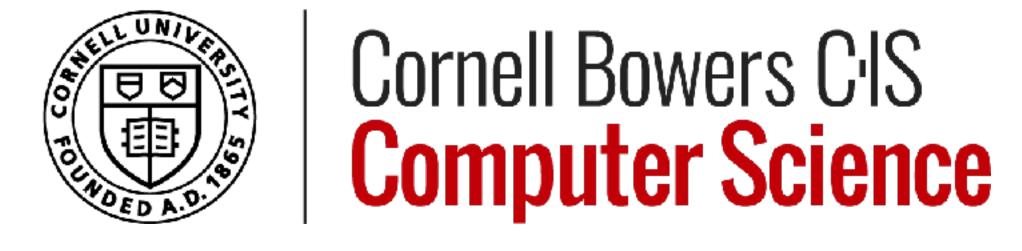
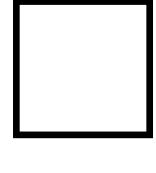
Model-based Reinforcement Learning (Part 2)

Sanjiban Choudhury



Overall Course Plan

Foundations (up until last class)



Advanced Algorithms and Applications (till end of course)

Topics: Generative world models, Offline RL, Visual Representations, RLHF, Human motion forecasting,

Lecturers: Sanjiban, Tapo, Killian Weinberger, Kuan Fang, Tapo, Lerrel Pinto, Pulkit Agarwal

Today's class

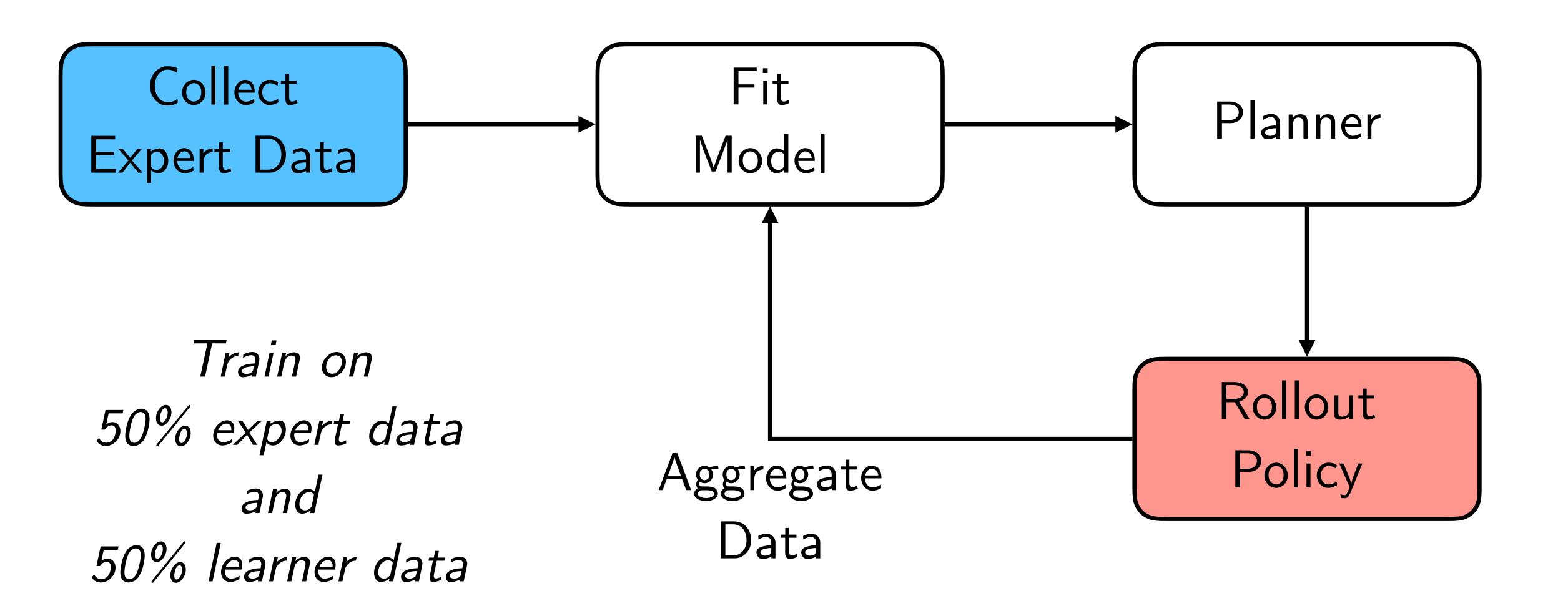
Deriving MBRL loss

n Practical MBRL

The DREAMER algorithm

Model Learning with Planner in Loop

(Ross & Bagnell, 2012)



Model Learning with Planner in Loop

Collect data from an expert $\mathcal{D}_{expert} = \{(s, a, s')\}$

Fit a model \hat{M}_1 . Compute a policy $\hat{\pi}_1$ in the model via planning Initialize empty data buffer $\mathcal{D}_{learner} \leftarrow \{\}$

For
$$i = 1, ..., N$$

Execute policy $\hat{\pi}_i$ in the real world and collect data

$$\mathcal{D}_i = \{(s, a, s')\}$$

Aggregate data $\mathcal{D}_{learner} \leftarrow \mathcal{D}_{learner} \cup \mathcal{D}_{i}$

Train a new model on 50% expert + 50% learner data

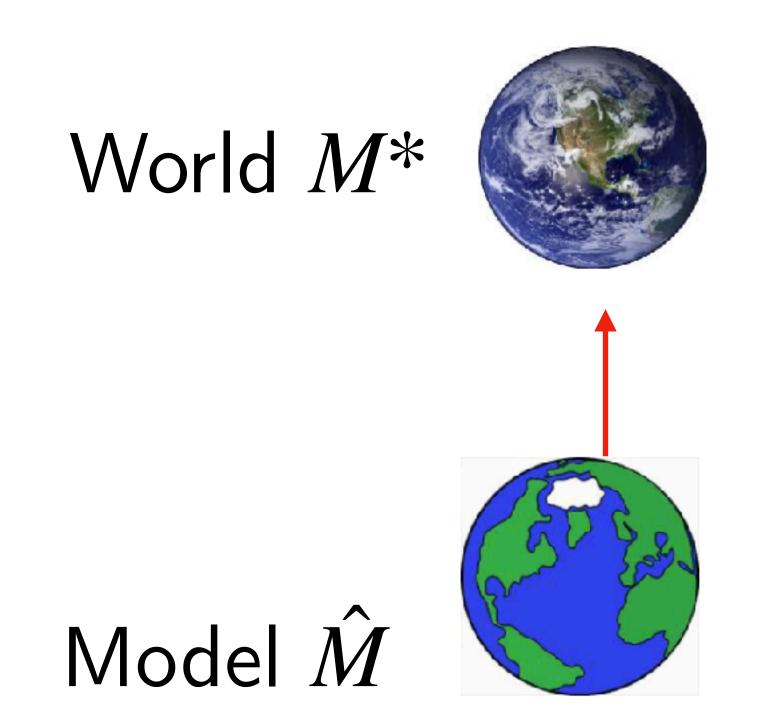
$$\hat{M}_{i+1} \leftarrow \text{Train}(0.5 * \mathcal{D}_{\text{expert}} + 0.5 * \mathcal{D}_{\text{learner}})$$

Train a new policy $\hat{\pi}_{i+1}$ in the model M_{i+1} Select the best policy in $\hat{\pi}_{1:N+1}$

How do we derive this algorithm?

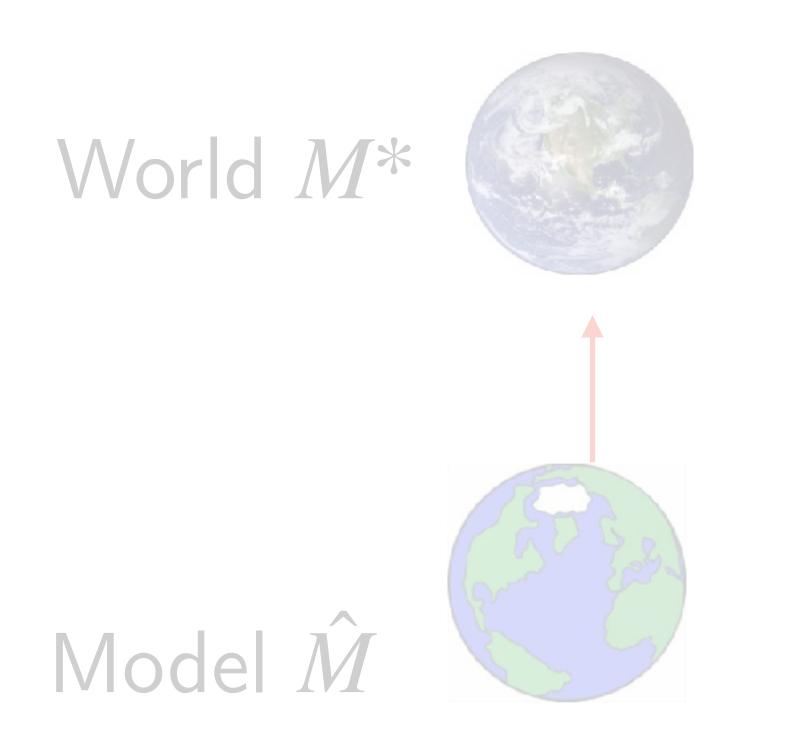
What is the goal of learning models?

Is it to perfectly approximate the world?



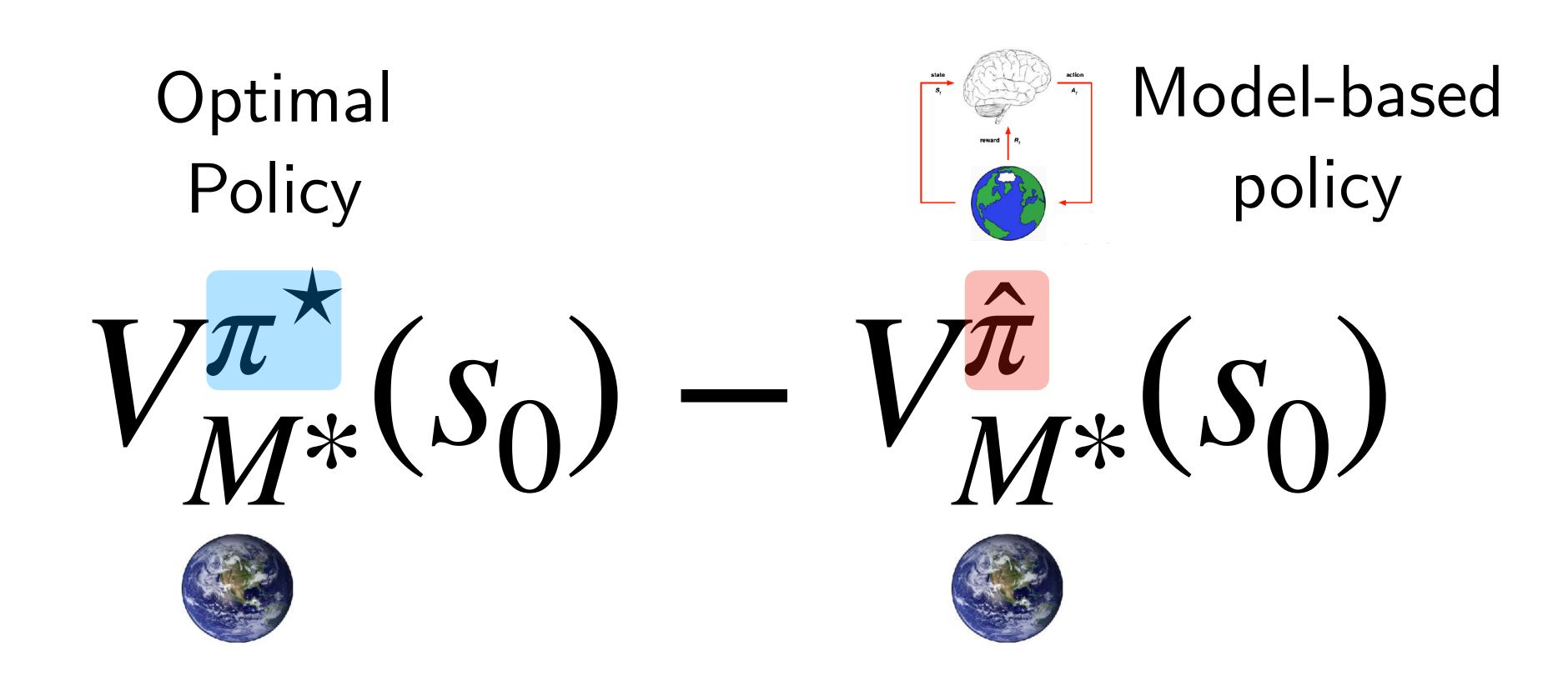
What is the goal of learning models?

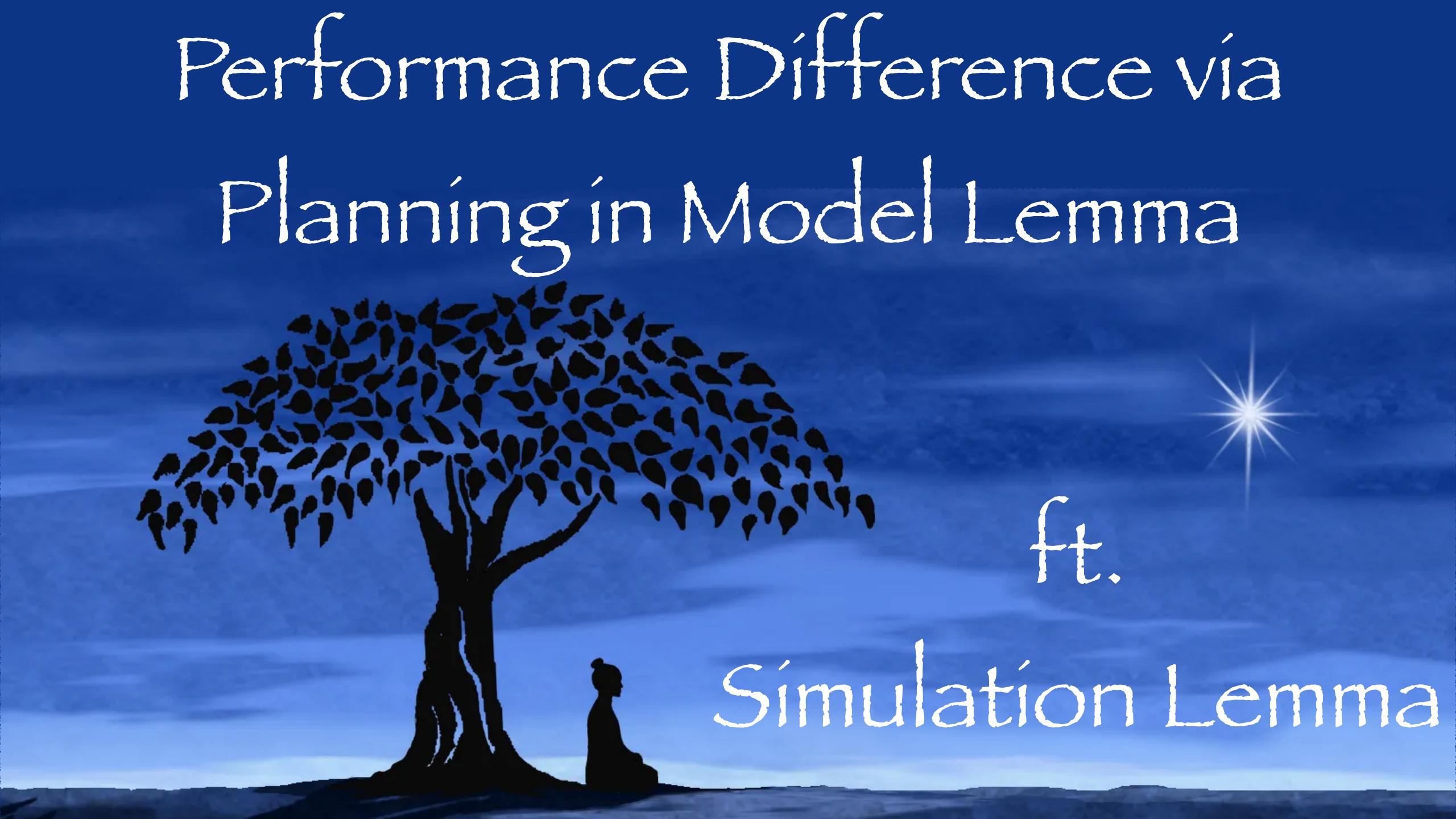
Is it to perfectly approximate the world?



