
CS 478 Homework 5 DUE: April 29 2004

This homework is individual work. All assignments are due at the beginning of class on the due date. Assignments
turned in late will drop 10 points for each period of 24 hours for which the assignment is late. In addition, no
assignments will be accepted after the solutions have been made available. Please include your cornell net id on
your homework.

A. Statistical Learning Theory

1. Error Bounds (20 POINTS)

Consider the instance spaceX of points~x = (x1, x2) with integer coordinates([0..10], [0..10]) ⊂ N2. The task
is to learn a conceptc : X → {0, 1} which can be described as a rectangle((a, b), (c, d)) ∈ N2 × N2. (a, b) is
the left top corner of the rectangle,(c, d) is the lower right corner. An example is labeled positive, if it lies inside
the rectangle or on it’s boundary. It is negative, if it lies outside. The hypothesis spaceH are all rectangles over
the instance spaceX.

You have a training sample of sizen and your learning algorithm found a hypothesis that has zero training error.
Give a bound for the prediction error of this hypothesis!

2. Infinite Hypothesis Spaces (20 POINTS)

In class we only derived generalization error bounds for finite hypothesis spaces. For infinite hypothesis spaces,
these bounds cannot be applied directly, since they contain the number of hypothesis|H| as a factor. The key trick
to extend them to infinite hypothesis spaces is to consider the “effective” number of hypotheses, which is finite.
To illustrate this, consider the following example.

Our hypothesis space are all intervals[a, b] on the real line (i.e. the instance spaceX = <). A pointx is classified
positive, if x ∈ [a, b], negative otherwise. Clearly, this hypothesis space is infinite. However, many of these
hypotheses are “redundant” for any given sample.

Consider a sampleS = (x1, ..., xn) of n (distinct) points. Derive a formula for the number of hypotheses that
classify the examplesin different ways. The bound should hold for any such sample.

B. Clustering

1. Hierarchical Agglomerative Clustering (20 POINTS)

Create by hand the clustering tree for the following sample of ten points in one dimension

S = (−2.2,−2.0,−0.3, 0.1, 0.2, 0.4, 1.6, 1.7, 1.9, 2.0). (1)

Use single link clustering (i.e.d(Ci, Cj) = minx∈Ci,x′∈Cj
||x − x′||). Based on the clustering tree, argue that

three is the natural number of clusters.

2. K-Means as Greedy Search (20 POINTS)

The k-means algorithms (see Algorithm 1 in the handout) can be viewed as searching for the clusteringC1, ..., Ck

with mean vectors~µ1, ..., ~µk that minimizes the following objective function, typically called the sum-of-squared-
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error criterionJe:

Je =
k∑

i=1

∑
~x∈Ci

||~x− ~µi||2 (2)

Prove that in every iteration of the algorithm (before convergence), the objective functionJe never increases. In
particular, prove that in each individual step

• “classifyn samples according to the nearest~µi” and

• “recompute~µi = 1
|Ci|

∑
~x∈Ci

~x”

the objective functionJe never increases.

3. Finding the Optimal k in k-Means (20 POINTS)

One shortcoming in k-means is that you have to specify the value ofk. How about the following strategy for
pickingk automatically: try all possible valuesk ∈ {1, 2, ..., n} and pick thek that minimizesJe. Argue why this
is a good / bad idea!
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