CS 478 Homework 5 DUE: April 29 2004

This homework is individual work. All assignments are due at the beginning of class on the due date. Assignments
turned in late will drop 10 points for each period of 24 hours for which the assignment is late. In addition, no
assignments will be accepted after the solutions have been made available. Please include your cornell net id on
your homework.

A. Statistical Learning Theory

1. Error Bounds (20 POINTS)

Consider the instance spa&eof pointsz = (x1, x2) with integer coordinate§0..10], [0..10]) € N2. The task

is to learn a concept: X — {0, 1} which can be described as a rectangle b), (c,d)) € N? x N2. (a,b) is

the left top corner of the rectanglg;, d) is the lower right corner. An example is labeled positive, if it lies inside
the rectangle or on it's boundary. It is negative, if it lies outside. The hypothesis gpace all rectangles over
the instance spack.

You have a training sample of sizeand your learning algorithm found a hypothesis that has zero training error.
Give a bound for the prediction error of this hypothesis!

2. Infinite Hypothesis Spaces (20 POINTS)

In class we only derived generalization error bounds for finite hypothesis spaces. For infinite hypothesis spaces,
these bounds cannot be applied directly, since they contain the number of hyppitfiesisa factor. The key trick

to extend them to infinite hypothesis spaces is to consider the “effective” number of hypotheses, which is finite.
To illustrate this, consider the following example.

Our hypothesis space are all intervalsb] on the real line (i.e. the instance spa€e= ). A pointz is classified
positive, if z € [a,b], negative otherwise. Clearly, this hypothesis space is infinite. However, many of these
hypotheses are “redundant” for any given sample.

Consider a sampl§' = (z1, ..., z,,) of n (distinct) points. Derive a formula for the number of hypotheses that
classify the exampleis different ways The bound should hold for any such sample.

B. Clustering

1. Hierarchical Agglomerative Clustering (20 POINTS)
Create by hand the clustering tree for the following sample of ten points in one dimension
S =(-22,-2.0,-0.3,0.1,0.2,0.4,1.6,1.7,1.9,2.0). (1)

Use single link clustering (i.ed(C;, C;) = mingec,.«rcc, || — 2'||). Based on the clustering tree, argue that
three is the natural number of clusters.

2. K-Means as Greedy Search (20 POINTS)

The k-means algorithms (see Algorithm 1 in the handout) can be viewed as searching for the clastering.
with mean vectorgi, ..., iy, that minimizes the following objective function, typically called the sum-of-squared-
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Prove that in every iteration of the algorithm (before convergence), the objective fudgtimever increases. In
particular, prove that in each individual step

e “classifyn samples according to the neargstand
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the objective functiorny, never increases.

3. Finding the Optimal k in k-Means (20 POINTS)

One shortcoming in k-means is that you have to specify the value ¢tow about the following strategy for
picking k& automatically: try all possible valuése {1,2,...,n} and pick thek that minimizesJ.. Argue why this
is a good / bad idea!



