



Abstract—The goal of our project is to transfer objects

between a user’s hand and a robotic arm. The robot will

recognize when a user is attempting to pass it an object and

then will try to grab the object out of the user’s hand. The

project consists of three parts: recognizing the user’s handing

gesture, locating the object, and grasping the object. To

recognize the user’s handing gesture we take skeleton tracking

data and employ multinomial logistic regression along with a

Hidden Markov Model.

I. INTRODUCTION

 Historically, real-time human-robot interaction in 3D

space has been difficult. A single camera can only accurately

provide 2 dimensions and generating the 3rd dimension

requires extra intensive analysis. An alternative is to use a

camera with depth perception. Until recently, there haven’t

been any cheap and easy to use 3D vision rigs. The

Microsoft Kinect Sensor is a relatively new device that

provides advanced human skeleton tracking capabilities

through the Openni library at a very low cost. For our

project we attempted to leverage the power of the Kinect

Sensor to see if it is appropriate for real-time recognition of

human handing gestures and for real-time interaction with

people via a robotic arm.
 A project completed by Aaron Edsinger, MIT had a

similar goal as ours: to transfer objects between a human

hand and a robotic arm. However, he used a single camera

mounted on a pan/tilt rig and used a custom algorithm to

generate depth perception [1]. We hope that the Kinect will

lend to a much easier implementation. Yanghee Nam et. al.

used a Hidden Markov Model to recognize gestures in 3D

space [2]. However, they simplified 3D gestures into 2D

with plane fitting before applying the HMM. The Kinect

allows us to consider all three dimensions.
 Our project consisted of three parts: recognizing the user’s

handing gesture, locating the object, and grasping the object,

all in real time. First, we recorded a data set of positive and

negative handing examples. The data set consists of joint

positions provided by the skeleton tracking library. To

model a gesture, we broke it down into finite states. We

trained a multinomial logistic regression classifier with joint

angles and angular velocities as features and used it to

provide real time state estimates. Then to enforce order on

the output of the logistic classifier we trained a Hidden

Markov Model, and employed Viterbi’s algorithm to

estimate the current state. Once a gesture is detected, the

next step is to locate the hand. The Kinect and the skeleton

library make this task fairly simple. We simply transform the

location of the hand joint from the reference frame of the

Kinect into the reference frame of the robot base.

Unfortunately, we were unable to test our algorithm on the

arm due to time constraints. However, if we had time, we

Fig 1. Microsoft Kinect Sensor

would have sent the arm to the given coordinates and closed

the arm once an object was positioned between it’s grippers.

II. HARDWARD AND LOGISTICS

 A Microsoft Kinect Sensor along with the Openni

Skeleton Tracking Library was used to generate a training

data set for the classifier and for real-time gesture

classification. When creating the data set the Kinect sensor

was attached to a desktop computer running ROS

Diamondback Unstable on Ubuntu 10.10. We did not

ultimately get to run our classifier on a robotic arm. The arm

that we planned to use was a Barrett Arm with a Kinect

sensor mounted above the base.

Fig 2. Openni Skeleton Tracking Library tracking a person using 3D depth

input from the Microsoft Kinect Sensor

III. DATA

 We recorded 3D coordinates of the user’s joint positions

at each frame given by the Openni skeleton tracking library.

The rate of image capture on the Kinect is 25 fps. The

Object Transfer Between Humans and Robots

Benjamin Jaeger, Benjamin Phillips, Cornell University, May 2011

library calculates (X,Y,Z) joint coordinates with the origin

located at the camera.
 Our data set has 8112 frames corresponding to roughly

5.4 minutes of video. It includes 76 sample handing gestures

from two different individuals. We divided the handing

gesture into 4 discrete states: base (ie: no gesture),

beginning, middle, and end. While recording the data we

marked in real time whether the user was in the process of

making a handing gesture or not. A low signal means no

gesture and a high signal means gesture. After collecting the

data, we went through it and evenly divided the positive

example frames into the start, middle, and end states. Due to

the speed of a gesture, marking the frames with individual

states in real time was not feasible.

IV. TRAINING

 We used MATLAB’s multinomial logistic regression

mnrfit() function to train our program to recognize a handing

gesture. Logistic regression training takes as input a set of

features X and their respective states S. The training outputs

a set of coefficients Bs for each state to use with a logistic

classifier. The classifier’s output is governed by the equation

 This output should be interpreted as a probability for each

state, where for the state space S, . For our

case we decided to discretize this output by using a winner-

takes-all approach. Thus the ultimate output from our

logisitic classifier is the state with the highest probability.

 For the logistic regression features, we chose to use angles

between various body parts and also the rate of change of

those angles (angular velocity) to capture the time-based

properties of a gesture. The angle between three body parts

A, B, and C is taken to be the angle between BA and BC.

