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Abstract� Our project goal is to

have the AR.Drone perform an au-

tonomous object search in a known

environment and return the location

of the object being searched to the

user. The environment is represented

as an undirected, connected graph and

mapped out a priori . Path planning

depends on the history of where ob-

jects have been found in the past. The

optimal path calculated assumes that

the previous locations found by the

robot are �hot-spots� for the object in

question, and adapts to search around

these sooner than other locations.

1 Introduction

We used the AR.Drone to implement an autonomous
object search in a rectangular room. Our basis
for localization was a vision-based marker detection
scheme with several discrete states, involving a color
�lter to locate rectangles of color paper on the walls
in di�erent con�gurations. We attempted to navigate
around the room by traversing the network created
by the edges between these discrete states, which in-
volves only moving towards di�erent markers in the
drone's �eld of view. A probabilistic map of the room
was initiated at uniform probability, and maintained
after each trial run. The algorithm for searching
the room was a breadth �rst search of the network,
where the root was the drone's current position, and
searching for the path that will maximize reducing
the drone's unsearched area. Because of our approach
to the problem, it is only possible to to fully locate an
item in a room if it is found on two di�erent edges,
though �nding it on one edge still helps the robot
in the future by updating the probability along that
edge.

2 Related Work

We did not use any existing implementation of lo-
calization, navigation, or path planning in our de-
sign. We used the AR.Drone API to interface with
the drone, and put most of our work in Cooper Bills'
Linux SDK planner.cpp �le that was included in the
original package. We opted not to use much of the ex-
isting code and speci�c implementation that we had
expected to use when we �rst proposed our project.

Because we didn't want to put all our e�ort into
localization, as it was not the goal of our proposed
project, we chose to use OpenCV's free libraries to
assist us in this task. We also considered using AR-
ToolKit(Plus) for marker detection, but decided to go
with OpenCV since we were already somewhat famil-
iar with using it from the course. Similarly, we did
not make object recognition robust because it was
not our focus, though we did experiment a lot with
di�erent feature detection algorithms.

3 Approach

Due to the scope of the problem, it was necessary to
break the problem into several independent steps that
are essentially just states in the overall state machine
that governs our program �ow, as illustrated in Fig.
1. We made several modi�cations to our approach
to make the end goal more attainable. Among these
include altering the state space of the robot to in-
clude only a small number of states that are placed
in strategic positions around the room, represented
by a graph, while maintaining a search space of much
higher resolution by representing this as a matrix and
de�ning a mapping between the two. The main stages
of the problem were: predetermination of the environ-
ment, cheap localization, navigation within the envi-
ronment, and path planning based on an end goal of
�nding a known object.
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Figure 1: Overall program execution �ow.

3.1 Pre-determination of the environ-

ment

Our representation of the environment is in some
ways favorable because it allows for a high resolution
of search space while maintaining a low state space
for the drone. We were able to do this by represent-
ing the state space of the drone as an undirected,
connected graph, where edges in the graph map to a
much more continuous matrix space that represents
locations in the room. Doing this made navigation
much simpler because decisions are only between a
few discrete choices at any point in time, and local-
ization also easier because we de�ne our state space
size to be smaller and there are less choices that the
drone must choose from.
The relationship between number of markers (i.e.

nodes) and number of edges between them is given
by

E =
3

4
N2

where E is the number of edges and N is the number
of nodes. The factor of 3

4 is there because we disallow
traveling between states on the same wall. Clearly,
having more markers increases the number of possible
actions we have at each node, and increases coverage
of the search space up to a certain point, while not
costing as much in terms of number of markers we
have to keep track of or the allowable spatial resolu-
tion between them without losing accuracy.
Because the network is so dense, we chose to pre-

calculate the representation in MATLAB as three
separate �les: the initial probability map, which is
has all the locations that are reachable set to 1, the
adjacency list paired, which we found to be the most
convenient way to store a graph, and the mapping

from edge to points in our map, also stored in a ma-
trix. We de�ned points that are mapped to as being
within a certain distance of the edge that is de�ned
by the two vertices at either end. This distance is
calculated empirically by checking what radius loca-
tion the drone reliably sees when hovering at a �xed
height, then relating that quantity to the dimensions
of the room. Thus, when the drone moves from one
location to another, the drone actually covers a wide
array of points along the path that it traveled, giv-
ing a better approximation of the room's continuous
state space.