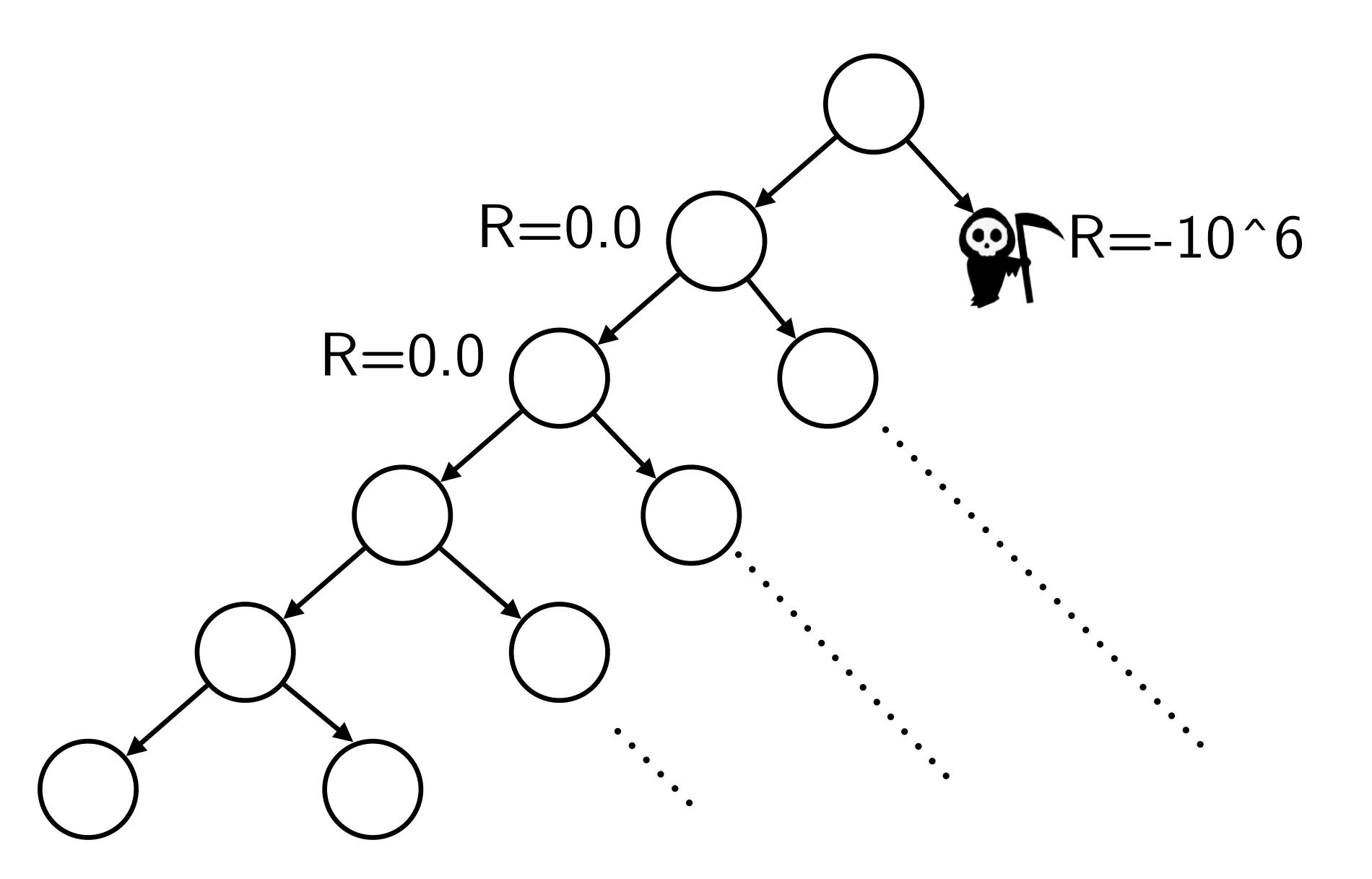
Or ... is to find a policy that does well in the world? Policy $\hat{\pi}$ $\mathsf{Model}\,\hat{M}$

Goal: Find model-based policy that bounds performance difference to the optimal policy in the real world

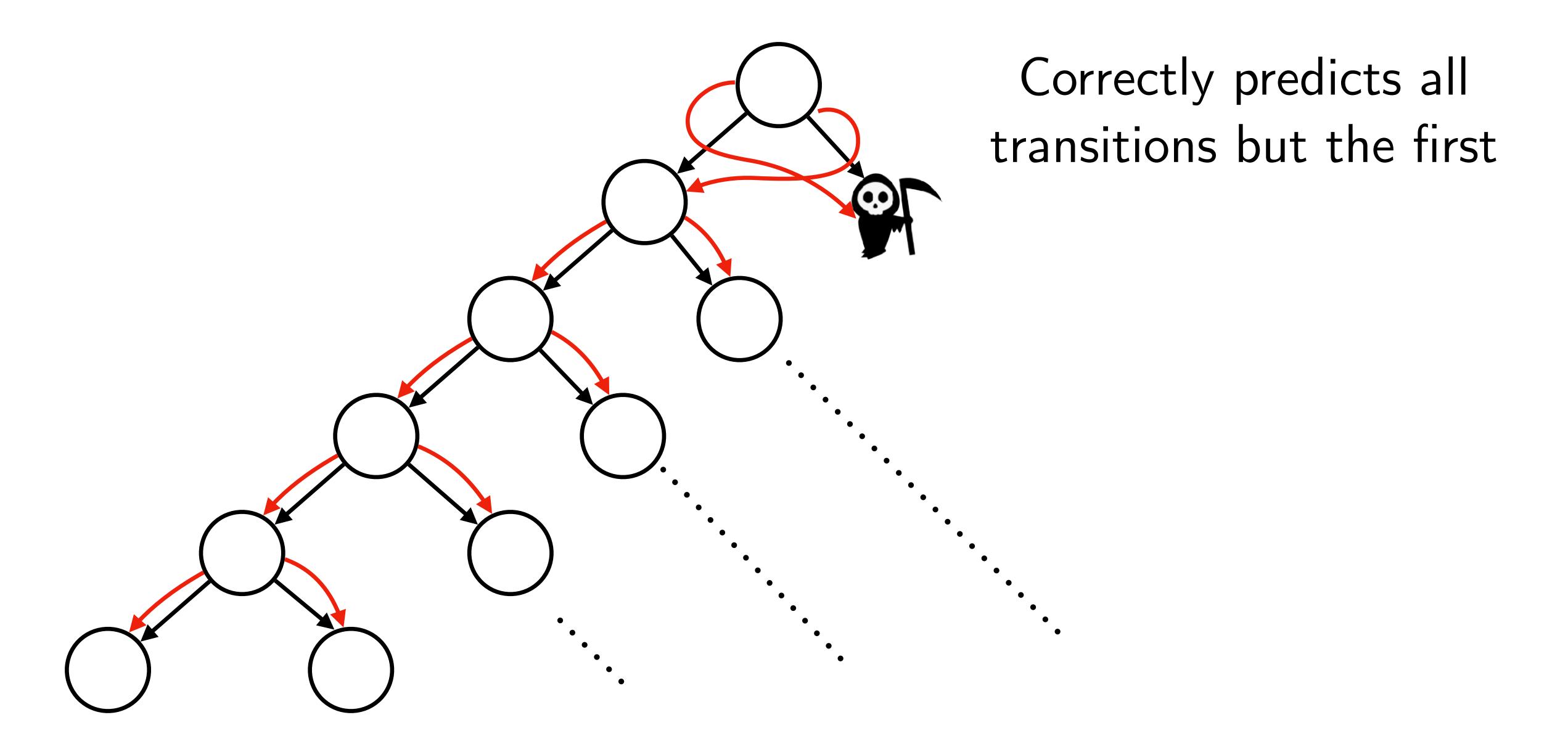




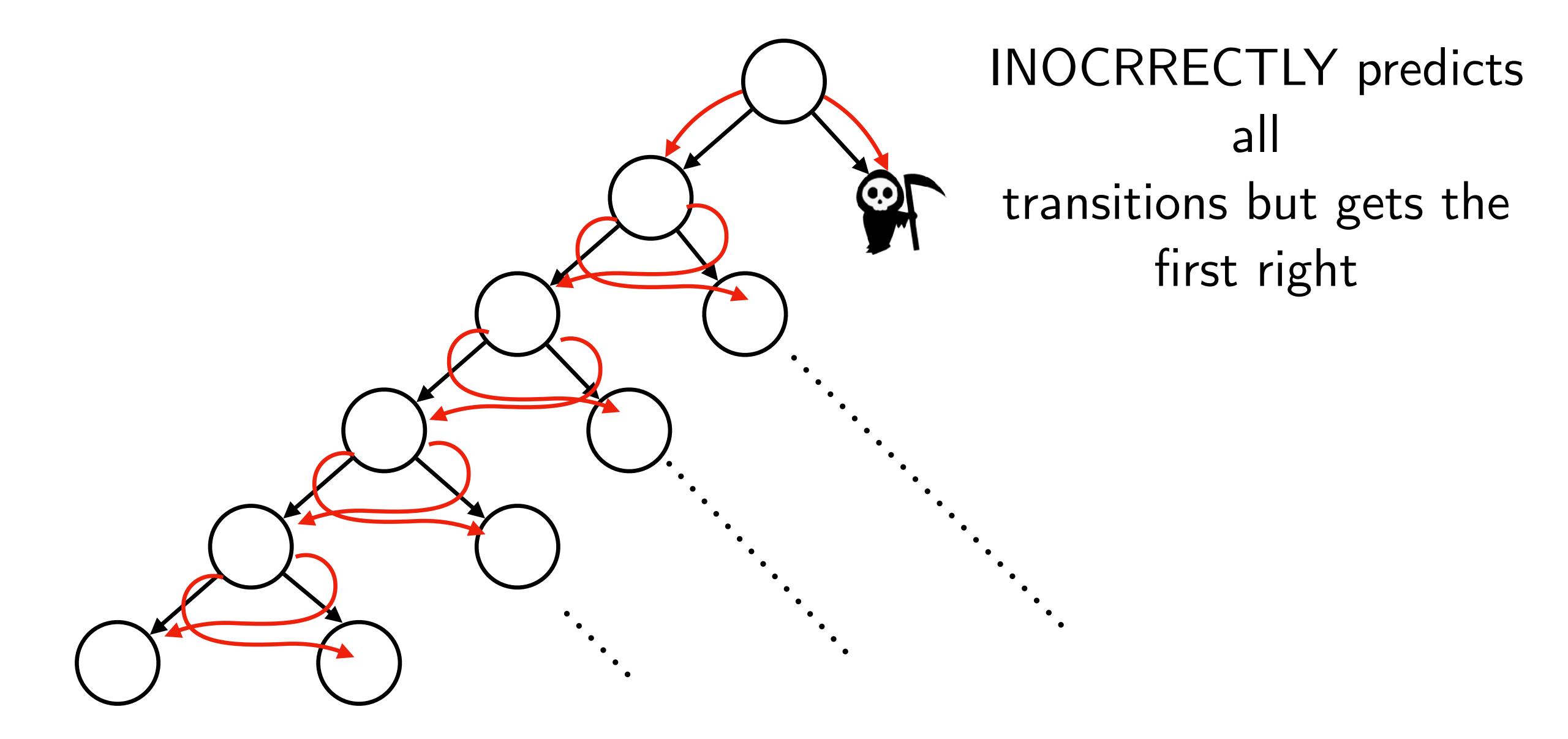
Let's say the following is the true MDP



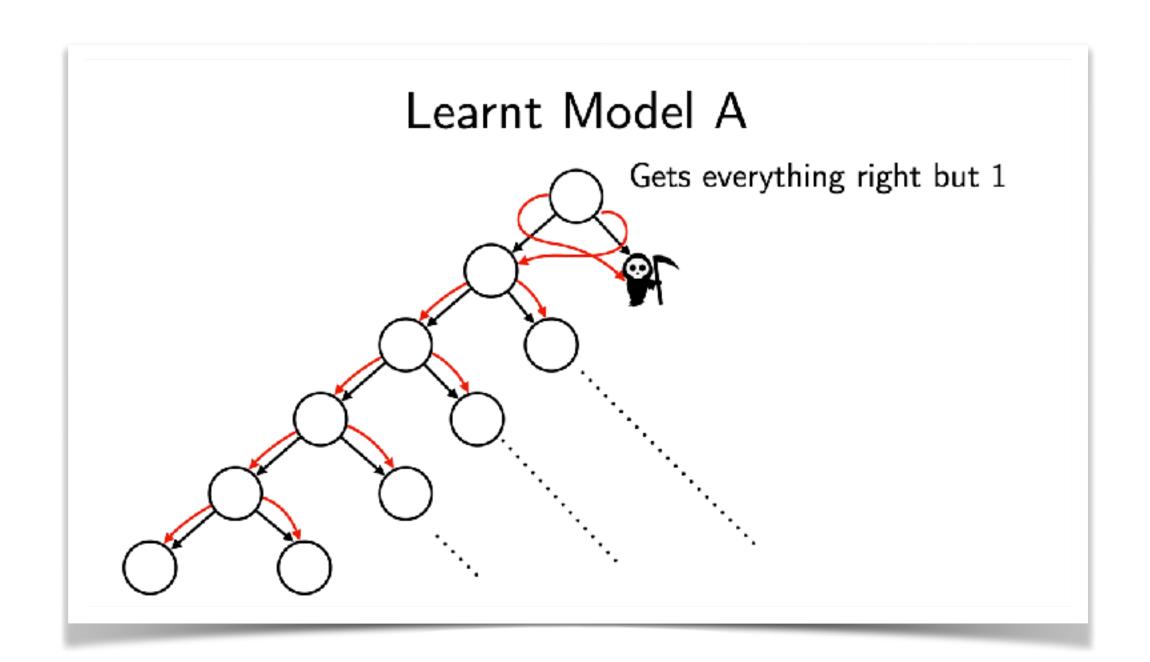
Candidate Model A

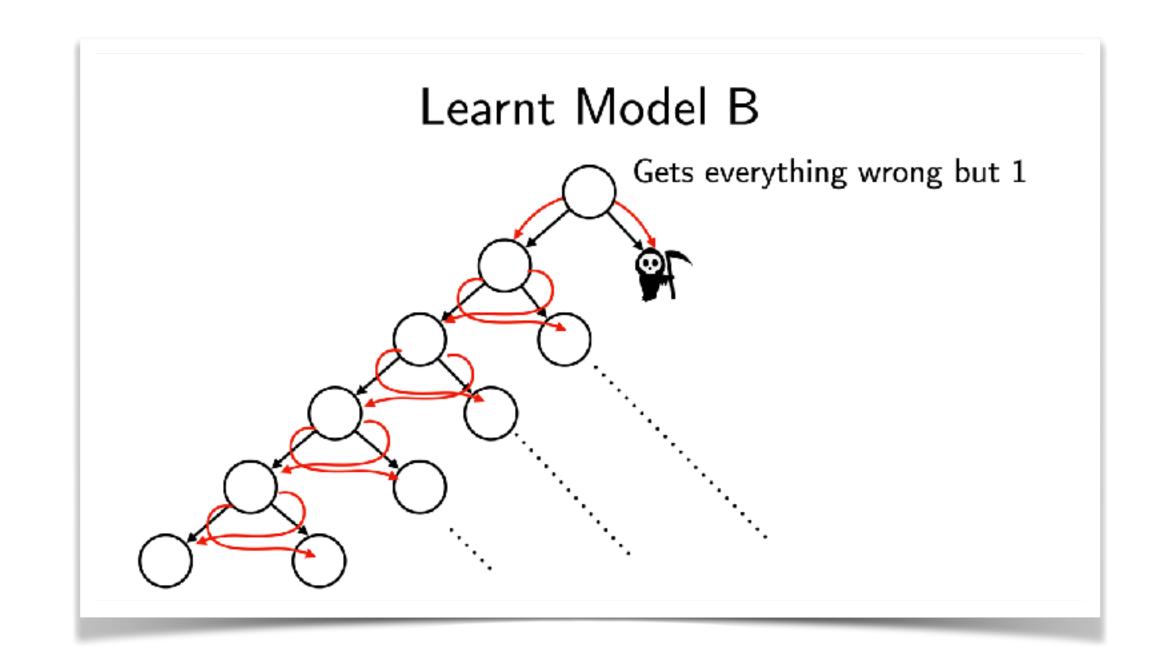


Candidate Model B



Which model is better? What does MBRL learn?





