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Abstract—The goal of our project is to transfer objects 

between a user’s hand and a robotic arm. The robot will 

recognize when a user is attempting to pass it an object and 

then will try to grab the object out of the user’s hand. The 

project consists of three parts: recognizing the user’s handing 

gesture, locating the object, and grasping the object. To 

recognize the user’s handing gesture we take skeleton tracking 

data and employ multinomial logistic regression along with a 

Hidden Markov Model. 

I. INTRODUCTION 

 Historically, real-time human-robot interaction in 3D 

space has been difficult. A single camera can only accurately 

provide 2 dimensions and generating the 3rd dimension 

requires extra intensive analysis. An alternative is to use a 

camera with depth perception. Until recently, there haven’t 

been any cheap and easy to use 3D vision rigs. The 

Microsoft Kinect Sensor is a relatively new device that 

provides advanced human skeleton tracking capabilities 

through the Openni library at a very low cost. For our 

project we attempted to leverage the power of the Kinect 

Sensor to see if it is appropriate for real-time recognition of 

human handing gestures and for real-time interaction with 

people via a robotic arm. 
 A project completed by Aaron Edsinger, MIT had a 

similar goal as ours: to transfer objects between a human 

hand and a robotic arm. However, he used a single camera 

mounted on a pan/tilt rig and used a custom algorithm to 

generate depth perception [1]. We hope that the Kinect will 

lend to a much easier implementation. Yanghee Nam et. al. 

used a Hidden Markov Model to recognize gestures in 3D 

space [2]. However, they simplified 3D gestures into 2D 

with plane fitting before applying the HMM. The Kinect 

allows us to consider all three dimensions. 
 Our project consisted of three parts: recognizing the user’s 

handing gesture, locating the object, and grasping the object, 

all in real time. First, we recorded a data set of positive and 

negative handing examples. The data set consists of joint 

positions provided by the skeleton tracking library. To 

model a gesture, we broke it down into finite states. We 

trained a multinomial logistic regression classifier with joint 

angles and angular velocities as features and used it to 

provide real time state estimates. Then to enforce order on 

the output of the logistic classifier we trained a Hidden 

Markov Model, and employed Viterbi’s algorithm to 

estimate the current state. Once a gesture is detected, the 

next step is to locate the hand. The Kinect and the skeleton 

library make this task fairly simple. We simply transform the 

location of the hand joint from the reference frame of the 

 

 
 

Kinect into the reference frame of the robot base. 

Unfortunately, we were unable to test our algorithm on the 

arm due to time constraints. However, if we had time, we  

 

 
Fig 1. Microsoft Kinect Sensor 

 

would have sent the arm to the given coordinates and closed 

the arm once an object was positioned between it’s grippers. 

II. HARDWARD AND LOGISTICS 

 A Microsoft Kinect Sensor along with the Openni 

Skeleton Tracking Library was used to generate a training 

data set for the classifier and for real-time gesture 

classification. When creating the data set the Kinect sensor 

was attached to a desktop computer running ROS 

Diamondback Unstable on Ubuntu 10.10. We did not 

ultimately get to run our classifier on a robotic arm. The arm 

that we planned to use was a Barrett Arm with a Kinect 

sensor mounted above the base. 

 

 
Fig 2. Openni Skeleton Tracking Library tracking a person using 3D depth 

input from the Microsoft Kinect Sensor 

III. DATA 

 We recorded 3D coordinates of the user’s joint positions 

at each frame given by the Openni skeleton tracking library. 

The rate of image capture on the Kinect is 25 fps. The 
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library calculates (X,Y,Z) joint coordinates with the origin 

located at the camera. 
 Our data set has 8112 frames corresponding to roughly 

5.4 minutes of video. It includes 76 sample handing gestures 

from two different individuals. We divided the handing 

gesture into 4 discrete states: base (ie: no gesture), 

beginning, middle, and end. While recording the data we 

marked in real time whether the user was in the process of 

making a handing gesture or not. A low signal means no 

gesture and a high signal means gesture. After collecting the 

data, we went through it and evenly divided the positive 

example frames into the start, middle, and end states. Due to 

the speed of a gesture, marking the frames with individual 

states in real time was not feasible. 

IV. TRAINING 

 We used MATLAB’s multinomial logistic regression 

mnrfit() function to train our program to recognize a handing 

gesture. Logistic regression training takes as input a set of 

features X and their respective states S. The training outputs 

a set of coefficients Bs for each state to use with a logistic 

classifier. The classifier’s output is governed by the equation  

         
           

         

 

 This output should be interpreted as a probability for each 

state, where for the state space S,           . For our 

case we decided to discretize this output by using a winner-

takes-all approach. Thus the ultimate output from our 

logisitic classifier is the state with the highest probability. 