To see how e�ective or detrimental of a strategy
this really is, we divided the room into a 50×50 space
and calculating the graph with 1, 2, and 3 nodes per
wall, equally spaced but not at the corners, then cal-
culating the space covered when the distance thresh-
old from the edge is 5 percent of the width or height
of the room, in this case 2.5 (for a typical classroom
like the ones we were using for testing, this is rea-
sonably about 1m). Space covered was taken to be
space that is traversed by at least two edges, since
with only one edge we won't be able to localize the
object. As shown in Fig. 2 having only one marker
per wall gives 6.24 percent coverage, while two gives
67.36 percent, and three gives 90.72 percent.
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(a) One marker per wall.
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(b) Two markers per wall.
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(c) Three markers per wall.
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(d) Contour plot of levels of cov-
erage, with 50 × 50 map states
and two markers per wall.

Figure 2: Demonstration of coverage by at least two
edges while altering the number of edges per wall in
Fig. (2a) to (2c). In Fig. (2d), a contour plot demon-
strates the distribution of the levels of coverage for a
speci�c case.
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3.2 Localization

For localization, we use the drone's front facing cam-
era as the main sensor. Due to the limited resolution
of the camera, we decided to use a color blob �lter-
ing method to identify regions of interest along the
boundaries of the room, and localize based on these
points. For the detection of speci�c colors, we use
the OpenCV function inRangeS which takes in as ar-
gument the colored image and the region of color we
want to detect, and outputs a grayscale image with
a boundary enclosing the color of interest with the
center of that region. After testing with RGB, we de-
cided to use an HSV color scheme, because we found
it easier to demarcate colors based on the Hue region
they cover over their di�erent intensities. Then the
value and the saturation �elds determine the bright-
ness or the dullness of that color. We implemented
a function which gave us the exact hue regions over
a given color wheel, which was very helpful in de-
termining the �regions of interest� as shown in Fig.
6.

We used speci�c color squares arranged in �xed
patterns as markers to be placed along the bound-
ary of the room, as in Fig. 3 and 5. The distances
between these were determined based on the size of
the room and the angle of vision of the drone. Ev-
ery marker consists of two di�erent colored rectangles
placed at diagonal to each other. Having two distinct
colored rectangles allowed us to determine a marker
uniquely. For each marker, we stored the center point
of both the colored rectangles as well the color of the
rectangles.

Figure 3: Some of the markers we used.

For performing localization, we use our HSV color
�lter to �lter out both the regions corresponding to
the two colors in a state and use these to determine
the relative location of the two rectangles. The lo-
cation of these rectangles in the frame of vision of
the drone also tells the drone what angle and relative
distance it is looking at the marker in, allowing the
drone to correct his position with respect to to the

marker using a proportionality controller for move-
ment in the six di�erent degrees of freedom to correct
the error in the position.

When the drone has to determine what current
state it is in, our algorithm runs the color �lter for
all the color pairs in our system as stored in an array,
and if both these colors have a blob on the current
frame, then we check among all the markers if these
two colors represent that marker, as shown in Fig. 4.
If it does, then we have successfully determined the
marker.

(a) 2m distance. (b) 5m distance.

(c) 7m distance.

Figure 4: Algorithm views for color �ltering.

To de�ne the whole localization space, we use the
concept of a connected graph with all the nodes lying
on the periphery and each node representing the lo-
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cation of a marker in the physical space. By joining
these markers, we determine the paths we can move
on in our locale. Thus here, the actual localization
is performed with the drone starting out by deter-
mining his current state using the color blob method
discussed above. Using the path planning algorithm
as discussed later, we decide which is the next node
we should go to. Here, �rst we perform a relaxed
tracking and movement to the new node. Given the
node, we use the color �lter with relaxed constraints
to �nd the marker of this node by rotating or yaw-
ing around its current position at its current node.
If the drone identi�es the next state within a certain
measure, the drone proceeds to move in the direction
of this next node by centralizing the location of both
the color blobs of the marker which it sees. After
reaching within a certain distance of the new node as
determined by the distance between the center points
of the rectangles of the marker, the drone proceeds
to perform �ne-tuned localization, in order to have a
better localized position at this node. During initial-
ization, the drone locates the nearest marker in its
�eld of view as fast as possible and centers on that
point. If no markers are in view, it rotates to the
right until it sees one, though we always started the
drone directly in front of a marker for convenience.

Figure 5: Our setup for the AR.Drone experiments.

3.3 Navigation

Our navigation algorithm is simple, and described
in Alg. 1. It completely and easily allows for nav-
igation along the network we de�ned. Once the de-
sired marker is found, the drone only needs to keep
the marker centralized in its view as it moves for-
ward, until the volume of the marker reaches a cer-
tain level. We implemented a simple proportional
controller which we thought would have been ade-
quate enough, but we found that the AR.Drone does
not respond smoothly to control inputs. Because the
cameras are so noisy, especially with auto contrast,

Figure 6: GUI used for determining accurately HSV
values in real time.