When poll is active respond at **PollEv.com/sc2582**

Send sc2582 to 22333

Today's class

Deriving MBRL loss

(Sim. lemma, PD via PM lemma)

n Practical MBRL

The DREAMER algorithm

The story so far ...

Robots have to act in the world

Hence, we learned various algorithms for decision making

But we assumed that we can observe the "state"

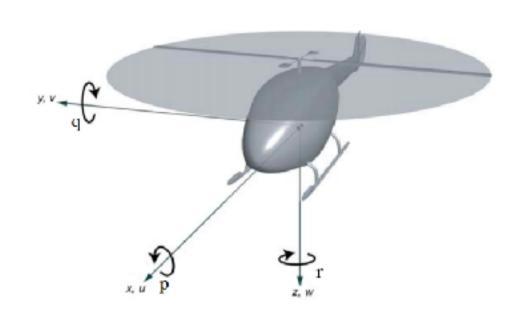
The story so far ...

But in the real world, no one tells you the "state"

All you see are observations

How do we learn from observations?

Models.

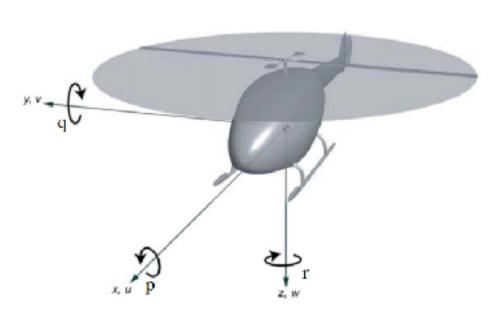


Physics Models

Simple

Known state

Strong prior on dynamics



Physics Models

Simple

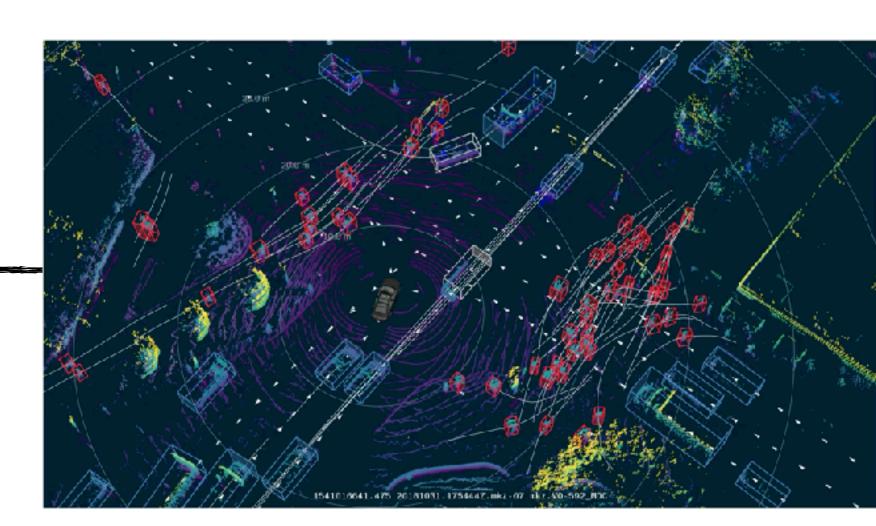
Known state

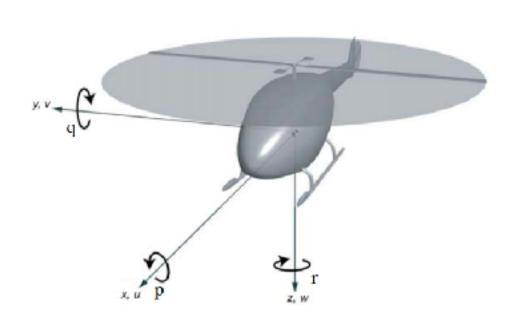
Strong prior on dynamics

Motion Models

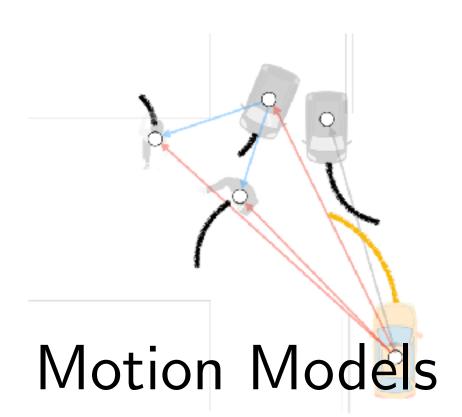
Known state

Unknown dynamics





Physics Models



Open World Models

Simple

Known state

Strong prior on dynamics

Known state

Unknown dynamics

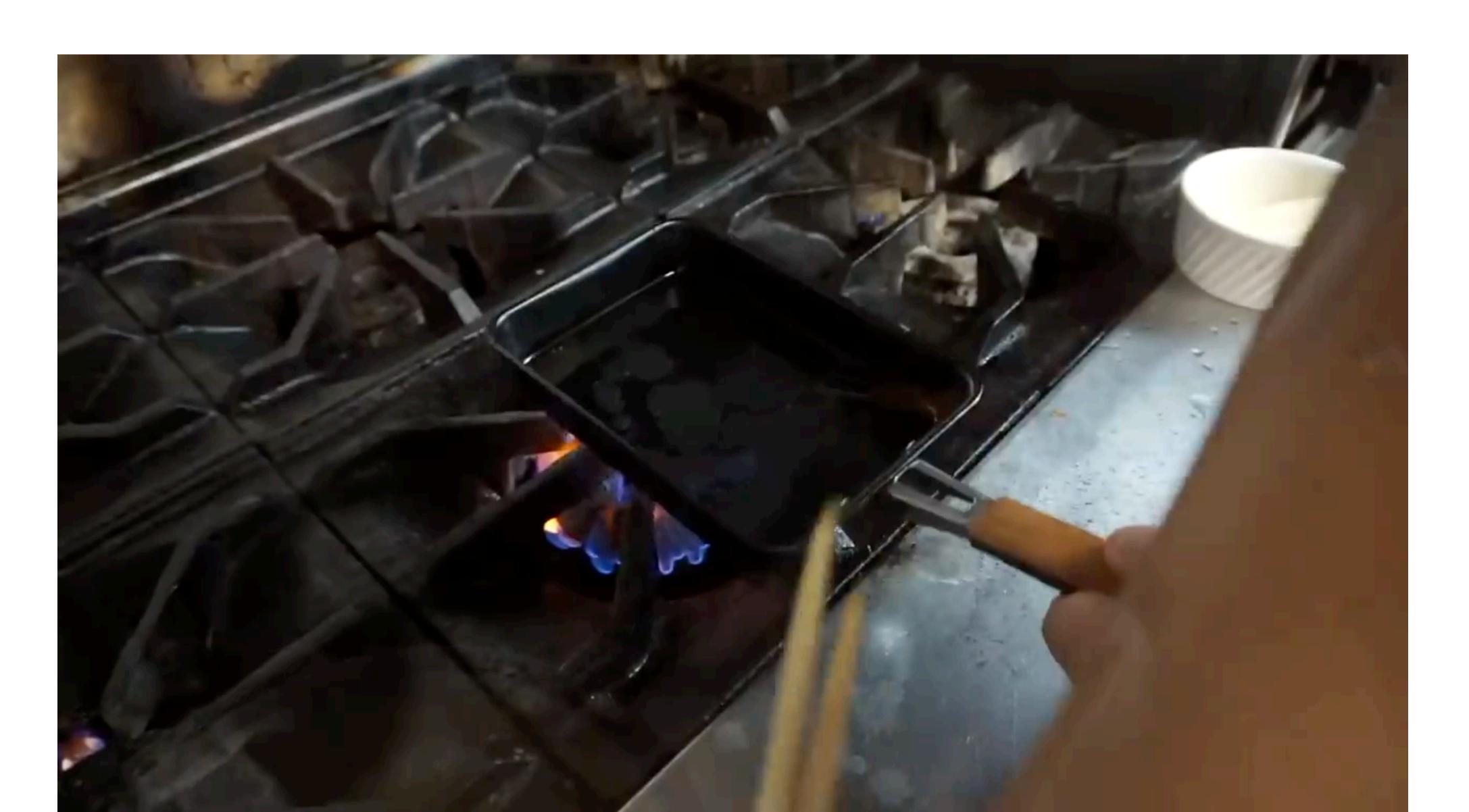
Unknown state

Unknown dynamics

Complex

Activity!

Modelling Tamago Sushi



Think-Pair-Share!

Think (30 sec): How would you model making tamago sushi?

Pair: Find a partner

Share (45 sec): Partners exchange ideas

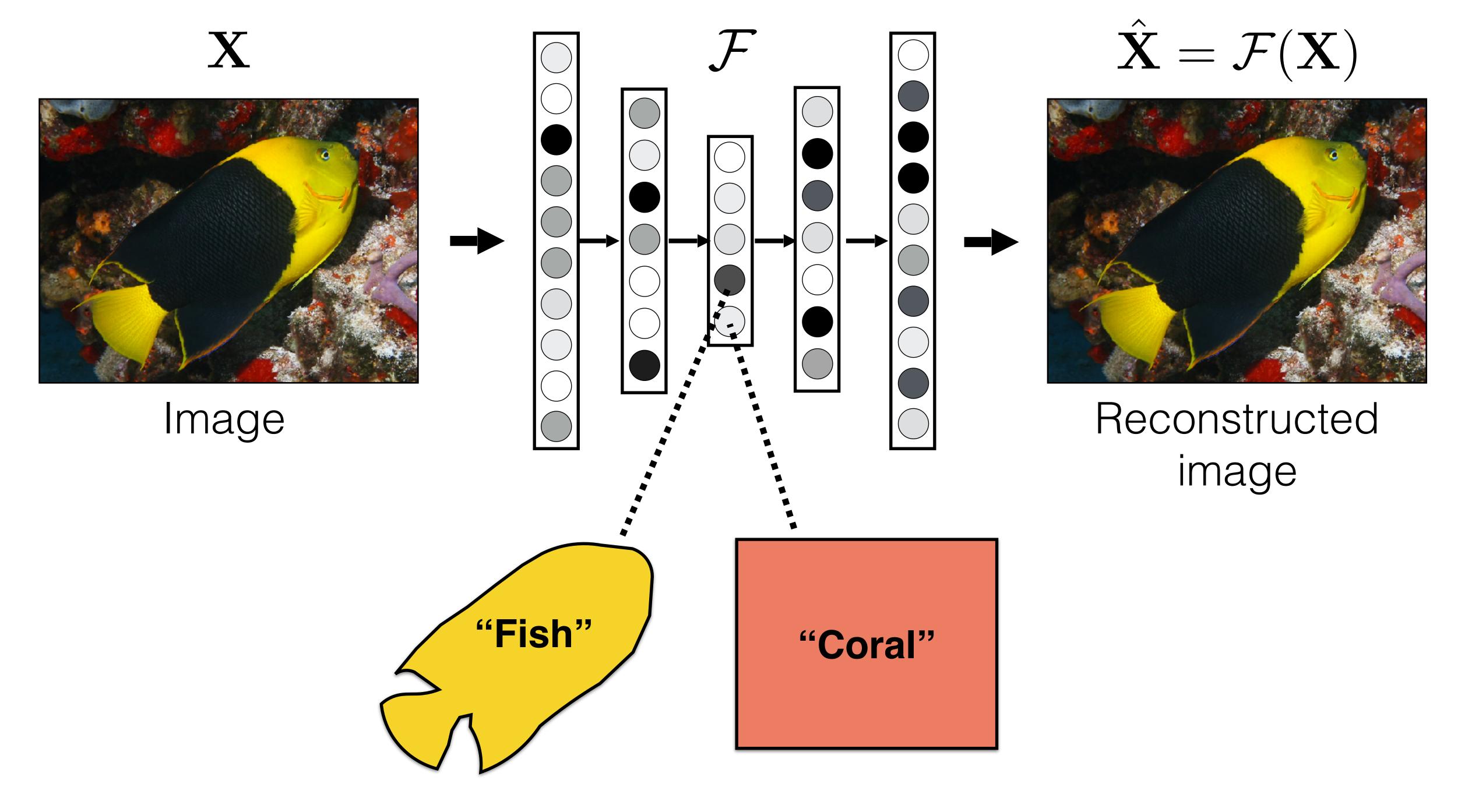
Challenges with learning complex models

Challenge 1: Can't see state, only get high-dimensional observations

Challenge 2: Planning with complex dynamics

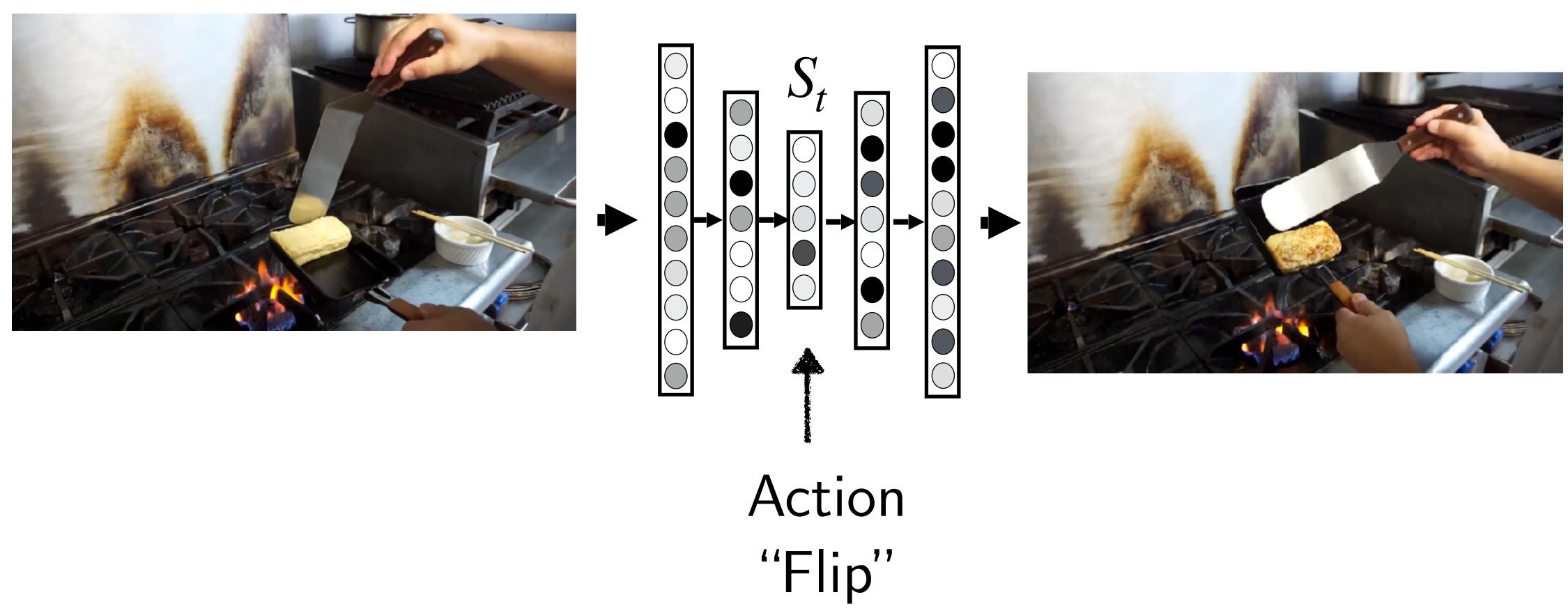
How can we learn latent low-dimensional state from high-dimensional observations?

