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Abstract— Although robot navigation in indoor environments
has achieved great success, robots are unable to fully navigate
these spaces without the ability to operate elevators, including
those which the robot has not seen before. In this paper, we
focus on the key challenge of autonomous interaction with an
unknown elevator button panel. A number of factors, such as
lack of useful 3D features, variety of elevator panel designs,
variation in lighting conditions, and small size of elevator
buttons, render this goal quite difficult.

To address the task of detecting, localizing, and labeling the
buttons, we use state-of-the-art vision algorithms along with
machine learning techniques to take advantage of contextual
features. To verify our approach, we collected a dataset of 150

pictures of elevator panels from more than 60 distinct elevators, Figure 2 shows some sample elevator panels. Note the
and performed extensive offline testing. On this very diverse !

dataset, our algorithm succeeded in correctly localizing and wide variability of button and label types and the challengi

labeling 86.2% of the buttons. Using a mobile robot platform, lighting conditions. To identify the locations and labels o
we then validate our algorithms in experiments where, using all the buttons in a single 2D image, we use sliding-window
only its on-board sensors, the robot autonomously interprets gbject detection and optical character recognition. InuFég2
the panel and presses the appropriate button in elevators never again, also note the grid layouts and the sequential (cddere
seen pefore by the robot. In a total of 14 trllals perfprmed by I t of butt Wi hine | .
on 3 different elevators, our robot succeeded in localizing the y o_or) arrahgement of buttons. We US€ machine iearning
requested button inall 14 trials and in pressing it correctly in  techniques to take advantage of these contextual cues to im-
13 of the 14 trials. prove the performance of the baseline detectors. Spedtyfical
we use Expectation-Maximization to fit the buttons to one
l. INTRODUCTION or more grids, allowing for recovery of false negatives and
Robots have been able to autonomously navigate unknowgliable label extraction. A Hidden Markov Model is applied
building floors for some time; however, their mobility in to the results from the optical character recognition to@cir
these general environments is restricted if they are ndébdr mislabeled buttons.
capable of autonomously operating elevators. Currenttrobo We validate our algorithms in a set of experiments where
systems (used in environments such as hospitals and lakis¢ robot is commanded to press a given button in an
either rely on human assistance or use infrared transmiiiber elevator never seen before by the robot. An experimental
interact with an elevator ([1], [2], [3], [4]). Relying on man  run is considered a success if the robot locates and presses
assistance can be inefficient and one can imagine a situatithe appropriate button using only its onboard sensors. The
where it might be impossible, e.g. a robot janitor cleaning perception algorithm correctly localizes the desired diin
building after working hours. Retrofitting all elevatorstivi all 14 trials and the manipulator presses the desired birton
infrared detectors could be costly and time-consuming artB of the 14 trials. On a much more diverse, offline dataset,
may not be possible if robots must be able to navigate in @ur algorithm succeeds in correctly localizing and lakglin
large number of different buildings. 86.2% of the buttons.
In this paper, we consider the challenge of enabling a
mobile robot to autonomously operate elevators (with no Il. RELATED WORK
human intervention), including those never before seen by Several researchers have demonstrated a robot using an
the robot. We focus on developing algorithms to enable @levatorwith human assistance. In the 2002 AAAI Mobile
robot to identify and accurately localize buttons and recogRobot Challenge, one of the subtasks for participating t®bo
nize their labels, and execute the action of pressing thetut required the robot to navigate to a different floor using an
corresponding to the desired floor. We specifically addresdlevator. Teams were given pictures of the elevator prior to
interior button panels since call buttons usually consist ¢he challenge, but since the robots were allowed to ask a
only up/down buttons and represent a constrained spechiman for assistance, none attempted to autonomously press
case of general elevator panels. the buttons ([1], [2]). Miura et. al developed a framework
for interactive teaching of a robot, and used the scenario of
Ellen Klingbeil is with the Department of Aeronautics and Wstautics,  g|eyator operation to test their algorithms. After undémgo
Stanford University. Blake Carpenter, Olga Russakovskgt amdrew Y. .. . . .
Ng are with the Department of Computer Science, Stanford Wsitye a training phase where a human pointed out key information,
{el I enrk, bl akec, ol ga, ang}@s. st anf ord. edu such as the location of the door and buttons in the elevator,