Angles and their respective velocities are very simple to

compute given the skeleton data so they are appropriate for

real time classification. After some heuristic

experimentation, the features we settled on were the

following angles (1) right-shoulder, right-elbow, right-hand

(2) right-hand, right-hip, right-shoulder (3) left-hip, right-

elbow, left-shoulder (4) right-elbow, right-shoulder, torso.

 For statistical purposes we split our data set into a training

set and test set for cross validation. The training set contains

70% of the data while the test set contains 30% of the data.

See the “Accuracies” section for how our algorithms

performed on the test set.

V. REAL TIME RECOGNITION

Our real time analysis algorithm mirrors the training

process. For each frame arriving from the Kinect sensor, the

features are calculated from the skeleton data. The logistic

regression classifier, now with known parameters,

determines the state with the highest probability.
An initial shortcoming with the the real-time analysis is

that the classifier was sometimes determining that the user

was at the end state without going through the beginning and

middle states. For example the sequence of states {..., base,

end, base, ...} was allowed while the desired sequence was

{..., base, start, middle, end, base, ...}. This shortcoming was

not apparent in our training set because all of our examples

contain the full sequence {..., base, start, middle, end, base,

...}.
To solve this problem, we employed a Hidden Markov

Model to enforce a linear progression of states. To train the

HMM, we used MATLAB’s hmmestimate() function with

the observations Y being the output from the regression - the

state with the highest probability, and the true state X as the

marked state in the original training data. Finally, we

employed the Viterbi algorithm to determine the most likely

current state given the trained emission and transmission

matrices calculated from the HMM.
A distinct feature of a handing gesture is that the user

makes the gesture and then leaves their arm in an extended

pronated position while waiting for the object to be taken. If

the user moves their hand in an unusual motion and finishes

in the waiting position, then eventually the Viterbi algorithm

believes that the user is most likely trying to hand over an

object even though the logistic classifier never output the

start and middle states. This happens if the user keeps their

hand in the waiting position for a long enough period of time

that the probability of being in the end states overwhelms the

Viterbi’s consideration of the going to the proper state

sequence {beginning, middle, end}. For the states other than

the end/waiting state, the joint angular velocity features

enforce time dependence on our model. As an example, for

the middle state to be continuously recognized, the user

would have to be continuously moving his arm forward

(which is only possible if he moves his body also). However,

since the velocity of the waiting position is zero, the velocity

is irrelevant. To solve this problem, we manually tweaked

the trained emission matrix values for when the end state is

observed. Let X be random variable representing the true

state and Y be the observation. We lowered Prob(X = end |

Y = end) and increased Prob(X = base | Y = end). This

means that if the user’s hand is in the end state but did not

make the gesture, then the Viterbi algorithm can recognize

that there is a good chance that no gesture is happening.
Finally, we increased the transmission matrix value for

going from the base state to the start state. This value

represents the quantity “How often will the user make a

handing gesture in a given amount of time?” This value

needs to be independently tweaked as it cannot be accurately

determined from the training data. In the training data, the

user makes handing gestures at relatively periodic intervals

whereas in the real world handing gestures are at varying

time intervals and frequencies. Increasing the value

increases the sensitivity of the model to the potential start of

a handing gesture.
Once the Viterbi algorithm arrives at the end state, ie. the

user has completed the handing gesture, the position of the

user’s hand is recorded. Using a transformation matrix based

on the geometric setup of the Barrett arm with respect to the

Kinect sensor, we transformed the coordinate of the user’s

hand from the reference frame of the Kinect into the

reference frame of the robot base. We planned on using the

Barrett’s arm inverse kinematics library to move the arm to

this position.

We took various distance readings from the Kinect

skeleton tracker () to verify that its accuracy

is appropriate for human-robot interactions in 3D space. Our

measurements ranged from around 820 - 1420 mm. This

range is appropriate for interacting with the Barrett Arm. At

820mm and less, the Kinect starts to get double vision

(similar to when a we try to focus on an image to close to

our pair of eyes). However, farther away, the percent error

stays below 5%. A 5% error at 1420mm is only an error of

71mm which is reasonable.

Fig 3. Percent error of the distance reading from the Kinect Sensor

VI. ACCURACIES

 We used a cross validation data set, different from the

training set, to measure accuracies for both the logistic

classifier and the HMM. We measured both the type I error,

the rate of false positives, and the type II error, the rate of

false negatives. For convenience, we also report the

accuracy rate which is really just 1 - false negative rate.
 For logistic regression, we report measurements for each

state individually since each state occurs at different

frequencies.

Fig 4. Accuracy, false positive, and false negative rates for the multinomial

logistic classifier

 We also used the output of Viterbi to measure statistics

for the recognition gesture as a whole. We defined a true

positive as a gesture occurring (ie. Viterbi outputting the end

state) within a frame window of the marked end of the

gesture. We used a window of 8 frames. A false negative

then corresponds to no gesture occurring during the window.