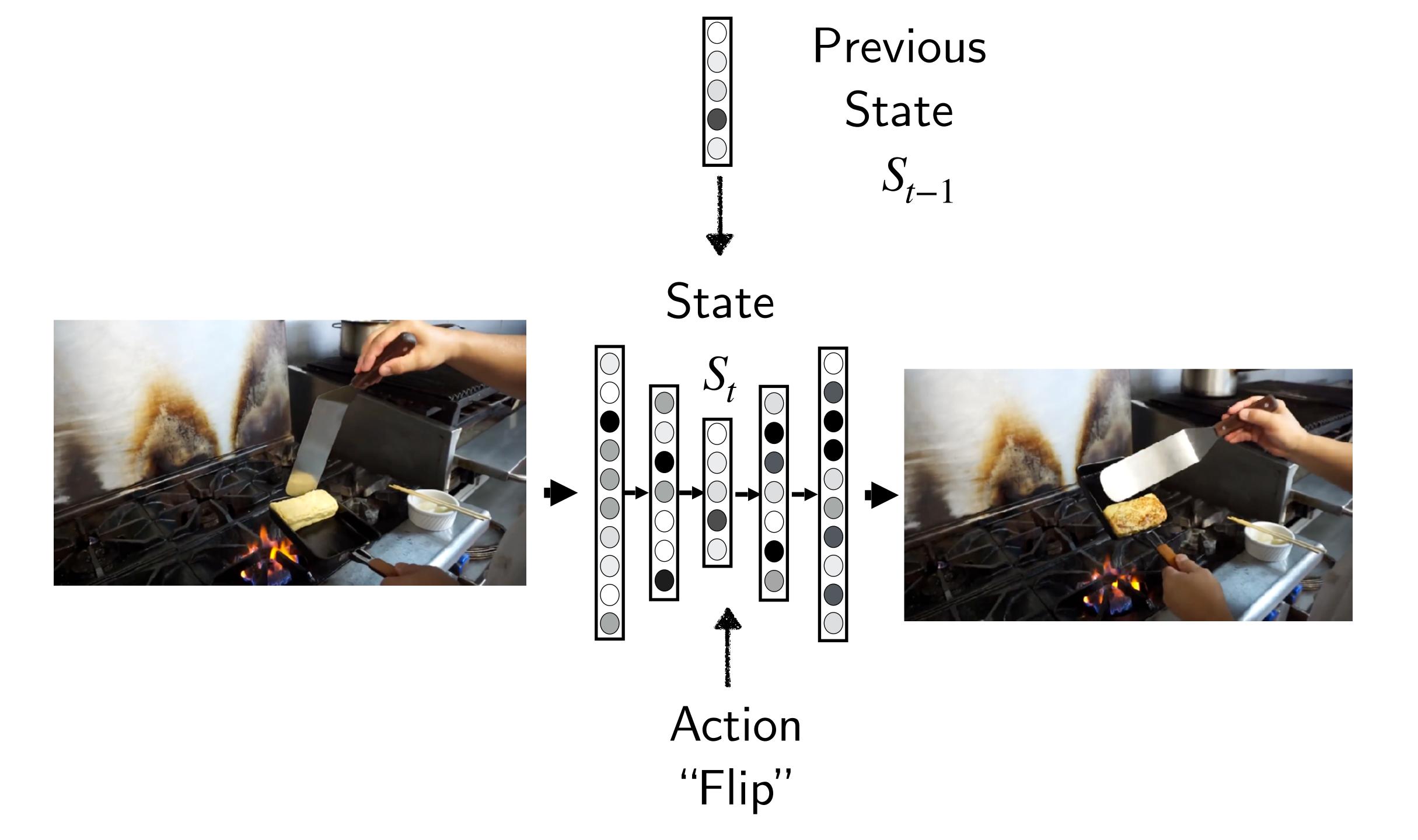
Idea: Use "auto-encoder" trick from computer vision



From MIT 6.8300/6.8301: Advances in Computer Vision

State





Today's class

Deriving MBRL loss

(Sim. lemma, PD via PM lemma)

Marginal Practical MBRL

(Only observations, complex dynamics)

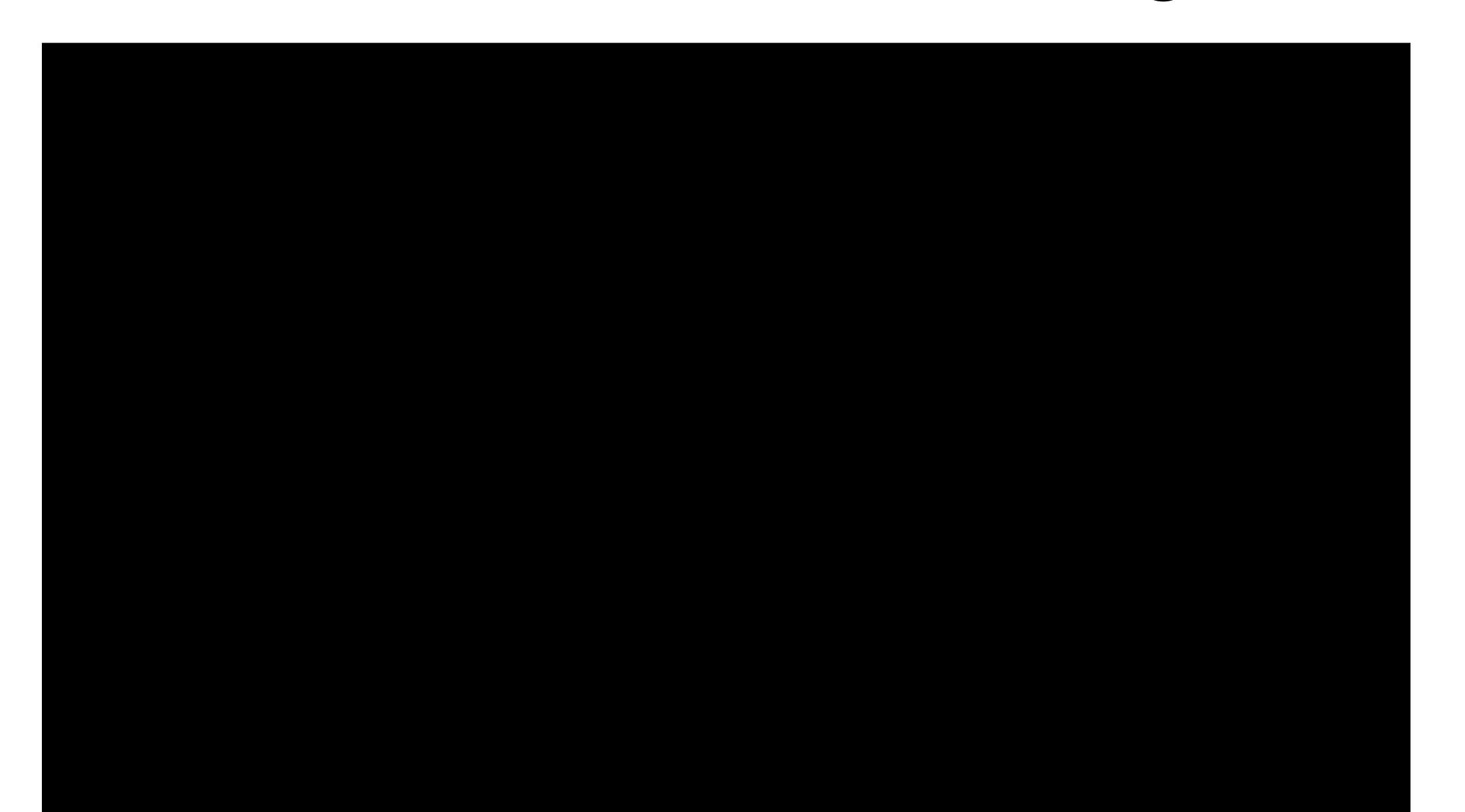
The DREAMER algorithm

The DREAMER Algorithms

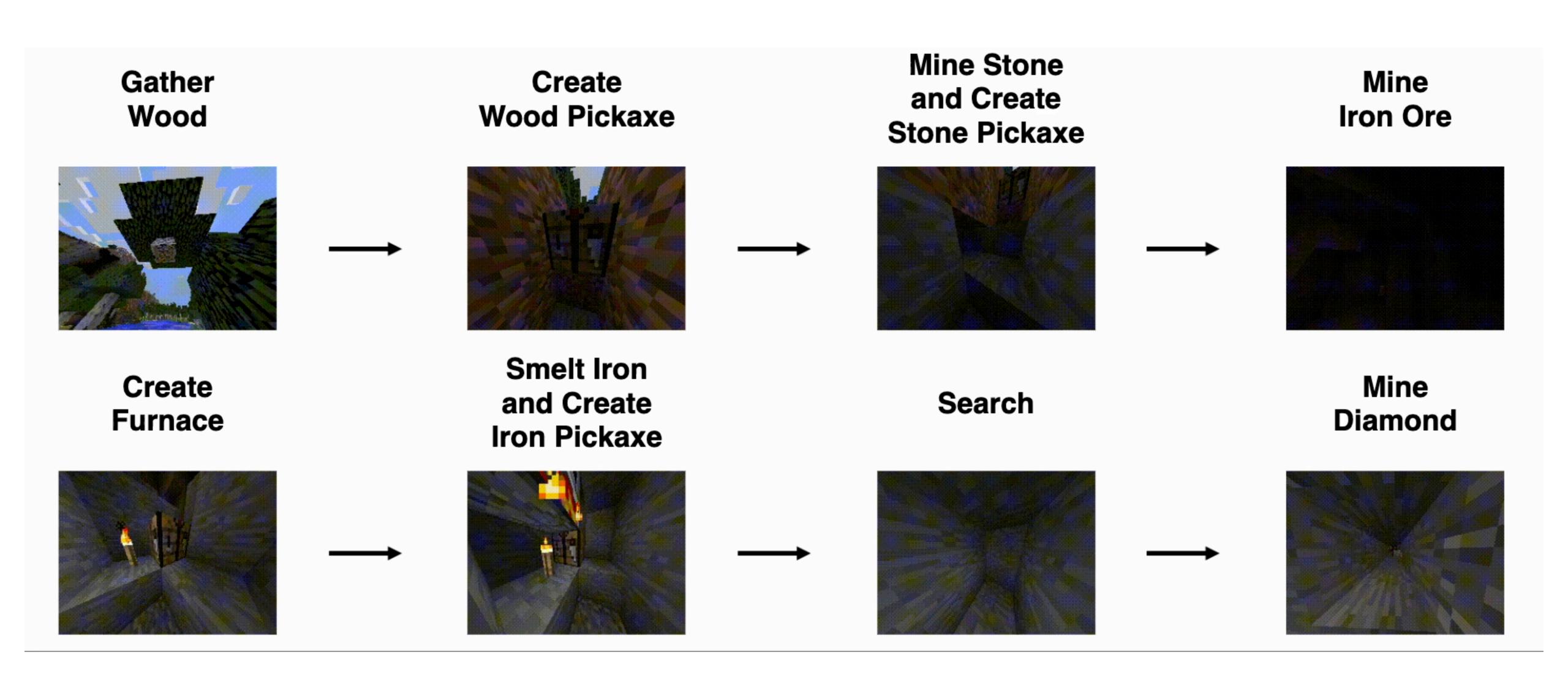
Mastering Diverse Domains through World Models

Danijar Hafner,¹² Jurgis Pasukonis, Jimmy Ba, Timothy Lillicrap ¹ DeepMind ²University of Toronto