Fig. 1. Robot autonomously operating an elevator
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Fig. 2. Sample elevator panels. Notice (1) the wide varighiti the button appearance: the shape, the material (metalastic), the presence or absence
of letters and numbers; (2) the imaging conditions in elewatdim lights, specular reflections; (3) the non-standadligrid arrangement of the buttons;
(4) the variety of label types: different fonts, difficuti-perceive numbers (in some cases rubbed off or damaged); ((Busanaming conventiond. (for
lobby versusG for the ground floor val). Our algorithm addresses each of these issues in buildmogust automated system for elevator button detection
and manipulation.

their robot was able to successfully operate the elevator to Our goal is to enable a robot to completely autonomously

traverse a floor of the building [3]. operate any elevator in any building, including those that t
Kang et al. looked at developing a navigation strategy fatobot has not seen before. In contrast to many of the recent

a robot using a known elevator. They addressed navigatiavorks on robotic elevator operation, we focus our efforts on

and path planning and also proposed algorithms to recognideveloping robust perception algorithms to detect, laeali

the buttons, the direction the elevator is moving, and thand label elevator buttons.

current floor for the elevators in a single building. However

since their robot did not have arms, it had to wait for human I1l. APPROACH

assistance to press buttons [4]. Recently, there has beenrg successfully operate the elevator, the robot must lo-
some interest in having robots autonomously operate knowdalize the buttons, recognize the button labels, and cbntro
elevators. In the 2008 TechX Challenge, teams competggle manipulator to press the button. Following the American
towards enabling a robot to autonomously navigate fromjisability Association (ADA) guidelines [10], we make the
an outdoor environment to an indoor environment, includingo|lowing assumptions: elevator buttons must be no smaller
operating an elevator to reach a specified floor. The teamigan 1.9 cm in diameter and button labels must lie to the
were provided with a digital image of the elevator before thgeft of the corresponding button. The button detectionstmus
competition [5], and the robot was required to operate thgave high precision since buttons may be (and often are) as
single known elevator. small as 1.9 cm.

Despite some of these promising reSUItS, the difficult Elevator pane|s vary W|de|y in appearance and arrange-
challenge of a robot completely autonomously operatinghent of buttons. Further, lighting conditions vary greatly
unknown elevators is still outstanding. A crucial, unsadlve among elevator cabs (see Figure 2). Even with a large dataset
subtask is the development of generalized vision-based &y training, extracting enough image features which are
gorithms that help the robot localize the elevator buttongommon across all button variations to be able to recognize
and assign appropriate labels with high accuracy. Objeglttons in new images (unseen in the training phase) is
detection algorithms based solely on 2D data can suffefificult. Further, correctly labeling the buttons relies o
from false detections when the objects and/or scenery vappth accurate localization of the label and good perforraanc
significantly from the data on which the algorithms weregf the optical character recognition (OCR) algorithm. A
trained* straight-forward combination of these two steps is largely

Using contextual cues has shown to improve object dgnadequate. We develop a more complex model that uses
tection in 2D images [7], [8], [9]. In the context of an machine learning techniques to incorporate features ssch a
elevator panel, we recognize two main contextual cues: thgrangement of the buttons in grid patterns and sequential

arrangement of the buttons in one or more grids, and th&dering of labels and demonstrate improvement in overall
arrangement of labels in order of floors. performance.

. _ _ _ First, we use the fact that most elevator buttons lie on a

Recently researchers have shown that augmenting 2D imagks3it id to inf . d detecti d fal ity
sensing can provide significant performance boosts to oljetection griato '_n er_m|sse etec |_ons an remoye alse positMes.
algorithms [6]. However, most current 3D sensors do not haficent  shown in Figure 2, the grid stucture varies greatly between

resolution to detect the buttons at the range required. ,Tlushe case panels and thus has to be learned from data for each elevator
of an elevator panel, 3D data provides little information dertifying the

