CS 478 Homework 1 SOLUTION

This is a possible solution to the homework, although there may be other correct responses
to some of the questions. The questions are repeated in this font, while answarsaare
monospaced font.

1 Version Spaces

Consider the instance spakeof pointsz’ = (1, z2) with integer coordinateg0..10], [0..10]) C

N2. The task is to learn a concept: X — {0, 1} which can be described as a rectangle
((a,b),(c,d)) € N? x N2. (a,b) is the left top corner of the rectanglg, d) is the lower right
corner. An example is labeled positive, if it lies inside the rectangle or on it's boundary. It is
negative, if it lies outside. The hypothesis spdteare all rectangles over the instance space
X.

Note that in this setting, a hypothesis= ((a,b), (c,d)) can be generalized by decreasing
or b and/or increasing or d. Similarly it can be made more specific by increasingr b or
decreasing or d.

Parta (15 POINTS)

Suppose you have the hypothesis- ((4,5), (4,5)), after seeing the positive training example
(4,5). If you then see the positive training example- (6, 3), what is the smallest generaliza-
tion of h that also accepts?

If you use axes with the origin in the usual location, the smallest
generalization that covers both examples is h = ((4,5), (6,3)).

Alternatively, you can have the origin in the top left corner, as
implied by the question, which gives the smallest generalization
of h=((4,3), (6,5)).

Partb (15 POINTS)

Consider the following training set iX' x {0, 1}, where the 0 or 1 is the label of each data
point (0 indicates negative examples, and 1 indicates positive examples):

{((0,5), 0), ((4,5), 1), ((2,2), 0), ((9,5), 0), ((6,3), 1), ((5,6), 1), ((7,0), 0), ((5,8), 0)}

For this training set, what is th& boundary of the version space? What is théoundary of
the version space? Write out the hypotheses and draw them into a diagram showing the points
as well as the boundaries of the version space.



Drawing the datapoints with an origin in the lower left corner,
you get the following diagram. Note the S boundary (smallest, thin
solid rectangle) and G boundaries (three other rectangles).
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There are three G boundaries, that is three rectangles that contain
only positive points and cannot be generalized without including

any negative points. None of these rectangles is completely contained
in another.

We can write the boundaries to be:

S:{((476)7 (673)}
G={((17), (8,3), (3,7, (81), ((3,7), (6,0))}

Many of the figures were just barely big enough to read. There
iS no reason to make them too smalll

Partc (15 POINTS)

Imagine the learner does not get specific training examples, but instead can propose examples
and ask for the correct label. How should the learner pick the example it asks to be labeled
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next? Assume that one positive training example is given initially. Describe a strategy that
will lead the learner to identify the target rectangle with as few training examples as possible.
Remember that since the target concept is not initially known to the learner, your strategy
cannot make use of it. Use the target conaémi6), (6,4)) and the initial positive example
(5,5) to illustrate your strategy.

In this question, many of the solutions were not fully specified.
When rounding is involved, there are two ways you can round, so
please say which way you chose to round. Sometimes, it can even
make a difference in the worst case cost. Also, many of the longer
answers were harder to understand. You should try to be succinct
and clear. Always describe the intuition behind your algorithm
before giving any pseudo-code, it helps us understand what you are
trying to do.

The best solution is a simple binary search in each of the four
directions from the initial point (up, down, right and left). For

each of the four directions, you always ask for the midpoint of

the range of possible values for that particular edge of the target
concept. When you have to round, always round away from the initial
point.

As an example, consider the start point (z, y)=(5, 5) and the target
concept ((4,6), (6,4)). We want to find this target concept, the corners
of which we call ((xr, yr), (zgr, yp)), as shown in the diagram below.
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First we find the right hand border xr Of the target concept. In
our example, it can be at rgp € [5...10]. The midpoint is 7 or 8,

but rounding away from the initial point means we ask for the label
of the point (8,5). (8,5) is negative, so the right hand border of

the target concept must be zrp € [5...7]. The midpoint is 6, so we

ask for (6,5). This is positive, so we know rgr € [6,7]. The midpoint,
rounded away from the start point is 7. So we ask for (7,5), which
is negative, and then we know that xg = 0.



Similarly, to find the left hand border, we initially know xr €
[0...5], with midpoint 2 or 3. Rounding away from the initial point,

we ask for (2,5), which is negative. Then we know xr € [3...5], with
midpoint 4, so we ask for  (4,5), which is positive. Hence xy € [3,4].
Finally, we ask for (3,5) which is negative. Therefore xp = 4.

We do exactly the same sequence of operations for the top and bottom
borders (except that for all the points we request, we use xr=5
and use the appropriate y value). This gives us yr = 6 and yp =

4 after three examples each.

Hence the target concept is ((4,6), (6,4)).