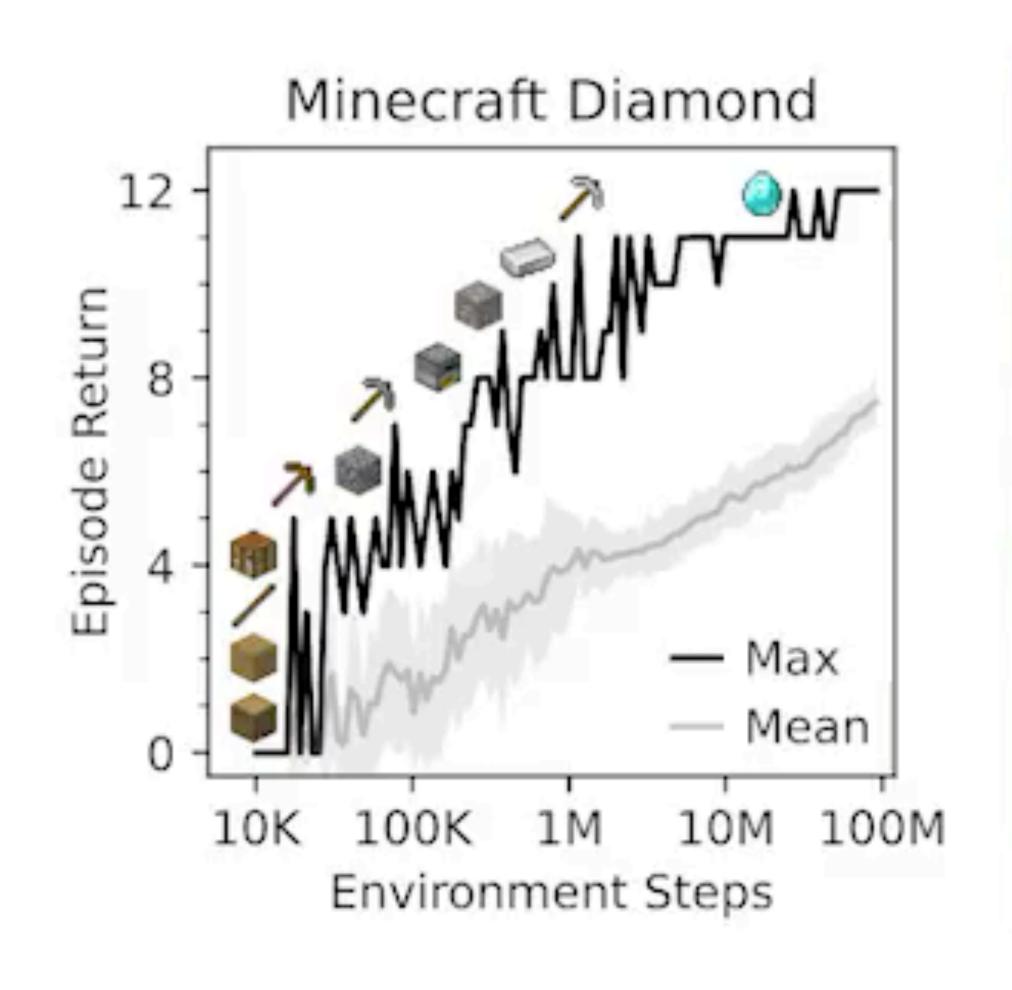
MineRL Diamond Challenge

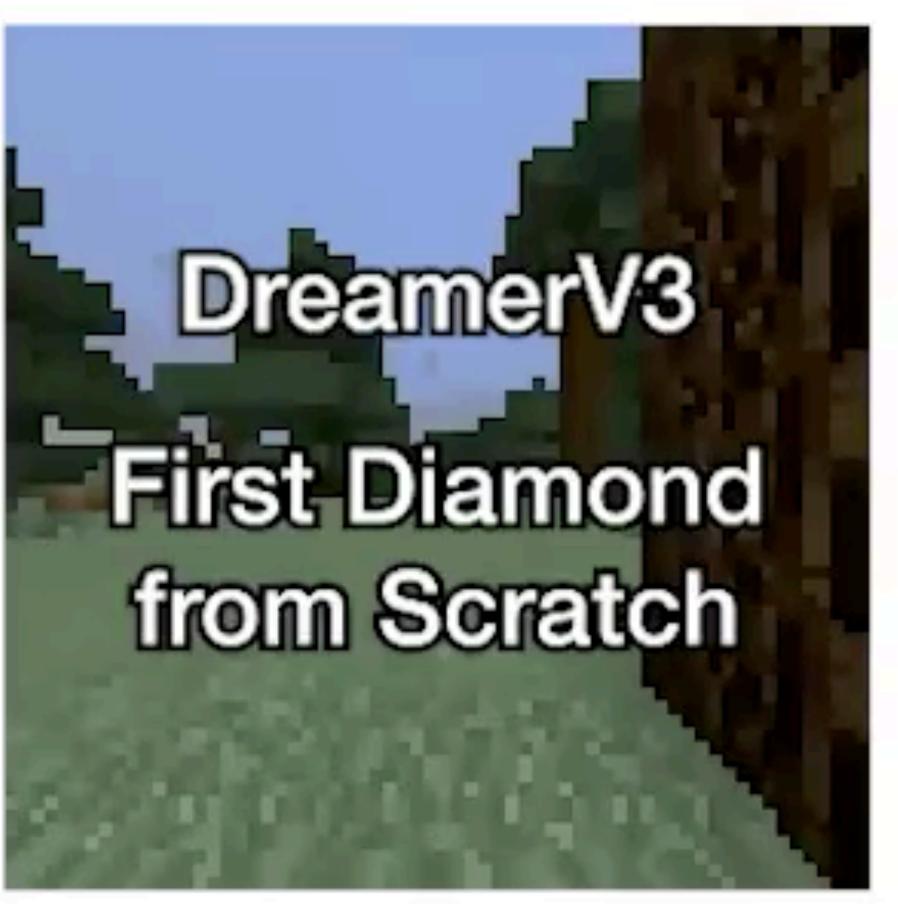


MineRL Diamond Challenge



DreamerV3 solved this task!





The DREAMER Algorithm

DREAM TO CONTROL: LEARNING BEHAVIORS BY LATENT IMAGINATION

Danijar Hafner *
University of Toronto
Google Brain

Timothy Lillicrap

DeepMind

Jimmy Ba

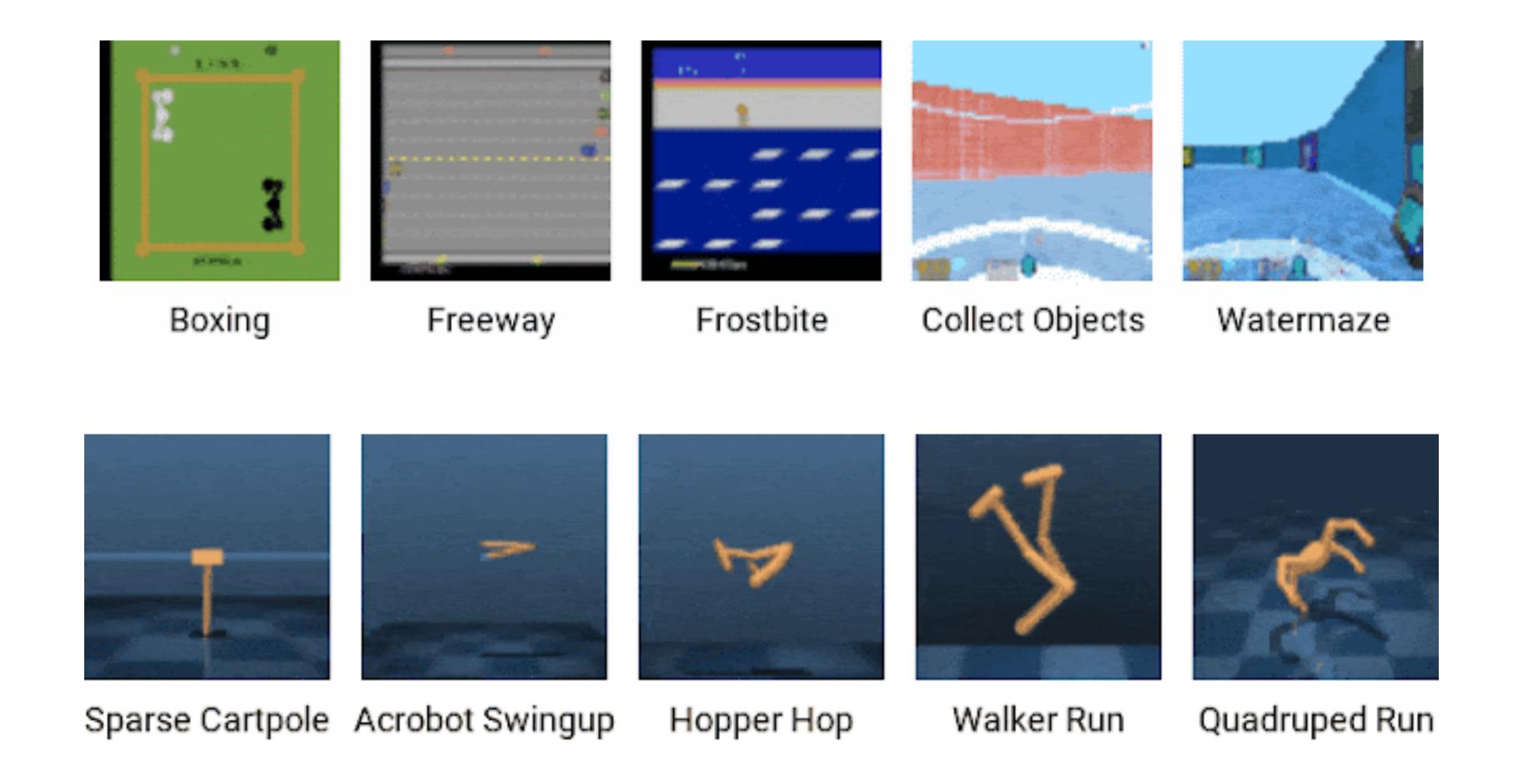
University of Toronto

Mohammad Norouzi

Google Brain

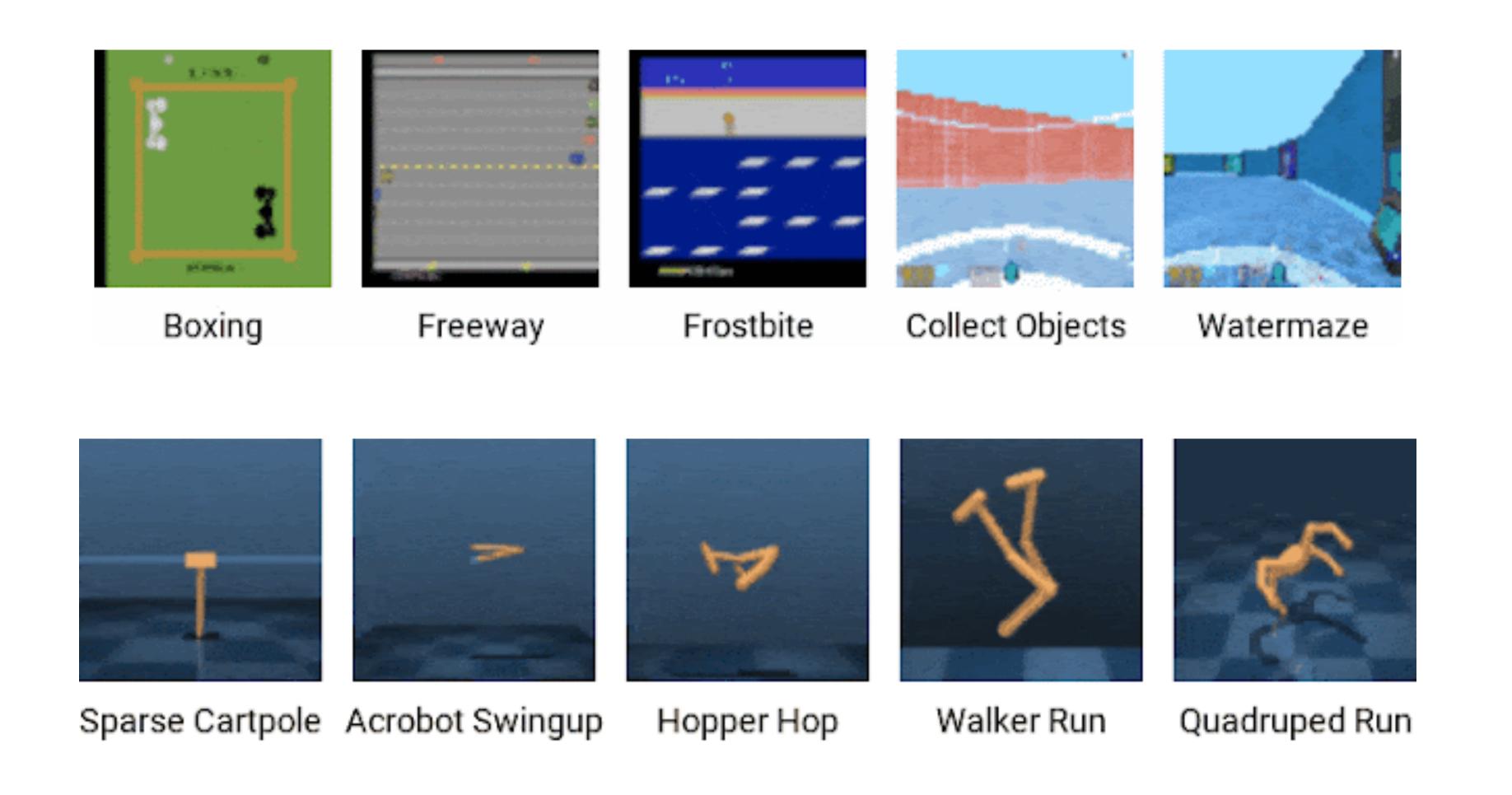
2020

Look at the videos below



Is this from the actual simulator or predictions made by a model?

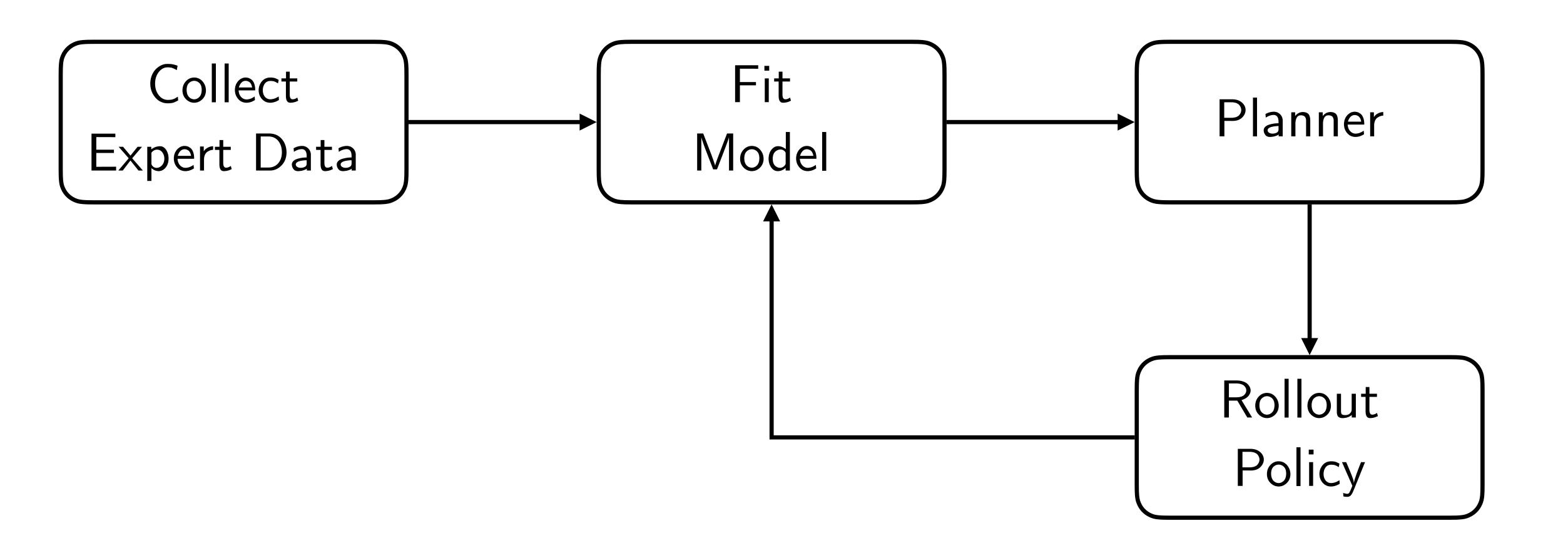
Look at the videos below



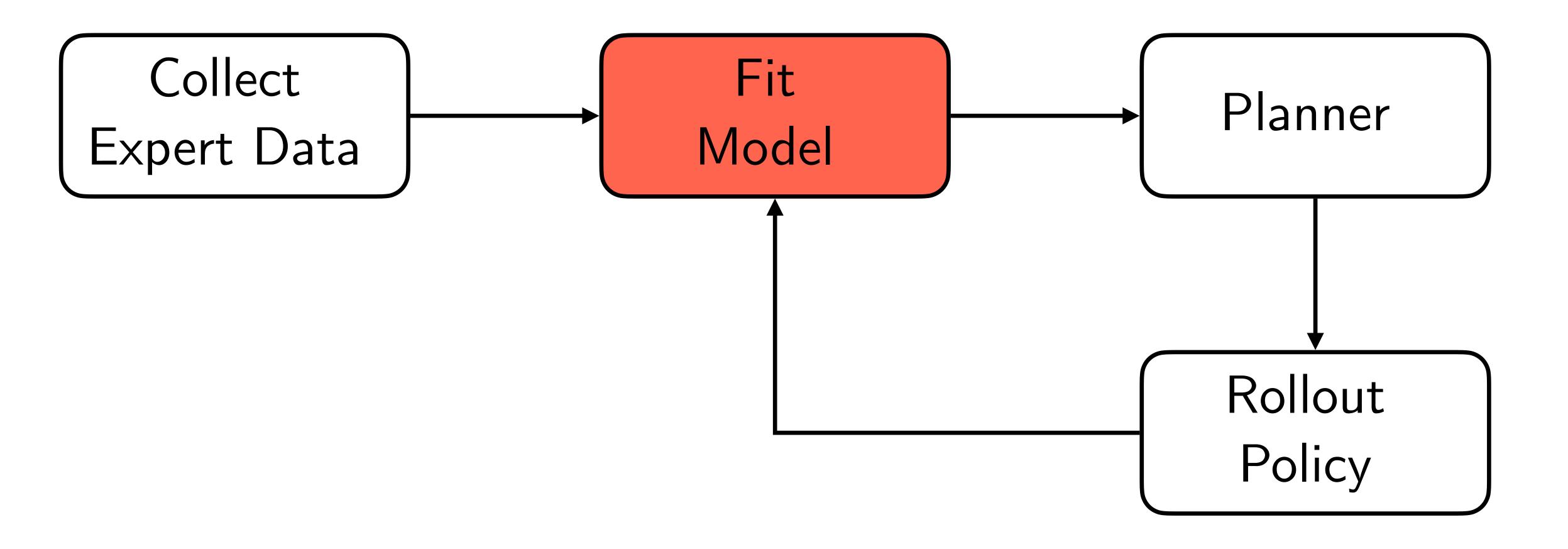
Predictions by a model!