We then calculated the number of false positives = true total

number of gestures - number of true positives. For percent

false positives, there is no clear value to use as the

denominator. Thus, we used (the number of frames in the

data set marked that no gesture is occurring / the window

length) as the denominator. Using this metric our HMM

achieved 98.1% accuracy with a false positive rate of 4.78%

and a false negative rate of 1.89%. While these numbers are

very high, it’s important to keep in mind that the training set

may not accurately represent all real world scenarios. In

practice, the HMM performs very well in real time though it

is hard to get an actual statistic on it.

VII. EXPERIMENTS AND LIMITATIONS

1) Initially, we classified the frames in our data set as

either base or handing (user is in the process of making a

handing gesture). We trained the log classifier to recognize

the start of a handing gesture. Unfortunately, the classifier

was of limited utility because there was no way to

differentiate between the start of a gesture and when the user

is actually ready for an object to be grabbed. It was also very

noisy. For these reasons we decided to generate a new data

set with more finite states.
 2) When we first tried to train a logistic regression

classifier using four states, it got very poor results. The

accuracy rates for the beginning and middles states were 0%

while the accuracy rate for the end state was 12.9%. The

accuracy rate for the base state was 98.3%. Upon closer

inspection of the individual state probabilities from the

classifier, it was clear that while the probabilities for the

beginning, middle, and end states would change

appropriately when given a sample of the proper state, the

probability for the base state was dominating the output and

thus was almost always being chosen by our winner-takes-

all heuristic. Rather than chose a more complicated heuristic,

we decided to try adjusting the training set to have an equal

number of each state. This worked out well (see “Accuracy”

section).
3) Currently the classifier only recognizes the handing

gesture for the right hand.
4) We tried applying a mean filter over time to the joint

position data, in an attempt to remove sensor noise. This

actually decreased the accuracy of the algorithm. The most

likely explanation is that the Openni library already removes

noise.

5) We initially only used angles as input features to the

logistic classifier. We experimented with including angular

velocity features as well and observed much better results.

For comparison, the results without angular velocity are

presented below.

-50

0

50

0 500 1000 1500

P
e

rc
e

n
t

Er
ro

r
o

f
K

in
e

ct
 R

e
ad

in
g

Acutal Distance (mm)

Skeleton Distance
Percent Error

0

0.2

0.4

0.6

0.8

1

Base Start Middle End

Logistic Classifier

Accuracy False Positive False Negative

Fig 5. Accuracy, false positive, and false negative rates for the

multinomial logistic classifier trained without angular velocity features

VIII. CONCLUSION AND FUTURE WORK

 The Microsoft Kinect Sensor along with the Openni

Skeleton Tracker provide a new way of getting accurate and

reliable 3D input to track people’s movements. Combined,

they greatly simplify the classic and difficult problem of

gesture recognition. By utilizing both along with a Hidden

Markov Model implemented on top of a multinomial logistic

classifier we were able to develop a robust algorithm that

could accurately and reliably recognize human handing

gestures in both time and space. The algorithm is generic

and can be trained to recognize any sort of body gesture

visible from the skeleton tracker. While the feature set that

we chose for the handing gesture was picked and evaluated

by hand, when considering many different gestures, a more

robust method would have been to use an optimization

method such as simulated annealing for determining which

set of features produce the best logistic classifier.

Furthermore, our algorithm can easily be expanded to

recognize multiple types of gestures at the same time. The

state space would have to be increased so that each gesture

has its own beginning, middle, and end state. Finally, if we

had more time we would have liked to implement our

algorithm on the Barrett Arm to demonstrate robot-human

interaction.

IX. ACKNOWLEDGEMENTS

 We would like to thank Colin Ponce for his advice

throughout our work on this project. We would also like to

thank Professor Ashutosh Saxena for advising us on our

project and for teaching us machine learning and robotics.

REFERENCES

[1] A. Edsinger and C. C. Kemp. Human-Robot Interaction for Cooperative
Manipulation: Handing Objects to One Another. In Proceedings of the 16th

IEEE International Symposium on Robot and Human Interactive

Communication (RO-MAN), 2007.
<http://www.hsi.gatech.edu/cckemp/edsinger_kemp_roman2007.pdf>

[2] Nam, Y., Wohn, K.: Recognition of Space-Time Hand-Gestures using
Hidden Markov Model,

ACM Symposium on Virtual Reality Software and Technology, Hong
Kong, pp.51-58.(1996)

<http://citeseer.ist.psu.edu/viewdoc/download;jsessionid=DEE4DEDB3071

0A327156CF9F00722FDD?doi=10.1.1.42.4147&rep=rep1&type=pdf>

0

0.2

0.4

0.6

0.8

Base Start Middle End

Logistic Classifier (Not including velocity
features)

Accuracy False Positive False Negative

about:blank
about:blank
about:blank