(a) Slider bars.

(b) Reference image.
(c) Filtered image with set HSV
values.

using volume as a metric has a lot of room for er-
ror. We also tried using distance between the marker
centers as the measure for stability, in that when the
line segment connecting the two colors stops chang-
ing in the robot's �eld of view, then we have reached
a stable con�guration. This also didn't work as well
as we hoped, and the AR.Drone would sometimes be
able to centralize itself for a brief moment, but often
times would drift o� and lose sight of the marker.

3.4 Path planning

Our path planning was solely de�ned by the current
values of the probabilities that lie on the edges that
propagate from the current node which the drone is
located. The basic algorithm is outlined in Alg. 2.
We instruct the drone to traverse the graph greedily,
choosing the edge with the largest probability sum
(essentially, covering the most unexplored area possi-
ble and maximizing chances of �nding the item from
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Algorithm 1 Navigation algorithm. Negative feed-
back from the front camera keeps the drone centered
as it �ies forward.

for (each viewable marker M) {

identify which marker M is;

calculate M's score if traversed (see Alg. 2);

}

rotate to desired marker;

keep marker in center of view;

fly forward until volume > VOLUME_THRESH;

the current node) at every step. Because the graph
is highly connected, we thought that using a greedy
algorithm wouldn't have that many detrimental ef-
fects because the drone has a large number of choices
at each node. The structure is very similar to creat-
ing a graph with probability weightings on its edges,
but the di�erence here is that ours directly maps to
the search space while using just a graph structure
would require some further calculation to translate
to location.
When transitioning between states, the drone is

scanning the ground for any signs of the object along
the edge that it is traveling on. After an edge has
been traversed, if the object was not found, then all
the probability values that were just searched, which
includes every point that is linked to from the edge,
is set to zero for the remainder of the search iter-
ation. Note that this is not a permanent update; it
works to guide the drone to unsearched areas after the
�hotspots� have been exhausted. If the entire search
space has been zeroed or the sum of the remaining
scores does not change after a certain threshold of
turns, then we declare the item unfound, and the
drone exits its search.
However, if the item is found, then the drone con-

tinues searching. This is one trade o� that results
from de�ning the search space and the drone's space
so that they are separate. If the drone can �nd the
object along an edge, then it attempts to localize the
object on that line segment by �nding object on an-
other line segment. Thus, after the drone has �rst
found the object, then it reinitializes its probability
map, but only with values from the original map if
the point in the map is within a certain physical dis-
tance from the edge just traversed. In addition, the
edge just traversed is removed from the graph, to
make sure that the new edge (if any) will be unique.
Thus, during the second pass search, the map only
has value in area that was covered by the edge in
which the item was just found, though the edge itself
is removed.
Lastly, once the search phase resolves, we update

our knowledge based on the outcomes of the trial.
There are three possibilities: the object was found
on two edges, the object was found on one but not
in the second pass, and the object was not found at
all. If the object was found on two edges, then we
update the probability of our initial starting map to
have a higher score on all points that intersect the
two lines. If the object was only found on one edge,
then we update the probabilities on that edge to be
slightly higher. Finally, if the object was not found
at all, we don't update the probabilities at all.

Algorithm 2 Path planning algorithm, performed
until the object is found or the algorithm exits.

while(item not found) {

if (sum of map values is < EXITTHRES || num

turns which sum is same > EXIT2THRES) {

exit with �not found�;

} else {

for (each outgoing edge E) {

sum the total map matrix values along E;

}

if (max(E) = 0) {

navigate along a random edge;

delete that edge from the graph after

traversal;

} else {

navigate along max(E);

zero map values at points of max(E);

}

}

if (total num times item found == 1) {

set map values to non-zero starting values

only along last found edge;

repeat;

} else {

calculate item location;

increase points at location in stored map;

exit with �found�;

}

3.5 Failures

Our original idea for this project was to implement lo-
calization, navigation, and object detection in a pop-
ulated environment without any constraints. How-
ever, we quickly realized that performing all the tasks
without existing implementation or major simpli�ca-
tion would be infeasible. We initially hoped to use
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existing implementations to aid our project, such as
Cooper's implementation for object avoidance using
the XBee chip and extra sonar sensors, and Tung Sing
Leung's code for localization using Bundler, which is
a program that tries to generate a sparse point cloud
from a collection of images. We decided that having
the extra implementation of real-time object avoid-
ance would not be applicable to our end goal nor in-
crease our performance by a substantial amount, and
thus not worth the e�ort of integration. We did not
get a chance to try Tung's localization implementa-
tion because he is no longer a TA for this class.