Recap: Model-based RL

(Ross & Bagnell, 2012)



How does DREAMER fit a model?



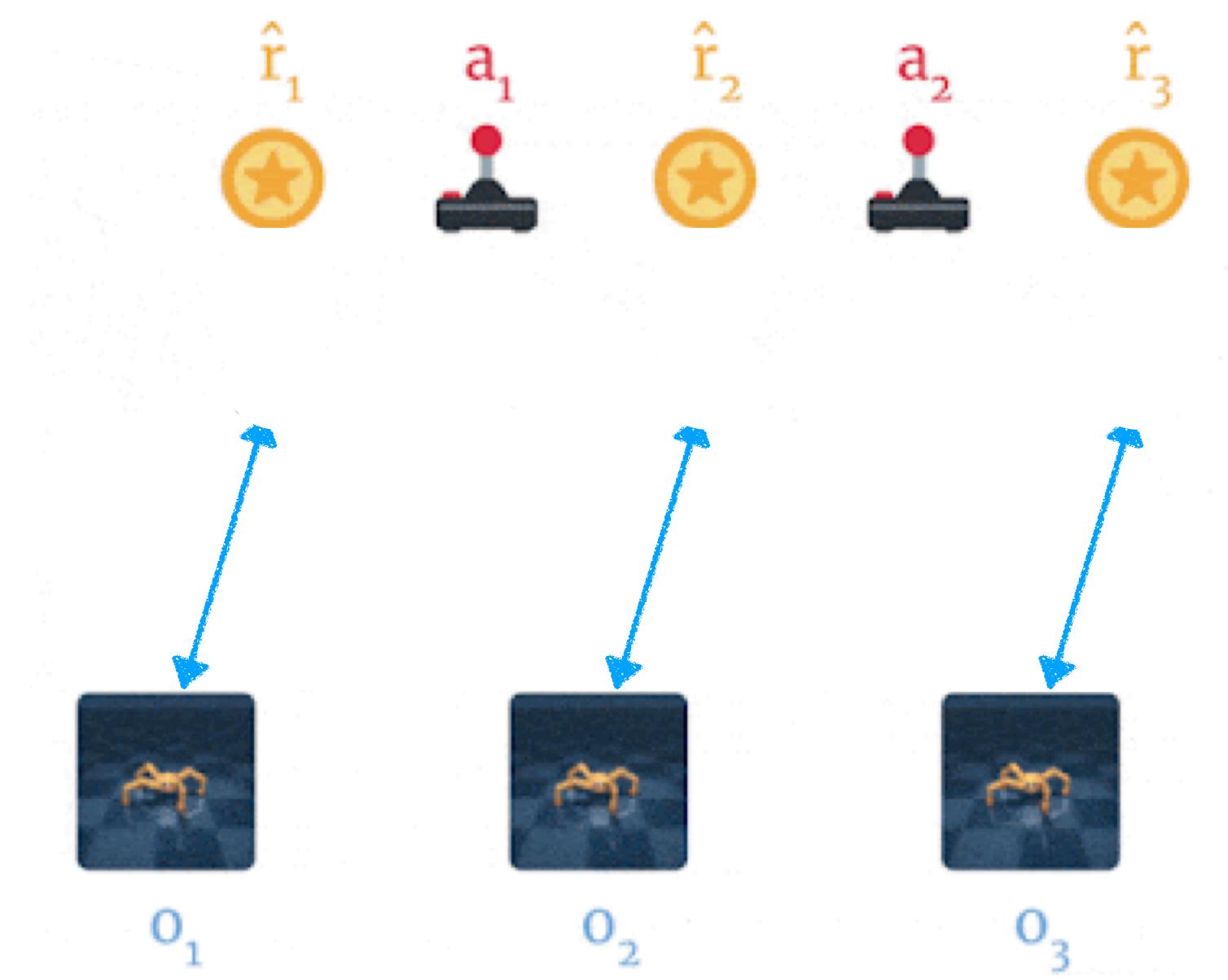
Goal: Fit a Model given data

Given Data:
Observations, rewards, actions

Goal: Fit a Model given data

Given Data:
Observations, rewards, actions

Predict:
States,
Dynamics Function,
Reward Function



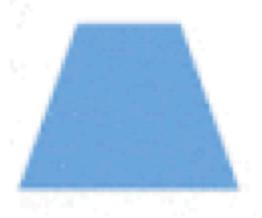
Actions

Observations

0,

 O_2

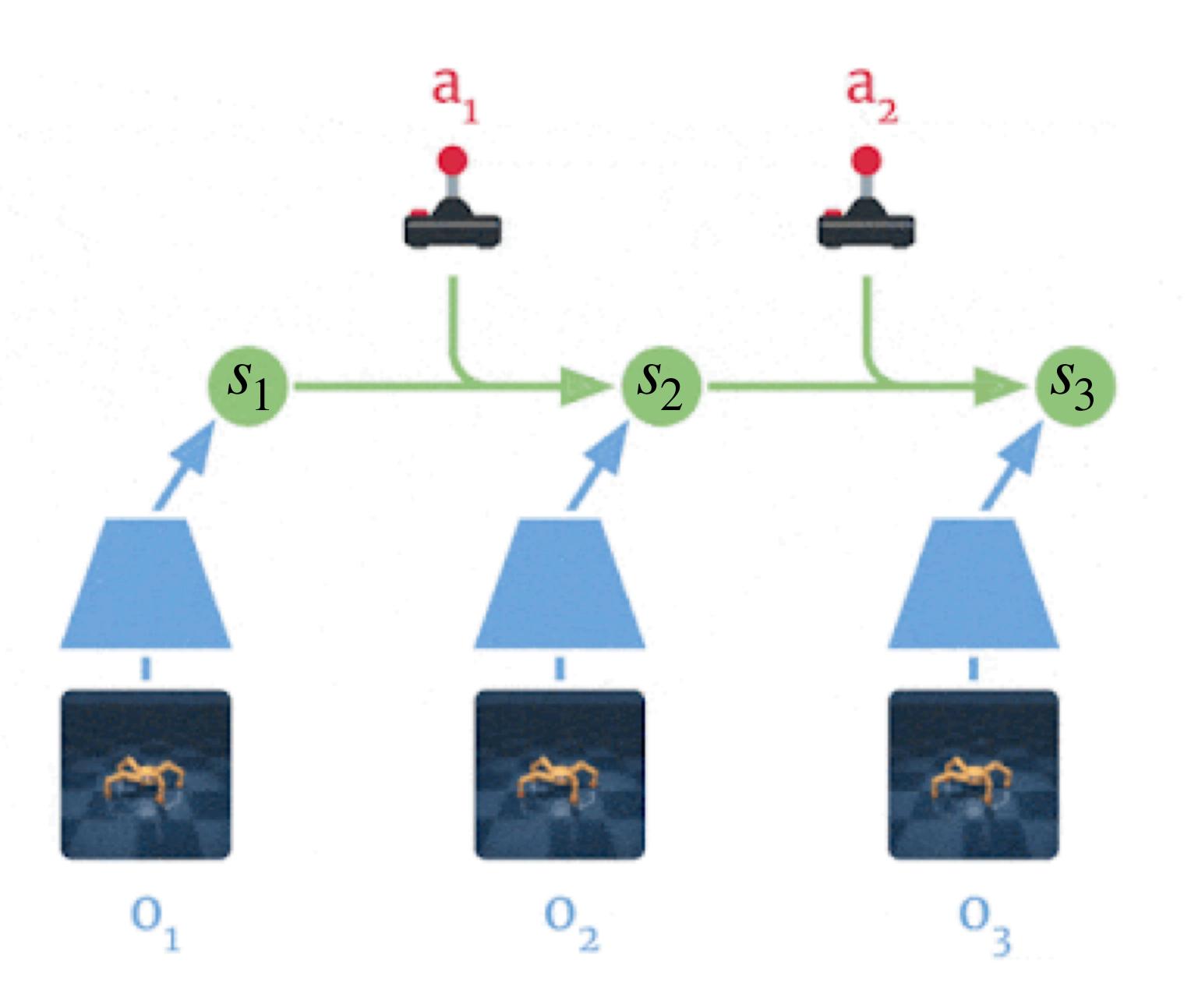
03



compute states

$$p_{\theta}(s_t \mid o_t, s_{t-1})$$

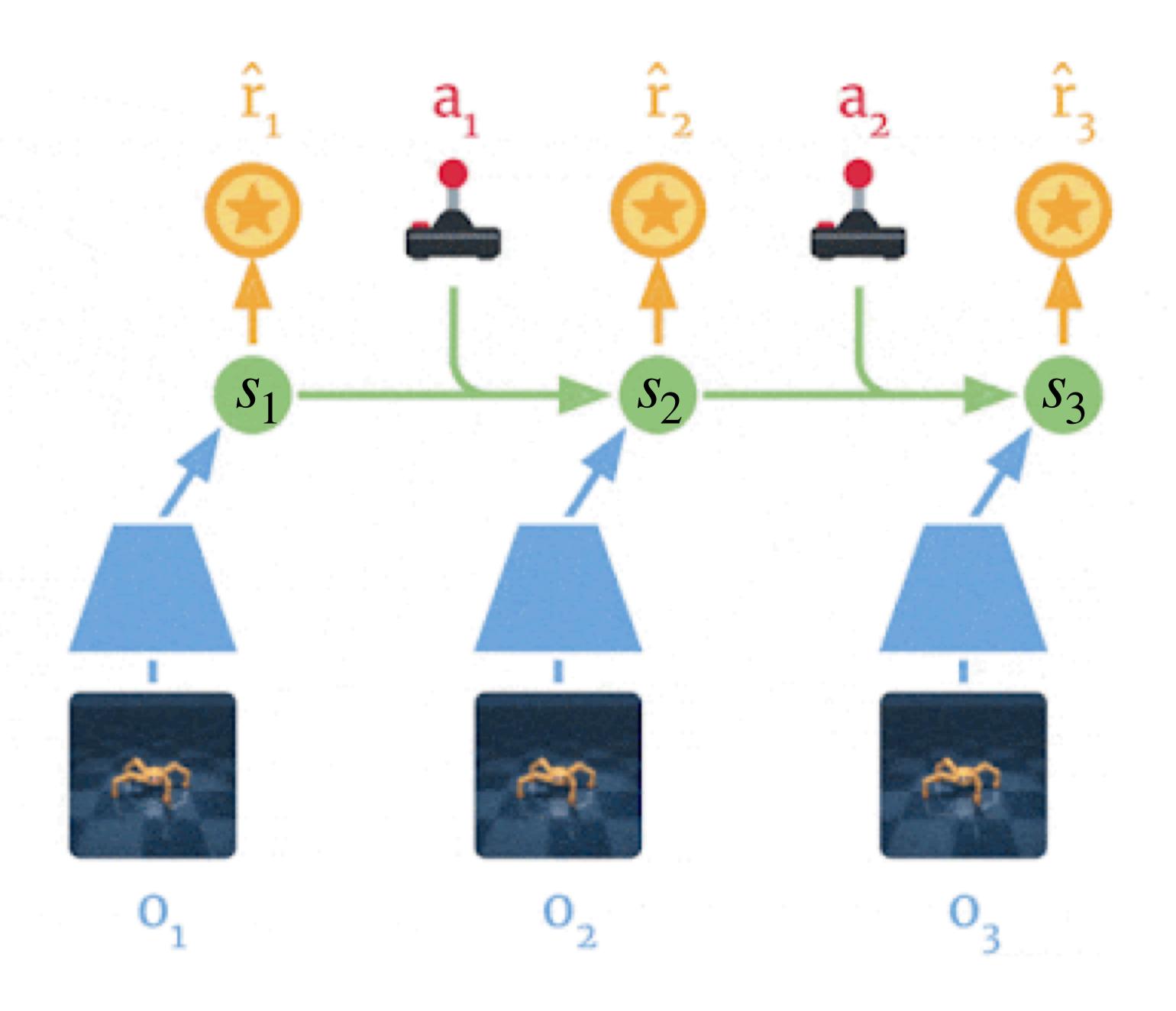
State Encoder



$$\mathcal{C} = (r_t - \hat{r}_t)^2$$

 $q_{\theta}(r_t | s_t)$

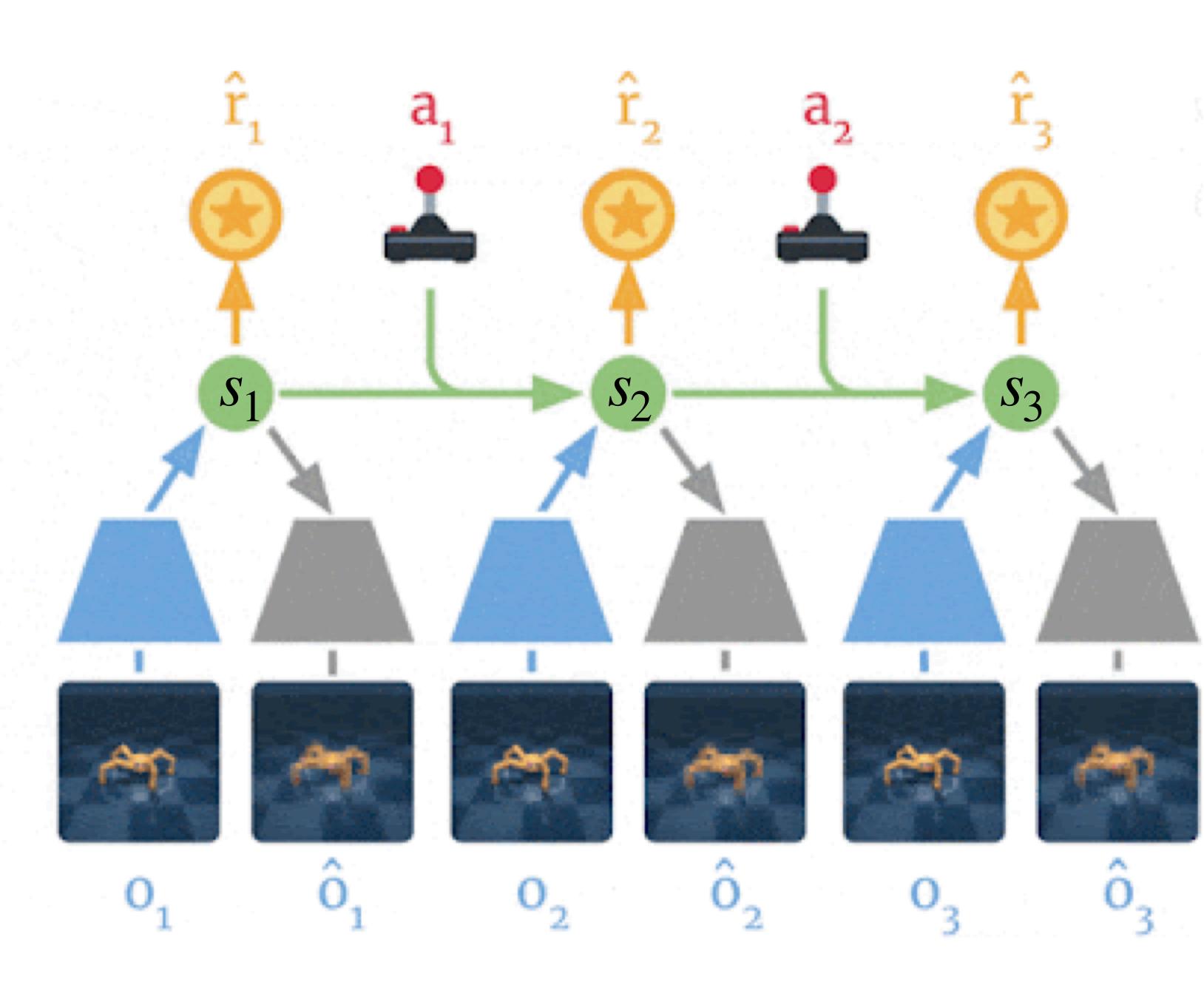
Reward Decoder



$$\mathcal{C} = (o_t - \hat{o}_t)^2$$

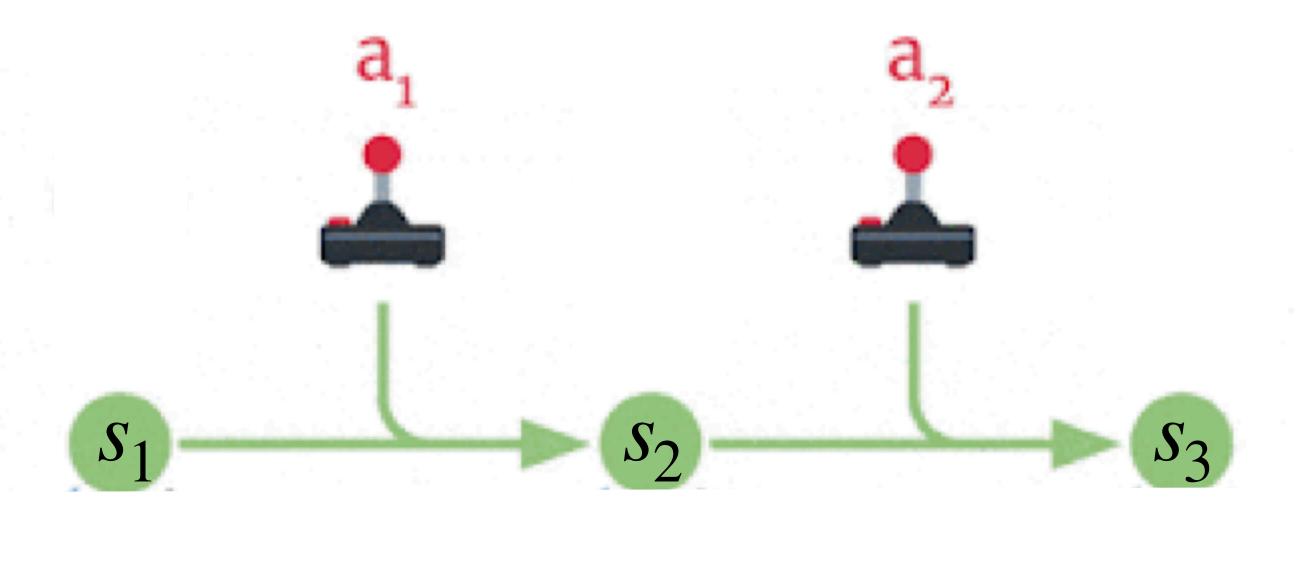
$$q_{\theta}(o_t | s_t)$$

Observation Decoder

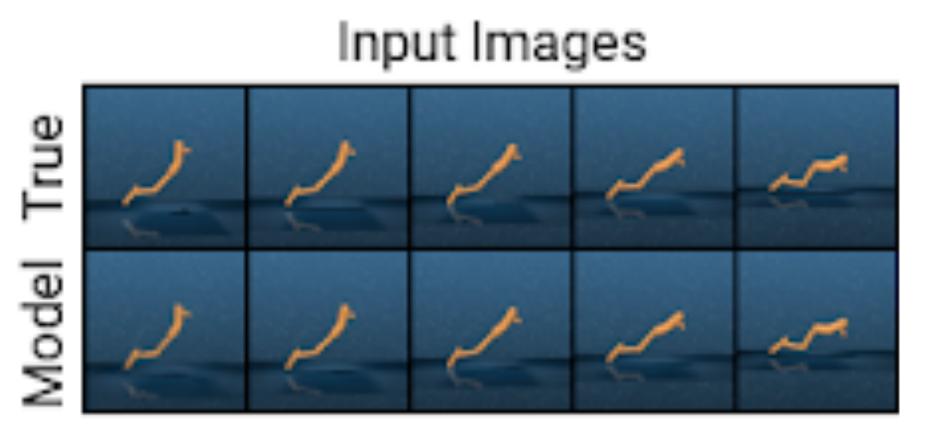


$$q_{\theta}(s_{t+1} \mid s_t, a_t)$$

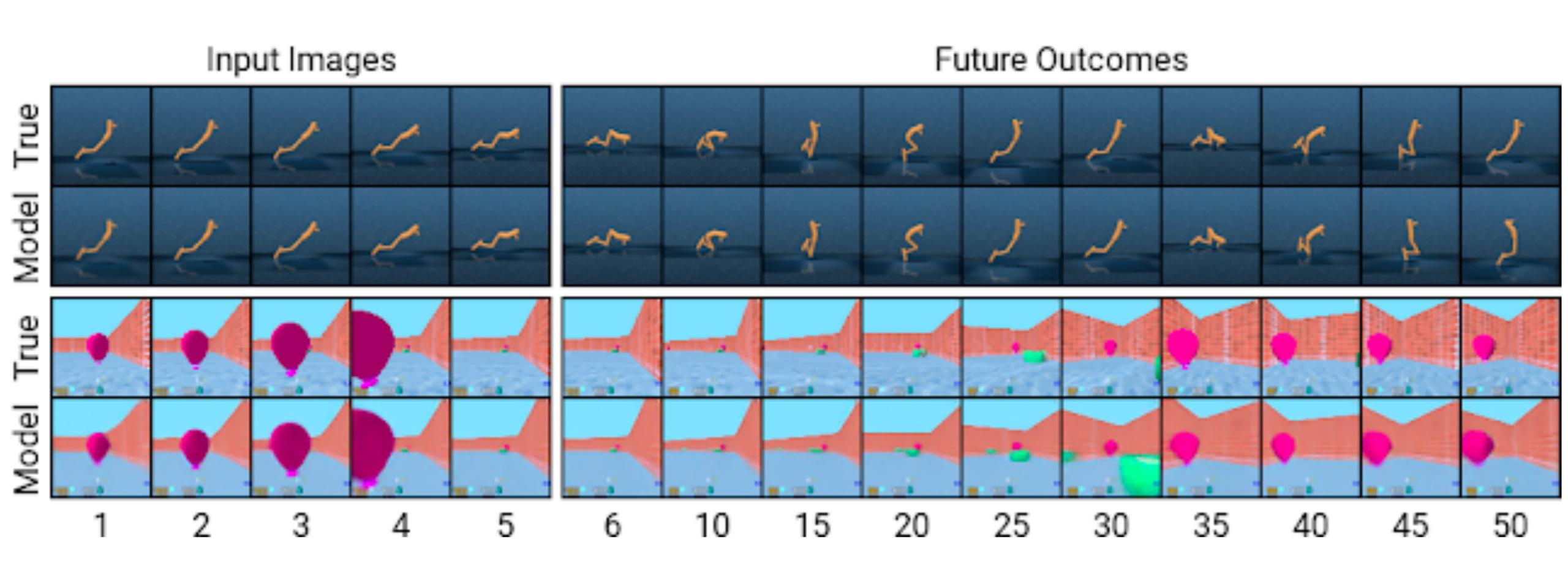
Dynamics