 For the logistic regression features, we chose to use angles 

between various body parts and also the rate of change of 

those angles (angular velocity) to capture the time-based 

properties of a gesture. The angle between three body parts 

A, B, and C is taken to be the angle between BA and BC. 

Angles and their respective velocities are very simple to 

compute given the skeleton data so they are appropriate for 

real time classification. After some heuristic 

experimentation, the features we settled on were the 

following angles (1) right-shoulder, right-elbow, right-hand 

(2) right-hand, right-hip, right-shoulder (3) left-hip, right-

elbow, left-shoulder (4) right-elbow, right-shoulder, torso. 

 For statistical purposes we split our data set into a training 

set and test set for cross validation. The training set contains 

70% of the data while the test set contains 30% of the data. 

See the “Accuracies” section for how our algorithms 

performed on the test set. 

V. REAL TIME RECOGNITION 

Our real time analysis algorithm mirrors the training 

process. For each frame arriving from the Kinect sensor, the 

features are calculated from the skeleton data. The logistic 

regression classifier, now with known parameters, 

determines the state with the highest probability.  
An initial shortcoming with the the real-time analysis is 

that the classifier was sometimes determining that the user 

was at the end state without going through the beginning and 

middle states. For example the sequence of states {..., base, 

end, base, ...} was allowed while the desired sequence was 

{..., base, start, middle, end, base, ...}. This shortcoming was 

not apparent in our training set because all of our examples 

contain the full sequence {..., base, start, middle, end, base, 

...}.  
To solve this problem, we employed a Hidden Markov 

Model to enforce a linear progression of states. To train the 

HMM, we used MATLAB’s hmmestimate() function with 

the observations Y being the output from the regression - the 

state with the highest probability, and the true state X as the 

marked state in the original training data.  Finally, we 

employed the Viterbi algorithm to determine the most likely 

current state given the trained emission and transmission 

matrices calculated from the HMM. 
A distinct feature of a handing gesture is that the user 

makes the gesture and then leaves their arm in an extended 

pronated position while waiting for the object to be taken. If 

the user moves their hand in an unusual motion and finishes 

in the waiting position, then eventually the Viterbi algorithm 

believes that the user is most likely trying to hand over an 

object even though the logistic classifier never output the 

start and middle states. This happens if the user keeps their 

hand in the waiting position for a long enough period of time 

that the probability of being in the end states overwhelms the 

Viterbi’s consideration of the going to the proper state 

sequence {beginning, middle, end}. For the states other than 

the end/waiting state, the joint angular velocity features 

enforce time dependence on our model. As an example, for 

the middle state to be continuously recognized, the user 

would have to be continuously moving his arm forward 

(which is only possible if he moves his body also). However, 

since the velocity of the waiting position is zero, the velocity 

is irrelevant. To solve this problem, we manually tweaked 

the trained emission matrix values for when the end state is 

observed. Let X be random variable representing the true 

state and Y be the observation. We lowered Prob(X = end | 

Y = end) and increased Prob(X = base | Y = end).  This 

means that if the user’s hand is in the end state but did not 

make the gesture, then the Viterbi algorithm can recognize 

that there is a good chance that no gesture is happening. 
Finally, we increased the transmission matrix value for 

going from the base state to the start state. This value 

represents the quantity “How often will the user make a 

handing gesture in a given amount of time?” This value 

needs to be independently tweaked as it cannot be accurately 

determined from the training data. In the training data, the 

user makes handing gestures at relatively periodic intervals 

whereas in the real world handing gestures are at varying 

time intervals and frequencies. Increasing the value 

increases the sensitivity of the model to the potential start of 

a handing gesture. 
Once the Viterbi algorithm arrives at the end state, ie. the 

user has completed the handing gesture, the position of the 

user’s hand is recorded. Using a transformation matrix based 

on the geometric setup of the Barrett arm with respect to the 

Kinect sensor, we transformed the coordinate of the user’s 



  

hand from the reference frame of the Kinect into the 

reference frame of the robot base. We planned on using the 

Barrett’s arm inverse kinematics library to move the arm to 

this position. 

We took various distance readings from the Kinect 

skeleton tracker (         ) to verify that its accuracy 

is appropriate for human-robot interactions in 3D space. Our 

measurements ranged from around 820 - 1420 mm. This 

range is appropriate for interacting with the Barrett Arm. At 

820mm and less, the Kinect starts to get double vision 

(similar to when a we try to focus on an image to close to 

our pair of eyes). However, farther away, the percent error 

stays below 5%. A 5% error at 1420mm is only an error of 

71mm which is reasonable. 

