.
 - → Binomial Sign Test (McNemar's Test)

Is Rule h₁ More Accurate than h₂? (Different Validation Samples)

• Given

- Samples of labeled instances S₁ and S₂
- Learning Algorithms A1 and A2

· Setu

- Partition S_1 randomly into S_{train1} (70%) and S_{val1} (30%) Partition S_2 randomly into S_{train2} (70%) and S_{val2} (30%)
- Train learning algorithm A_1 on S_{train1} and A_2 on S_{train2} , result are \hat{h} , and \hat{h} .
- Apply \hat{h}_1 to S_{val1} and \hat{h}_2 to S_{val2} and get $Err_{S_{val1}}(\hat{h}_1)$ and $Err_{S_{val2}}(\hat{h}_2)$.

• Test

- Decide, if $Err_P(\hat{h_1}) \neq Err_P(\hat{h_2})$?
- Null Hypothesis: $Err_{S_{val2}}(\hat{h_1})$ and $Err_{S_{val2}}(\hat{h_2})$ come from binomial distributions with same p.
 - \rightarrow t-Test (z-Test)

Is Learning Algorithm A_1 better than A_2 ?

· Given

- -k samples $S_1 \dots S_k$ of labeled instances
- Learning Algorithms A₁ and A₂

Setup

- For i from l to k
 - Partition S_i randomly into S_{train} (70%) and S_{val} (30%)
 - Train learning algorithms A_1 and A_2 on S_{train} , result are \hat{h}_1 and \hat{h}_2 .
 - Apply \(\hat{h}_1 \) and \(\hat{h}_2 \) to \(S_{val} \) and compute \(Err_{S_{val}}(\hat{h}_1) \) and \(Err_{S_{val}}(\hat{h}_2) \).

Test

- Decide, if $E_S(Err_P(A_1(S_{train}))) \neq E_S(Err_P(A_2(S_{train})))$?
- Null Hypothesis: $Err_{S_{pal}}(A_1(S_{train}))$ and $Err_{S_{pal}}(A_2(S_{train}))$ come from same distribution over samples S.

K-fold Cross Validation

Given

- Sample of labeled instances S
- Learning Algorithms A_1 and A_2

· Compute

- Randomly partition S into k equally sized subsets $S_1 \dots S_k$
- For i from I to k
 - Train A₁ and A₂ on S₁ ... S_{i-1} S_{i+1} ... S_k and get ĥ₁ and ĥ₂.
 - Apply \(\hat{h}_1 \) and \(\hat{h}_2 \) to \(S_i \) and compute \(Err_{S_i}(\hat{h}_1) \) and \(Err_{S_i}(\hat{h}_2) \).

• Estimate

- Average $Err_{S_i}(\hat{h}_I)$ is estimate of $E_S(Err_P(A_I(S_{train})))$
- Average $Err_{S_t}(\hat{h}_2)$ is estimate of $E_S(Err_p(A_2(S_{train})))$
- Count how often $Err_{S_i}(\hat{h}_1) > Err_{S_i}(\hat{h}_2)$ and $Err_{S_i}(\hat{h}_1) < Err_{S_i}(\hat{h}_2)$