Function



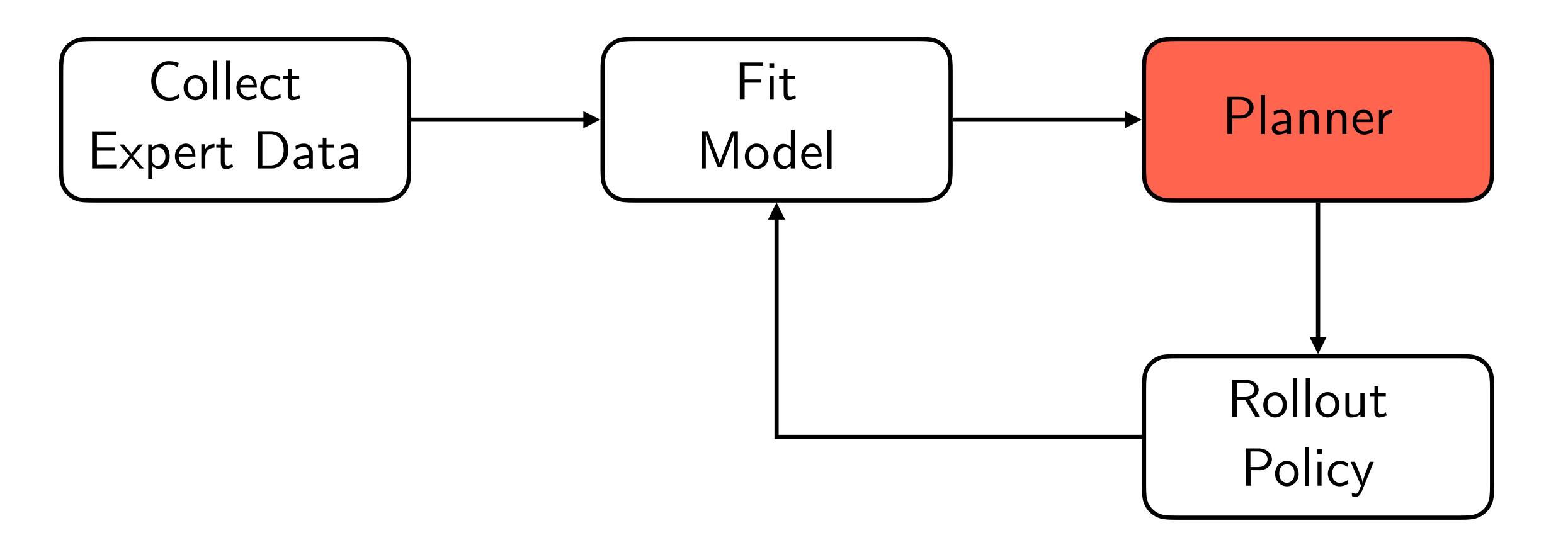
Results: Learning World Model



Results: Learning World Model



How does DREAMER do planning?



Goal: Learn a Policy using Actor-Critic

$$\pi_{\phi}(a_t | s_t)$$
 $V_{\psi}(s_t)$

Actor Critic

From rollouts in the model

$$q_{\theta}(s_t | s_{t-1}, a_{t-1})$$

Recall: Actor-Critic

Start with an arbitrary initial policy $\pi_{\phi}(a \mid s)$

while not converged do

Roll-out $\pi_{\phi}(a \mid s)$ in the model $q_{\theta}(s' \mid s, a)$ to collect trajectories $D = \{s^i, a^i, r^i, s^i_+\}_{i=1}^N$

Fit value function $V_w(s^i)$ using TD, i.e. minimize $(r^i + \gamma V_w(s^i) - V_w(s^i))^2$

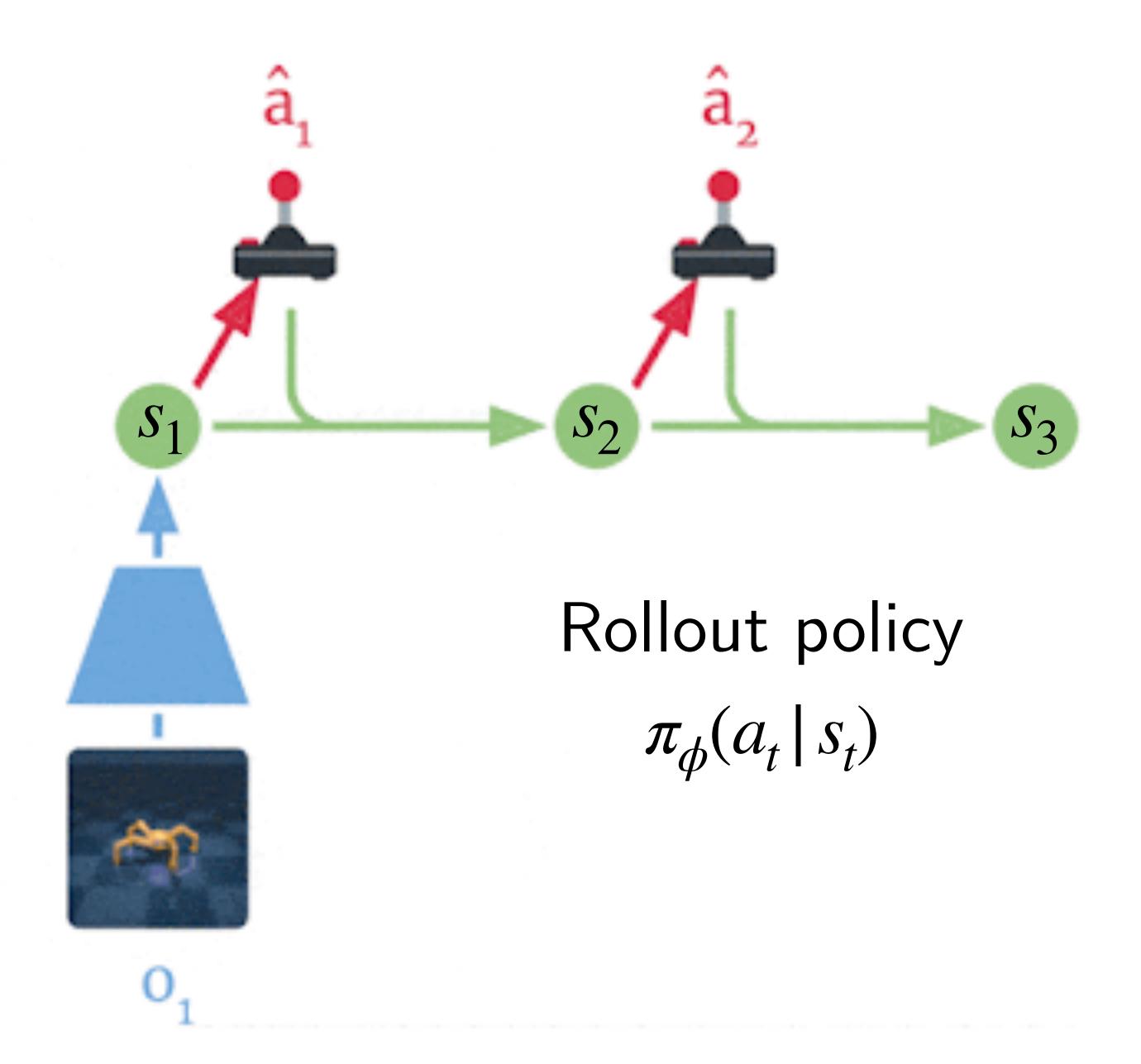
Compute advantage $\hat{A}(s^i, a^i) = r(s^i, a^i) + \gamma V_w(s^i_+) - V_w(s^i)$

Compute gradient
$$\nabla_{\phi} J(\phi) = \frac{1}{N} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\phi}(a_t^i \,|\, s_t^i) \, \hat{A}(s^i, a^i) \right]$$