A big time sink that we put a lot of time and
e�ort into without yielding any usable results was
our attempt to detect arbitrary objects using SURF
feature detection. We tried several methods to get
this to work for our application, since if it did, we
would be able to use it for both localization and ro-
bust object detection. Some methods which didn't
work include using using several training image sets
for a single object, averaging and thresholding val-
ues passed through SURF to reduce noise and false
positive rates, even with multiple cameras. The main
problem was that the resolution on either drone cam-
era is too poor to e�ectively use SURF as it stands for
practical applications. We found that SURF could
detect an object if the drone was within at most a
meter from the object, and scales with resolution,
which means this range is much less for the drone
bottom camera. We didn't see it worthwhile to do an
error analysis of this algorithm because there would
be no way that we could use it in our �nal design,
and neither of us had a background strong enough
in computer vision to give us a favorable probability
of succeeding with it, so we moved on to color based
�ltering techniques.

4 Results

4.1 HSV Detection of Markers

All our markers consisted of two 16" by 12" colored
rectangles in certain �ag orientations. Using the color
detection algorithm as discussed in the localization
section, we are able to determine within a fair esti-
mate of distance and lighting the complete descrip-
tion of the markers in our environment. We have
the observations displayed in Tab. 1 on performing
these color tests with the static AR.Drone camera.
Note that the lighting was determined based on the
location of the marker in the room and is di�cult to
quantify.
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Table 1: Marker identi�cation for di�erent color com-
binations.

4.2 HSV Color Determination

Using the self created HSV color determiner shown
in Fig. 6, we obtained the ranges shown in Tab. 2
for the colors we use in OpenCV standard.

4.3 Navigation

We performed initial testing and experimentation for
precision control of the AR.Drone, within reasonable
interests of our implementation. We found that of 10
trials where the drone was commanded to hover in
place, 9 times out of 10 the drone would drift in an
arbitrary direction, and 7 or more of these would be
signi�cant and detrimental to our localization capa-
bility. Furthermore, the movement control supplied is
extremely di�cult to standardize; even after lengthy
testing of controlling the drone in a desired way, the
drone would not behave as desired in many cases.
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Color H S V

Blue 0-37 60-255 140-255
Green 25-87 80-255 120-255
Yellow 90-100 60-255 200-255
Brown 100-113 160-255 0-255
Orange 110-116 60-255 60-255
Red 117-126 111-255 0-255
Pink 117-126 60-255 150-255
Purple 135-180 40-255 140-255

Table 2: HSV color determination results.

4.4 Further Results

Unfortunately, we were unable to obtain experimen-
tal results for the rest of our implementation. Nearly
all of it has already been coded out and compiled,
but due to the instabilities and inaccuracies in the
AR.Drone control we were unable to get navigation
up to a suitable level to have meaningful results. In
light of this, we attempted to at least simulate this
in MATLAB, and this is still a work in progress.

5 Conclusion & Future Work

Given that the AR.Drone is a relatively cheap robot
with limited sensors, we set out to achieve solving a
problem as di�cult as localization. We were able to
lay out algorithms which we believe, given the re-
quired time and patience with the AR.Drone, can
lead to successful and promising results. We achieved
success in the area of localization using color markers,
and we have laid out the guidelines for an implemen-
tation for autonomous object search using computer
vision. We believe that given better sensors, or a
more robust robot, the shortcomings of the AR.Drone
can be countered. Having said this, we have found
that the AR.Drone is a fun and educational research
tool.
There would be many ways that we could improve

the performance of our drone in our project. For one,
the biggest bottleneck we felt was localization, and a
large part of why that was so was because the camera
quality of the drone's isn't good enough to be able to
perform the more robust, higher order search func-
tions that we initially implemented such as SURF. A
di�erent robot with a better camera would be much
less constrained by the physical construction and the
hardware. Since localization is basically necessary
to perform all other functions in our proposal, poor
performance in this area brought down overall per-
formance. Similarly, since we used a vision based
scheme for navigation and �ight stabilization as well,

improving the camera or the drone would de�nitely
help in that respect.
Other improvements could involve optimization

and making algorithms more in depth. A good exam-
ple of this is that our current algorithm for searching
a graph is very greedy and not very optimized. An-
other example is using a Kalman �lter to stabilize
noisy measurements. We recognize that there is still
a lot of work that could be done with our project. The
entire project incorporates a vast number of tasks and
topics, each of which need more time than a single
semester to produce a top quality result.
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