location of the buttons other than helping to remove detastihat do not mdw@ually. We. apply the E_XPeCtat'pn Maximization (EM)
lie in the plane of the wall. algorithm described in detail in section 1lI-B.
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order of floors: floor 1 is followed by floor 2 and then by * LEVEL 2§ POLEEE 2|
floor 3. We can use this knowledge to automatically correct iR e & =
mislabeled buttons: for example, if the optical character SIS o y

recognition (OCR) algorithm labels consecutive butté@s
11, 11, 13, we infer that the secontil should be changed
to al2. Hand-coding such rules is difficult: various possible
labels exist for the ground floot( G, 1), unexpected labels
often appearR, S), and special cases such as thet h ®
floor being missing in some buildings have to be taken int@jg. 3. (a) output of the sliding window detector. (b) The eéalynamic
account. We automatically learn these rules from trainingreshold to remove detections that are of relatively lowfictemce for each
data using a Hidden Markov Model (HMM) as described inndividual panel, followed by clustering.

section 1II-D and use it to produce more consistent labels g its in a number of both spurious detections and missed

Ovclerall, our perception algorithm consists of four maifyetections. To help eliminate these false positives anuiegc
steps: (A) button detection using a standard sliding-wmdo ¢y 156 negatives, as well as provide an ordering scheme for

object detector, (B) grid fit using the EM algorithm, (C) 1&be g ¢61cing label consisteny, we observe that elevator batto
binarization and recognition using OCR techniques, and ([usually lie in one or more grids. This contextual cue is

consistency enforcement using the HMM. incorporated into our model by fitting the candidates from
A. Button Detection the sliding window detector to grids using Expectation

We use a 2D sliding window object detector to capturévl"")('m'zatIon (EM) [13].

common visual features among elevator buttons. This gidin The EM implementation requires initial estimates for all

window object detector, derived from the patch-based 'c-IassOf the grid parameters. The initialization step clusters al

fiers introduced by Torralba [11] and implemented by [12],the sliding window detections and estimates a cell width

provides initial estimates for the locations of all the but and height by examining clusters along similar horizontal
in an image? and vertical bands. It then iterates through each clustdr an

Knowledge of average elevator button size (based Ehttempts to recursively grow a grid from the current cluster

ADA guidelines) and the distance of the camera from th ocation. This results in a number of possible initial grig fi
panel (obtained from a laser scanner), allows us to compu e assume that panels have at most five grids, and consider

an upper and lower bound on the expected detection si Ne types of initie_llizations (with one, t.W°' three, four, aan
for each panel. A standard approach for post-processiﬁ: gr|ds. re;pectlvely), as Sh.OYV.“ n I_:lgure 4. We cqmpute
object detector results is to use a fixed confidence thresh% log likelihood of all the initial grids (see Equation 3
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(throw out detections with confidence values less than clow), and ChOQSE the ones V.V!th. the_ maximum I_|keI|hood
fixed value) and then apply non-maximal suppression t r each of the five types of initialization to input into the
M algorithm?

remove overlapping detections. However, in our scenarid;, . . . .
bping We use an implementation of EM with a mixture of

large variations in imaging conditions among elevatorsseau : del to | the best arid ¢ Th
the average confidence value for detections to be much Iow(é?‘lraus.S'ans. model fo learn the DESL grid parameters. the
orithm is presented in detail in Table I. Briefly, our

on some panels than others. Thus, using a fixed confiden . ) . -

threshold results in very few detections on some of thg_servatlons _c_ong?lt)of the(rkil)Jtton detections from t.her(?'d

images in our test set (i.e., many false negatives). Weaiﬂstewmdow glassﬁpr{x o T - .Eacég butt(_)n (_jete_ctlo:n

use a dynamic threshold, determined at run-time for eadﬁ assomgted with a h@c_len Var'ab& assigning it to one
the grid cells. Specifically, if the number of rows and

individual panel, which normalizes the panels, followed b)P | in th id g tivelv th
clustering to produce more accurate estimates of buttofP UMNS 1N e grid are,, andrn. respectively, then

positions (see Figure 3). More details on the button deiacti PON= {(1,1),(1,2),...,(n,n.),outlier} Q)

post-processing are given in section IV-A. o S
We want to model the data by specifying a joint distribution
B. Grid Fit

(1) @)y — ()], (2) (4) 2
As shown in Figure 3(c), despite the dynamic thresholding P, 27) = p(a]) x p(z") 2)
and clustering improvements, the button detection stép stifable | definesp(z(?|z(9)) formally, but the intuition is
as follows: If z(V corresponds to one of the grid cells

*Briefly, the supervised training procedure produces a alietly of  {hep ()|, ()) follows a normal distribution around the
features consisting of localized templates from croppeihitrg examples.