 

 
Fig 3. Percent error of the distance reading from the Kinect Sensor 

VI. ACCURACIES 

 We used a cross validation data set, different from the 

training set, to measure accuracies for both the logistic 

classifier and the HMM. We measured both the type I error, 

the rate of false positives, and the type II error, the rate of 

false negatives. For convenience, we also report the 

accuracy rate which is really just 1 - false negative rate. 
 For logistic regression, we report measurements for each 

state individually since each state occurs at different 

frequencies. 

 

 
Fig 4. Accuracy, false positive, and false negative rates for the multinomial 

logistic classifier 

 

 We also used the output of Viterbi to measure statistics 

for the recognition gesture as a whole. We defined a true 

positive as a gesture occurring (ie. Viterbi outputting the end 

state) within a frame window of the marked end of the 

gesture. We used a window of 8 frames. A false negative 

then corresponds to no gesture occurring during the window. 

We then calculated the number of false positives = true total 

number of gestures - number of true positives. For percent 

false positives, there is no clear value to use as the 

denominator. Thus, we used (the number of frames in the 

data set marked that no gesture is occurring  /  the window 

length) as the denominator. Using this metric our HMM 

achieved 98.1% accuracy with a false positive rate of 4.78% 

and a false negative rate of 1.89%. While these numbers are 

very high, it’s important to keep in mind that the training set 

may not accurately represent all real world scenarios. In 

practice, the HMM performs very well in real time though it 

is hard to get an actual statistic on it. 

VII. EXPERIMENTS AND LIMITATIONS 

1) Initially, we classified the frames in our data set as 

either base or handing (user is in the process of making a 

handing gesture). We trained the log classifier to recognize 

the start of a handing gesture. Unfortunately, the classifier 

was of limited utility because there was no way to 

differentiate between the start of a gesture and when the user 

is actually ready for an object to be grabbed. It was also very 

noisy. For these reasons we decided to generate a new data 

set with more finite states. 
 2)  When we first tried to train a logistic regression 

classifier using four states, it got very poor results. The 

accuracy rates for the beginning and middles states were 0% 

while the accuracy rate for the end state was 12.9%. The 

accuracy rate for the base state was 98.3%. Upon closer 

inspection of the individual state probabilities from the 

classifier, it was clear that while the probabilities for the 

beginning, middle, and end states would change 

appropriately when given a sample of the proper state, the 

probability for the base state was dominating the output and 

thus was almost always being chosen by our winner-takes-

all heuristic. Rather than chose a more complicated heuristic, 

we decided to try adjusting the training set to have an equal 

number of each state. This worked out well (see “Accuracy” 

section). 
3) Currently the classifier only recognizes the handing 

gesture for the right hand. 
4) We tried applying a mean filter over time to the joint 

position data, in an attempt to remove sensor noise. This 

actually decreased the accuracy of the algorithm. The most 

likely explanation is that the Openni library already removes 

noise. 

5) We initially only used angles as input features to the 

logistic classifier. We experimented with including angular 

velocity features as well and observed much better results. 

For comparison, the results without angular velocity are 

presented below. 
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Fig 5. Accuracy, false positive, and false negative rates for the 

multinomial logistic classifier trained without angular velocity features  

VIII. CONCLUSION AND FUTURE WORK 

 The Microsoft Kinect Sensor along with the Openni 

Skeleton Tracker provide a new way of getting accurate and 

reliable 3D input to track people’s movements. Combined, 

they greatly simplify the classic and difficult problem of 

gesture recognition. By utilizing both along with a Hidden 

Markov Model implemented on top of a multinomial logistic 

classifier we were able to develop a robust algorithm that 

could accurately and reliably recognize human handing 

gestures in both time and space. The algorithm is generic 

and can be trained to recognize any sort of body gesture 

visible from the skeleton tracker. While the feature set that 

we chose for the handing gesture was picked and evaluated 

by hand, when considering many different gestures, a more 

robust method would have been to use an optimization 

method such as simulated annealing for determining which 

set of features produce the best logistic classifier. 

Furthermore, our algorithm can easily be expanded to 

recognize multiple types of gestures at the same time. The 

state space would have to be increased so that each gesture 

has its own beginning, middle, and end state. Finally, if we 

had more time we would have liked to implement our 

algorithm on the Barrett Arm to demonstrate robot-human 

interaction. 
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