Partd (15 POINTS)

For your strategy from Part ¢, what is the maximal number of training examples needed to
identify any target concept? lllustrate your result by constructing the “worst case” concept and
initital positive example, so that the number of training examples is maximal.

In this problem, often there was no justification why a given example
might be worst case. We did not require a proof, but some sort

of diagram or rough intuition why the example is worst case certainly
helped, especially when using some unusual example as worst case.
For many of the algorithms, the example given in part (c) was in
fact a worst-case example. Another good one was with the initial
point at (5,5) and the target concept being the entire hypothesis
space, ((0,10), (10,0)).

The best solution possible is always being able to learn the target
concept with at most 12 examples, in addition to the one initially
given. This is because with an optimally implemented binary search,
you can select among n values in  [logs(n)] steps.

If the initial point is in the middle of the hypothesis space, we
need [log2(5)] =3 examples to pin down each of the four sides of the
target concept, giving a total of 4 x 3 =12 examples.

If we were to consider a starting point near the edge of the hypothesis

space, say at  (1,1), we need 1 example to check if each of (0,1) and
(1,0) are positive or negative, and then [log2(9)] = 4 examples for

the two other sides. This gives a total of 10 examples, which is

therefore not the worst case situation.



2 Decision Trees

Parta (10 POINTS)

What is a decision tree with as few nodes as possible that represents the boolean function
(mAV B) A—=(C A A) over the boolean attribute$, B, andC?

(mAVB)A-(CAA) is equivalent to -~AV(BA-C) using De Morgan’s Law
and Associativity. The following tree represents this function:
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Since the minimal equivalent formula involves A, B and C, the smallest

tree would have to have at least three nodes and therefore the given
tree has as few nodes as possible.

Partb (10 POINTS)

What is a decision tree that represents the boolean functiciOR B) A C over the boolean
attributesA, B, andC?

A XOR B is equivalent to (FAANB)V(AAN-B). So a possible tree
representing this function is:
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Partc (20 POINTS)

Grow the decision tree for predictirtyP AM for the following dataset using Information Gain
as the splitting criterion. The attributes “nigeria”, “viagra”, and “learning” indicate whether
that particular word occurs in the document. Show your calculations at each step.

nigeria viagra learning SPAM
1 0 0 1
0 1 0 1
0 0 0 0
1 0 1 0
0 0 0 0
1 1 0 1
0 1 1 0
1 0 0 1
0 0 0 0
1 0 0 1
Entropy(Root) = —(5/10) *log(5/10) — (5/10) * log(5/10)

=1

Gain(Root, Nigeria) = 1—(5/10) % (—(4/5) xlog(4/5) — (1/5) x log(1/5)) —

(5/10) x (—(4/5) * log(4/5) — (1/5) * log(1/5))
= 0.278

Gain(Root, Viagra) = 1—(3/10) % (—(2/3) *log(2/3) — (1/3) * log(1/3)) —

(7/10) % (=(3/7) * log(3/7) — (4/7) x log(4/T7))
= 0.035

Gain(Root, Learning) = 1—(2/10) * (—(0/2) xlog(0/2) — (2/2) x log(2/2)) —
(8/10) x (—(5/8) * log(5/8) — (3/8) * log(3/8))

= 0.236
So Nigeria is the appropriate choice of attribute for the root node.

Entropy(Nigeria =1) = —(4/5) *log(4/5) — (1/5) x log(1/5)
= 0.722



Entropy(Nigeria =0) = —(4/5) xlog(4/5) — (1/5) * log(1/5)
0.722

Gain(Nigeria = 1, Learning) = 0.722 — (1/5) % (—(0/1) * log(0/1) — (1/1) x log(1/1)) —
(4/5) * (—(4/4) * log(4/4) — (0/4) * log(0/4))
= 0.722

Gain(Nigeria = 1,Viagra) = 0.722 —(1/5) * (—(1/1) xlog(1/1) — (0/1) % log(0/1)) —
(4/5) x (=(3/4)  log(3/4) — (1/4) * log(1/4))
= 0.073

When Nigeria = 1, Learning is the appropriate choice of attribute
to split on. Both the children of Learning are pure nodes so we
stop here.

Gain(Nigeria = 0, Learning) = 0.722 — (1/5) x (—(0/1) xlog(0/1) — (1/1) % log(1/1)) —

(4/5) * (=(1/4) x log(1/4) — (3/4) * log(3/4))
= 0.073

Gain(Nigeria = 0,Viagra) = 0.722 — (2/5) % (—(1/2) xlog(1/2) — (1/2) x log(1/2)) —

(3/5)  (=(0/3) * log(0/3) — (3/3) * log(3/3))
= 0.322

When Nigeria =0, Viagra is the appropriate choice of attribute to

split on.  When Nigeria = 0 and Viagra = 0 the node is pure and so
we stop there. When Nigeria =0 and Viagra =1, we split on the last
remaining attribute i.e. on Learning.

So the resulting tree looks as follows:
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