The relevance of each of these features in identifying wérethbutton is  center of the grid celt®. Otherwisez() = out | i er and
present in an image patch is evaluated by computing the nomdatiross

correlation of each template with the image patch. A binanssifeer is 3Since fitting the data to more grids will always produce anéase in the
learned by using boosted decision trees to select the setatfire patches total likelihood, we compare the five grid layouts using a wast tpenalizes
which are most effective at recognizing a button in the tragnéxamples for the increase in the number of model parameters. Specificaflyuse
(see [11] for more details). We then use this classifier withisliding-  the Bayesian Information Criterion (BIC) to choose the bdstBIC =
window detector framework to compute the probability of a bmtwvithin+ —21n(L)+k In(n) whereL is the value for the likelihood functiom, is the
each rectangular subwindow of the elevator panel image. number of button detections, ardis the total number of grid parameters.



Fig. 4. Best viewed in coloiFive initializations of grid fit for a single elevator pan&ljth one, two and three, four, and five grids respectivelye3é
serve as input to the EM algorithm. The colored clusters smprethe estimated button centers based on the button detethiat fall within each cell.

p(z®|2() follows a uniform distribution over all positions
in the image. We assume a uniform prior fafz(")).

The grid parameterg specify the position of the grid
and the width and height of the cells. We use maximumg
likelihood estimation to find the best set of parameters for
each grid using the log likelihood function:

M M
= logp(z;0) =YY "logp(z, 217;0) (3)
i=1 i=1 ()

Since the number of grid rows and columns cannot be
updated by maximizing a differentiable function, we learn
these additional parameters by adding a row and/or column
to the grid and comparing the likelihood values. Fig. 5. EM grid fit step. (a) Button detection clusters. (bjatreed grid

; ; ; ocation using EM. Note the missing buttons in the gfidand 5 which
Finally, note that the algorithm in Table I learns the grlo‘are recovered but also note the false positive introducetarbottom right

parameters such that the grid cell centers correspond ¢emer of the grid.

button detections centers. However, since we are inteté@ste
cropping out the button and the corresponding label, which
is always located to the left of the button by the ADA

guidelines, we shift the learned grid to the left such that
the button detection cluster occupies the right half of the
grid cell instead of its center, with the assumption that the

label must then occupy the left half. n
The overall algorithm thus allows us to learn a grid pattern

with up to five grids with the appropriate number of rows
and columns to correctly match each individual panel.

m

Fig. 6. Elevator button labels from our training and test iemgddesigning
The first two steps of the pipeline, button detection ang character recognition system for these labels is a chyifigrtask which

grid fit, produce estimates of the location of buttons and lawe address in section IlI-C.
bels. Given these estimates, our next goal is to appropyriate
classify each button, e.@2nd fl oor, ground floor, ourdata, i.e., process the images of elevator labels tarobta
al arm and so on. Consider the distribution of labels irblack images against white background to aid the OCR, and
Figure 6. Even though it is easy for a human to correctly2) retrain the neural network using sample binarized e@@va
identify most, if not all, of the labels, it becomes surpiidy  labels instead of handwritten digits.
difficult for a robot to do so autonomously using standard 1) Image binarization:We want to extract from the label
OCR algorithms. a binarized image of the segment, which corresponds to the
For this part of the pipeline we use the open-sourcalphanumeric character assigned to the button, to inpaot int
LeNet-5 convolutional neural network of Lecun et al. ([14]) the OCR algorithm. A binarization of a given segment is
However, this network was initially designed for and tralne an image where the pixel value is 1 if it belongs to the
on handwritten digits, which were written in black ink segment and O otherwise. Various binarization techniques
on white background. Since this is quite dissimilar to ouhave been proposed in the literature ([15], [16], [17]), snan
scenario, as evidenced by Figure 6, we had to (1) binarizpecifically tailored for OCR ([18], [19]). However, in our

