
CS 478 Homework 5 SOLUTION OUTLINE DUE: April 29 2004

This homework is individual work. All assignments are due at the beginning of class on the due date. Assignments
turned in late will drop 10 points for each period of 24 hours for which the assignment is late. In addition, no
assignments will be accepted after the solutions have been made available. Please include your cornell net id on
your homework.

A. Statistical Learning Theory

1. Error Bounds (20 POINTS)

Consider the instance spaceX of points~x = (x1, x2) with integer coordinates([0..10], [0..10]) ⊂ N2. The task
is to learn a conceptc : X → {0, 1} which can be described as a rectangle((a, b), (c, d)) ∈ N2 × N2. (a, b) is
the left top corner of the rectangle,(c, d) is the lower right corner. An example is labeled positive, if it lies inside
the rectangle or on it’s boundary. It is negative, if it lies outside. The hypothesis spaceH are all rectangles over
the instance spaceX.

You have a training sample of sizen and your learning algorithm found a hypothesis that has zero training error.
Give a bound for the prediction error of this hypothesis!

We can calculate ‖H‖ in the following way: Unique rectangles can be generated
by first selecting the left top corner (i, j), i ∈ [0..N ], j ∈ [0 : N ] and then selecting
the lower right corner (k, l), k ∈ [0..i], l ∈ [j..N ]. From this we get:

‖H‖ =
N∑

i=0

N∑
j=0

(i + 1)(N − j + 1)

=
N∑

i=0

N∑
j=0

(i + 1)(j + 1)

= ((N + 1)(N + 2)/2)2

= 4356

Using the formula derived in class, we can now say that with probability > (1−
δ), prediction error will be less than ε where ε = 1

n

(
ln(4356) + ln( 1

δ )
)
.

2. Infinite Hypothesis Spaces (20 POINTS)

In class we only derived generalization error bounds for finite hypothesis spaces. For infinite hypothesis spaces,
these bounds cannot be applied directly, since they contain the number of hypothesis|H| as a factor. The key trick
to extend them to infinite hypothesis spaces is to consider the “effective” number of hypotheses, which is finite.
To illustrate this, consider the following example.

Our hypothesis space are all intervals[a, b] on the real line (i.e. the instance spaceX = <). A pointx is classified
positive, if x ∈ [a, b], negative otherwise. Clearly, this hypothesis space is infinite. However, many of these
hypotheses are “redundant” for any given sample.

Consider a sampleSample = (x1, ..., xn) of n (distinct) points. Derive a formula for the number of hypotheses
that classify the examplesin different ways. The bound should hold for any such sample.

For the purpose of defining unique hypotheses intervals [a, b] all points between
two adjacent sample points xi and xi+1 are equivalent (we are assuming, without
loss of generality, that the points are ordered.) So we can count unique hypotheses
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intervals as follows: To define non-empty intervals a can be selected in n different
ways, where a is in the interval [xi−1, xi), i ∈ [1..n] and x0 = −∞, and for each such
a, b can be selected in n − i + 1 different ways (it could be in the intervals
[xj , xj+1], j ∈ [i..n] where xn+1 = ∞.) So we have n(n+1)

2 unique non-empty hypotheses

and the empty hypotheses to get ‖H‖ = n(n+1)
2 + 1.

B. Clustering

1. Hierarchical Agglomerative Clustering (20 POINTS)

Create by hand the clustering tree for the following sample of ten points in one dimension

Sample = (−2.2,−2.0,−0.3, 0.1, 0.2, 0.4, 1.6, 1.7, 1.9, 2.0). (1)

Use single link clustering (i.e.d(Ci, Cj) = minx∈Ci,x′∈Cj
||x − x′||). Based on the clustering tree, argue that

three is the natural number of clusters.

After drawing the tree, it becomes clear that when there are three clusters,
the width of each cluster is much smaller than the gap between any two clusters.
This is not the case for any other number of clusters. Hence three is the natural
number of clusters for this dataset.

2. K-Means as Greedy Search (20 POINTS)

The k-means algorithms (see Algorithm 1 in the handout) can be viewed as searching for the clusteringC1, ..., Ck

with mean vectors~µ1, ..., ~µk that minimizes the following objective function, typically called the sum-of-squared-
error criterionJe:

Je =
k∑

i=1

∑
~x∈Ci

||~x− ~µi||2 (2)

Prove that in every iteration of the algorithm (before convergence), the objective functionJe never increases. In
particular, prove that in each individual step

• “classifyn samples according to the nearest~µi” and

• “recompute~µi = 1
|Ci|

∑
~x∈Ci

~x”

the objective functionJe never increases.

Step 1: Reclassifying to the nearest ~µi

Each point starts this step assigned to some mean ~µi. At this stage, the means
do not change, so if a point is reassigned to a new mean, it must be closer to
that new mean than it was to the old mean. So for these points, the objective
function must decrease. The other points are not reassigned, and so for them
the objective function is unchanged. Therefore the objective function cannot
increase.

Step 2: Computing new means

We can take the partial derivative of the objective function, Je with respect
to each mean ~µi. If we set this to zero, as it must be at the minimum, we recover
the result ~µi = 1

|C|
∑

x∈C ~x. We know this is the minimum and not the maximum because

the second derivative of Je with respect to ~µi is positive. Hence by recomputing
the means, we are in fact minimizing Je.
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3. Finding the Optimal k in k-Means (20 POINTS)

One shortcoming in k-means is that you have to specify the value ofk. How about the following strategy for
pickingk automatically: try all possible valuesk ∈ {1, 2, ..., n} and pick thek that minimizesJe. Argue why this
is a good / bad idea!

This is clearly a very bad idea because when k = n, each point is the mean of
its own cluster and Je = 0. This is the trivial solution that this approach
would always give. (Note: the reason this happens is that for different values
of k, Je is in fact a different function, so it doesn’t make sense to vary k.)
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