C. Optical Character Recognition



TABLE |
THE EM ALGORITHM FOR FITTING A GRID TO A SET OF ELEVATOR
BUTTON DETECTIONS

Paraneters: 0 = {os,0y, Az, Ay} where
oz = x-coordinate of grid
oy = y-coordinate of grid
(center of top-left cell)
A, = width of grid cell
Ay = height of grid cell

Gven: (1) button detections {z(, ... .z("™)} where
z(0 ¢ R* specifies the center, width
and hei ght of the detection

(2) ny, nc nunber of rows, columms in grid

Hi dden: assignnents {z(1) ... 2(m} of each detection
to one of the grid cells
2 € {1,2,...ncn,, outlier}

Repeat until convergence {
For each grid cell j:
let u; be the coordinates of its center
based on the grid paraneters 60
E-step:
For each detection i:
Qi(=") = p(=V12); 0)
Np iy 2@, 3) x 422

if 20 ¢ {1,2,...nrnc}

€
u’i?‘nageh”i?nuye
if 2(0 = outlier
M st ep:

. i) i).
0 = argmax (2;11 Yoo Qi(=™) x log %)

image of the same size as the detection window.

2) Training the neural networkWe trained our network
to recognize the common labels found on elevator parigls (
2,3,4,5,6,7,8,9, G B, L, open, cl ose, al arm.*

The training data is comprised of binary images of segments
taken from the training set. Because some labels such as
9s, 8s, and7s did not appear enough in the training set,
synthesized segments were generated by performing minor
transformations on the available segments, such as eroding
and dilating random parts of each segment. The network
was also trained to recognize segments that were not a label
(NAL), since many of the segments from the binarization will
not correspond to actual alphanumeric labels.

For each segment classified, the network outputs a con-
fidence value associated with the label. Because multiple
proposed binarized images are created for each input hutton
OCR produces multiple character predictions per button. We
then filter the output by throwing away segments that have
low confidence values or that get classified\#d., and use
the relative locations of the remaining segments to decide o
the most likely label. For example, if we detect multiple 1s
and 2s in the image we want to use their relative locations
and confidence values to distinguish between labels, &,
11,12, 21 or 22.

D. Consistency Enforcement

From the OCR algorithm, we have a series of imperfect
observations for the button label states. For example, it’s
not uncommon to se&5, 16, 11, 18 for four consecutive
floor buttons. A person who needs to get to g " floor
immediately predicts that the corresponding button wowd b
betweenl6 and18 even if the label is missing entirely. We
incorporated this insight into our algorithm using a Hidden
Markov Model (HMM) [13].

case we are considering a task where only 1-2 charactersgrom the button detection, grid fit and OCR steps, for each

appear per image which means that no algorithms can tﬁ%

nel we obtain one or more disjoint grids corresponding to

applied to learn the font of the text or the geometric positio proposed button positions, and a label for each cell within

of the characters relative to each other.

these grids. We run an HMM to probabilistically enforce

From Figure 6 it becomes clear that simple thresholdingonsistency between the observed labels.

algorithms will not work for binarizing these labels. Fueth

The states in our HMM correspond to floors. The grid

edge detection and similar techniques do not yield adequate step attempts to fit rectangular grids around the buttons,

results in practice, since reliably post-processing tbatput

but the buttons are not usually arranged in fully populated

to obtain coherent components corresponding to individugbctangular arrays (for example, there is often one or more

characters is extremely challenging.

cells in the upper right or bottom right of the grid that do not

Instead, we use an unsupervised superpixel segmentatiggntain actual buttons). Thus we need to explicitly introglu
algorithm due to Felzenszwalb et al. [20] with four diffeten an extrabl ank state that signifies the absence of a button
parameter settings (c = 50, 100, 200, 500) to obtain foun a grid cell, instead of forcing each grid cell to necedgari

different segmentations of the image. We then inallitof

be assigned to a floor.

the segments obtained from each of the four segmentationsThe observations in our HMM are the character strings re-
into the OCR algorithm. The segmentation parameters wetgrned by OCR. Themission probability distributiodefines
determined from the training set, and in Figure 7 we illugtra the probability that a labet is emitted from states, or, in
our approach and show the benefit of using the output fromther words, the probability that, given an image of a button
all four segmentations, instead of just choosing a singlgat leads to floos (e.g. floor 15), OCR returns the label

segmentation parameter.

After some basic post_proceSS|ng to get rid of Segments4|n our training set, we do not include (Since it is too easily mistaken

that are too large, too small, or circular (usually correxpo

with the circular outline around many of the labels), 8teop label (since
it is often associated with a knob or keyhole and not a buttonphone

ing to button boundaries), we turn each segment into a binampel (since it does not appear often and is much likeia appearance).
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Fig. 7. Binarization step (best viewed in color). The first geais the original label. The other four non-binary imagesresent the output of the
segmentation algorithm with four different parameter sginwith different colors corresponding to different segtseiach of these four segmentations
is followed by binary images extracted from it using simpletgm®cessing (discarding of segments that are deemed toe, lerg small, or circular). In
this case only the second parameter setting produced a egacipsegmentation of the charackermowever, all settings are needed for robust performance
on varied elevator panels. Each of the obtained binarizedjésds then passed through OCR to extract a label.

IV. PERCEPTION RESULTS

To train and test our algorithm, we use a diverse set

i 55 o of 150 images of 61 distinct elevator panels taken with a
() Q Q e high resolution (7 Megapixel) digital camera. To evaluate
the performance of our approach, we randomly split the data

into 100 images for training and 50 for testing, making sure

that pictures from the same elevator do not appear in both

. . - - the training and the test set. We hand label all the buttons
with their location in the image, their character label, and

their grid assignment. We then separately evaluate eaph ste
in our pipeline.

“gr

Fig. 8. An example of the grid fit and the HMM model (best viewed in P : . .
color). Note that the observation from the OCR for thevill be NAL since A. Sliding window button detection and clustering

the label, to the left of the button, is missing. The HMM willagse the  Tg trajn the button detector, we use 998 positive examples
most likely sequence to be one in which tNAL is changed to 2. .
(cropped buttons) and 20,000 negative examples cropped
from the training set images. Since the button model often

(e.9."13"). The transition probability distributiordefines the identifies keyholes and labels as buttons, we include images
probability that a button for floos; is followed in the grid of keyholes and labels in the negative training set. We train
by a button for floors;,, (e.g. given a button for floor 15, an initial classifier, augment the set of negative examples
the probability that the next button we encounter in the grigvith false positive detections obtained by running theistid
is for floor 21). These emission and transition conditionalvindow detector on the training elevator panels, and netrai
probability distributions are empirically estimated fraime the button classifier.
training data with Laplace smoothing. Figure 8 shows an The positive examples consist of three main types of
graphical example of the HMM given the output from theputtons: circular plastic buttons, square plastic buttemsl
grid fit and OCR for a given panel. circular metalic buttons. These types are visually very dis

This learning procedure automatically captures intemgsti tinct from each other, and this variety allows the trained
interdependencies between buttons such as a missifig 18assifier to detect buttons on a variety of elevator panels.
floor, since the training data has many instances where tifgure 10(a) shows the PR curve for this model on the test
button for floor 14 often follows one for floor 12. It also panels. As is standard in computer vision [21], a detection
learns that label§, L or 1 all likely correspond to the same is considered correct if its intersection with a groundirut
floor since they are often observed on the first floor buttorbutton divided by the union of their areas is greater than

Further, during training this model observes the common0%, and at most a single detection per groundtruth button
errors made by other stages of the pipeline (e.g. that OCR considered correct.
tends to sometimes mistaes for 9s or that spurious labels  Given the raw detections we first use adaptive thresh-
of 1s are common due to the typical shape of segments frooiding to remove all low-probability detections. Intuitily,
the binarization step) and learns to implicitly compendate if a panel classification results in a large number of very
these mistakes. For instance, the model learns lisatire high-probability detections we want to keep only the most
often observed incorrectly and thus do not provide strorig evconfident of those; however, if a panel is such that the batton
dence for any particular floor; however, observing somethinare very difficult to detect, we want to make sure we do
more reliable, such as a two-digit number, is significantlyot discard all the detections, as we would with a fixed
more informative. Thus the HMM model provides additionalglobal probability thresholding method. Thus we determine
robustness to the overall system. the threshold by considering, for each panel, all detestion

Finally, given a test panel containing a grid of buttonspf probability of at least0.25, computing their standard
along with the output of OCR for each button, we use théeviation of the detection probability, and removing all
Viterbi algorithm to find the most likely sequence of un-detections with probability less theh0 standard deviations
derlying states (floors) corresponding to those obsematio below the maximum probability.
We refer the reader to [13] for a detailed explanation of this For the clustering step, we use a confidence pixel map
standard algorithm. of the image created by summing the probabilities of all



detections that lie over a pixel. We then compute the stahdar
deviations of all values within this map and remove detec-fg
tions centered on pixels that have a probability less tharjé
one standard deviation from 0. As shown in Figure 10(a), g
the dynamic thresholding and clustering greatly improves|@
the performance of the detector when compared to standar EE
non-maximal suppresion followed by a fixed thresholding
approach.

(@)

B. Grid fit Fig. 9. (a) Learned grid location using EM. (a) OCR label. HK&)IM label

correction. Note that OCR misclassifies over 20/35 of the fladtons and
Next, we want to take advantage of the fact that buttons afgm is able to correct for all but one.

typically arranged in a grid-like fashion to help recoveyan
missed detections. As described in section IlI-B, we ifité&a
grids based on the button detection clusters and then run theAlthough the grid fit step introduces false positives due
EM algorithm to more accurately fit these grids to our buttorio elevator buttons not lying in fully populated grids, the
detection data. We extract the proposed button locatiams fr adverse effect of these false positives is reduced by not
grids by choosing, for each cell, either the average cerfter icluding cells in the HMM input for which (1) OCR
all button detections present within it or simply the riglaifh  classified asNAL and (2) the button detector did not find
of the cell if no detections are present. a detection. Figure 9 shows an example of the OCR and
The performance of each of these steps is reported MMM output for a given EM grid fit.
Table 10. Observe the drop in precision and increase inlrecal Figure 10(c) shows the results for all the steps along the
with the grid initialization and the EM steps. A drop in pre-pipeline. To evaluate the button detection and EM steps,
cision is expected because the EM grid fit algorithm assum#¢e consider a classification as correct based on the button
that buttons are arranged in fully populated rectanguliaisgr ground truth for the given panel. For the OCR and HMM
but often a row or column on the panel is not completelpteps, both the button and label classification must match
filled. Thus the overall number of proposed buttons increasethat in the ground truth. The OCR performance is obviously
Despite introducing some false positives, the grid fit alstower than that shown in Figure 10(b), since the grid fit
recovers missed buttons in the grid (or false negativesfep does not produce perfectly cropped out labels like the
which were not found by the object detector, leading to aground truth, but HMM corrects some of mislabeled buttons.
increased number of true positives and thus higher redall. @verall, the entire pipeline, from the sliding window deiterc
is more important to recover false negatives in the grid fito the HMM, was able to perfectly detect, localized label
step, because false positives which are introduced will b8.2% of the buttons in the imagés.
eliminated if the OCR step does not classify the label as a V. EXPERIMENTAL RESULTS

valid alphanumeric character (Figure 5).
We demonstrate our perception algorithms on the STAIR
C. OCR and HMM (STanford Al Robot) mobile robot platform in a number of

For each button we run the all the binarized segments fror%xpenments where the robot was commanded to go to a

the label image through OCR and then automatically choo |\(/3e2 ﬂ?gr'rg;: t:ﬁ:)tgzva\;iz r:l?gé;esdsfﬁ)”am%lg?ﬂ:f%ggif
which character(s) to output for the button based on tht bpprop yp

returned OCR confidence values. Our dictionary incluties € trial to be considered a success.
9,G L, B, open, cl ose, andal ar m Our OCR dictionary A. Hardware

includes only the alphabetic charact&@sL, andB because
there are not enough instances of other characters to bu
them into the model. Thus our algorithm will assigriNaL

to the occasional instances Bf DH, etc.

. Our robotic platform consists of a Neuronics Katana450 5-
F robotic arm, with angle gripper, mounted on a Segway
base. The vision system consists of a Canon SX100-IS digital

T luate th ; fthe i binarizati camera and a high resolution 3D sensor consisting of a
ch evaluate the per or;n?n&e Iob Ie ]image hlnanz? '8\? aBoint Grey Research Flea2 camera and a rotating laser line
, We use the ground truth 1abels for each panel. YWe Usganner (for a detailed description of this sensor, see [6])

the resulting OCR classifications and the ground truth gri he depth data was used to provide only the 3D location

) Bf a button for manipulation but not recognition. The Canon
HMM. Table 10(b) gives th? recall for the OCR only and thecamera was used to provide higher resolution images for the
OCR followed by HMM. It is clear that the HMM is able to

. optical character recognition. The 3D sensor (Flea2 camera
correct some of the mislabeled buttons from the OCR step, laser) was calibrated with the Canon camera using a

resulting in improved performance.

8In computing the statistics listed for OCR and HMM, we conside
SRecall that by construction each cell corresponds to a busiod an  buttons which are part of our OCR dictionary, as welllds 20, etc (even
adjacent label, and labels are assumed to be to the left of uktens  though we our dictionary does not inclu6¢. We do not include labels for
following ADA guidelines. buttons which were labeled &AL in the ground truth.



Method Recall | Precision | F-score
5 Method Accuracy Post-processed detections0.955 0.932 0.944
205 OCR only 0.836 EM 0.963 | 0.841 | 0.898
s OCR + HMM | 0.884 OCR 0.742 | 0.709 | 0.725
. ‘ HMM 0.862 0.881 0.871

0 0.5 1

recall

@) (b)

(©

Fig. 10. Results on the offline dataset of 50 test images. (&)blte curve is the precision-recall curve for button détest from the sliding windows
algorithm after running non-maximal suppression, which sndard in the literature. The performance using our adaptivesholding method with
clustering is 0.955 recall and 0.932 precision, and is shiwred. (b) Results of the OCR and HMM algorithm on labeling tiround truth detections
(686 labels total). (c) Results for each step along the pipektarting with unlabeled images of elevator panels.

standard camera calibration procedure which estimates thig]
transformation between the two sensors given a number of

correspondences between scene and image points [22]. Tr[@
vision-manipulator system was calibrated using a proaedur

describe in [23], resulting in an average error of 0.7 mm. n

B. Perception

We tested our algorithms on the robotic platform in 14 [5]
trial runs in 3 elevators in 2 buildings which the robot had
not seen before. The robot was placed in front of the panej]
at a distance within which the manipulator could reach the
panel, and was commanded to press a randomly chosen floor
button. 7

The path planning for the manipulator was simplified by
assuming that the space between the robot and the wall Wégé
free of obstacles. Thus simple inverse kinematics could be
used to convert the desired 3D positions for the end-effectol®]
to joint angle configurations. In computing the desired 4oca[10]
tion for the end-effector, we applied the constraint that th
end-effector should move in a linear fashion when pressingll
the button to ensure that the elevator is successfullyatetil

[12]
C. Results

The perception algorithm correctly identified the Iocatiorl13
of the appropriate button in all 14 trials, and the robot
succeeded in pressing the button in all but one of the trial4]
Seehttp://www.stanford.eduw/ellenrk7/Elevatordor a video

showing clips from these experiments. [15]

VI. CONCLUSION [16]

In this paper, we considered the challenge of enabling
a mobile robot to autonomously operate unkown elevatorg:’]
We focus on perception, which is the key component ir[hs]
tackling this problem: detecting, localizing, and corhgct
labeling the buttons on an interior button panel of previpus [19]
unseen elevators. We validate our algorithm both on a large
dataset of diverse elevator panel images as well as on[za]
robot platform that was able to correctly analyze a previpus
unseen elevator panel in all of our trial runs, and correctl£/21]

manipulate the desired button in all but one run.
[22]
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