Update parameters

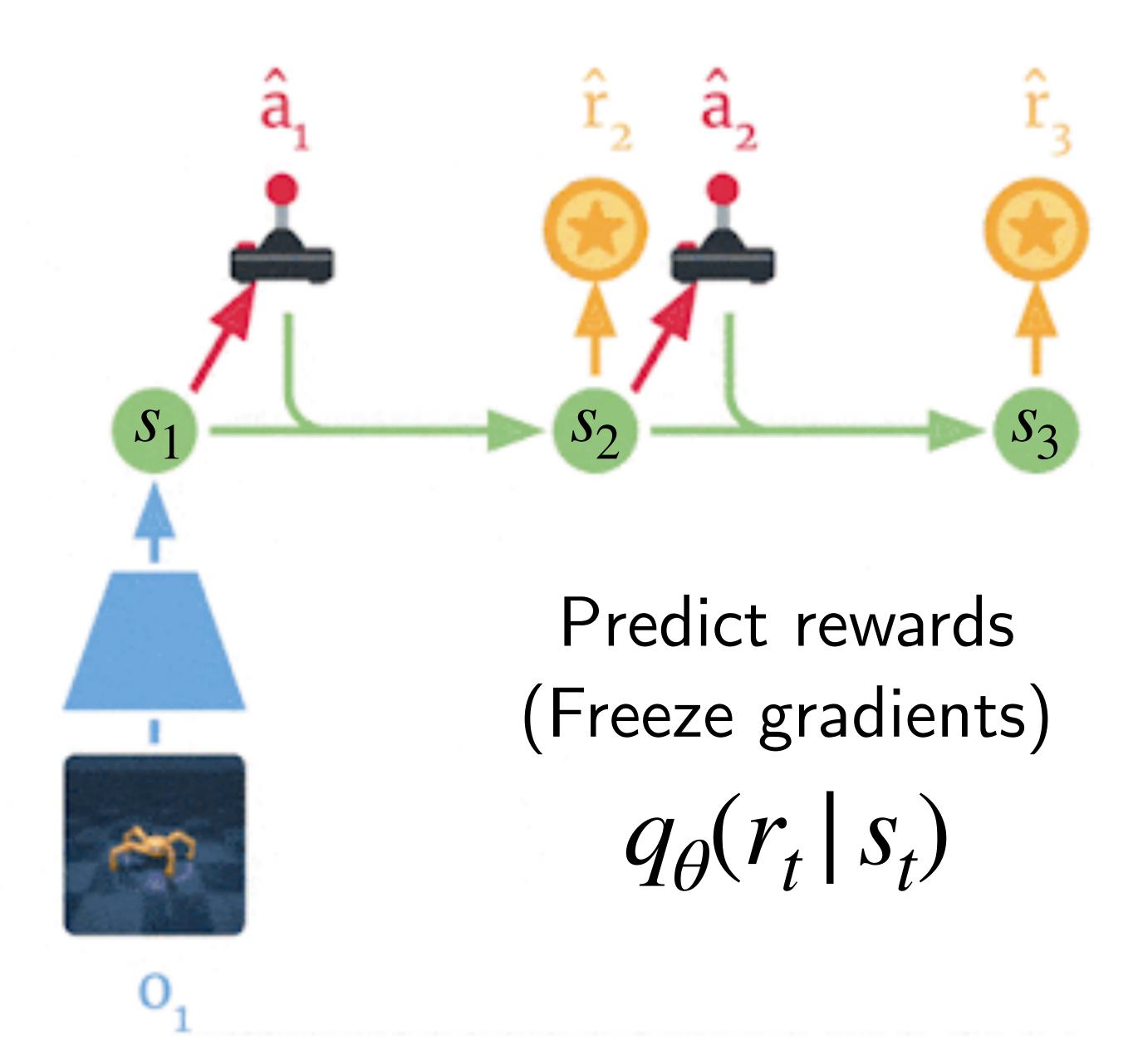
$$\phi \leftarrow \phi + \alpha \nabla_{\phi} J(\phi)$$

imagine ahead



imagine ahead

predict rewards

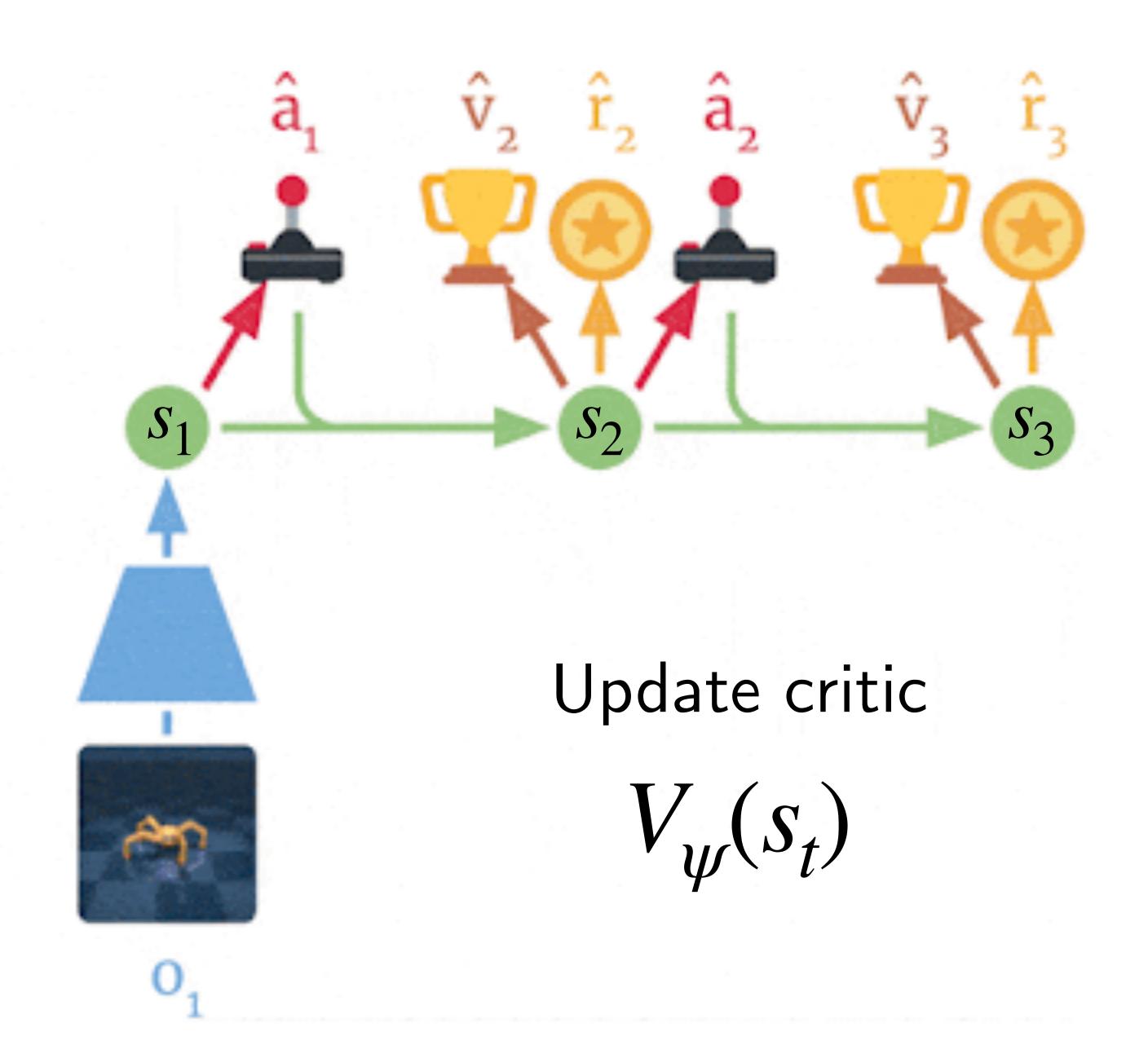




imagine ahead

predict rewards

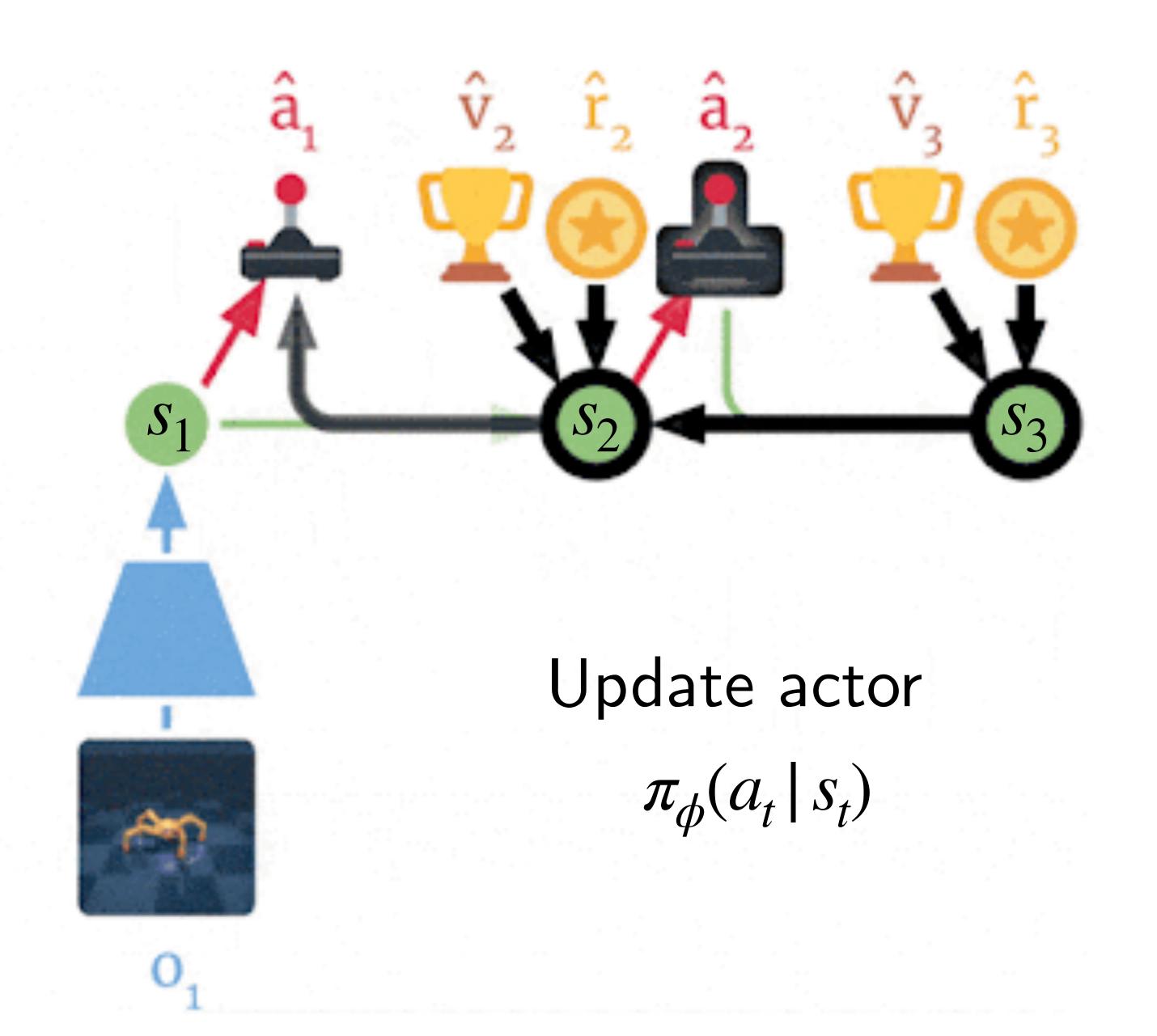
predict values



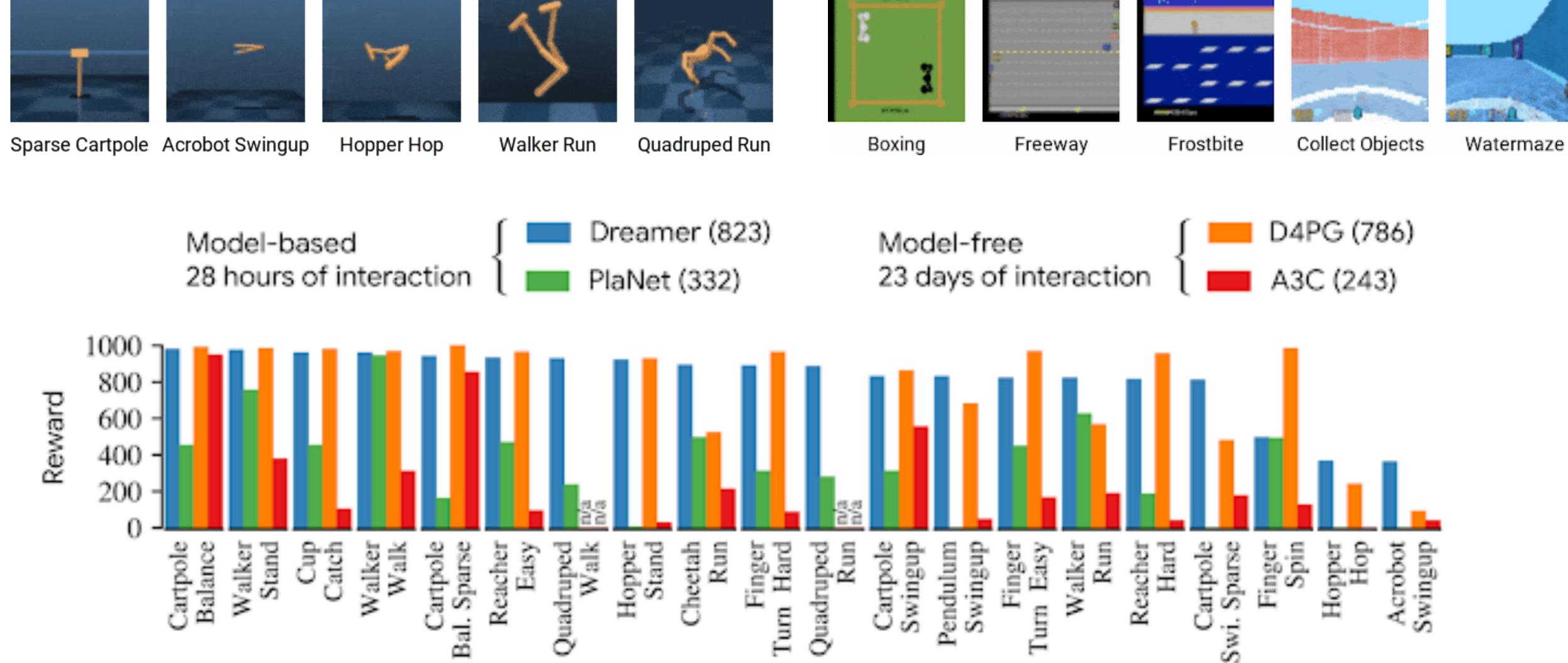
imagine ahead

predict rewards

predict values



DREAMER: Results



DREAMER is a template for Model-based RL

But there are many challenges as we scale to harder real-world applications

DREAMER V2:

Tackling the world of Atari Games

2021

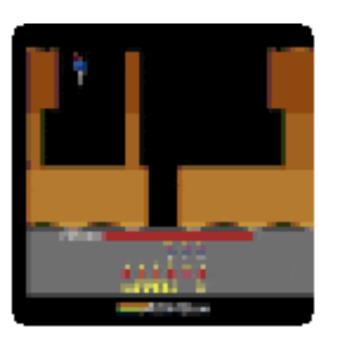
MASTERING ATARI WITH DISCRETE WORLD MODELS

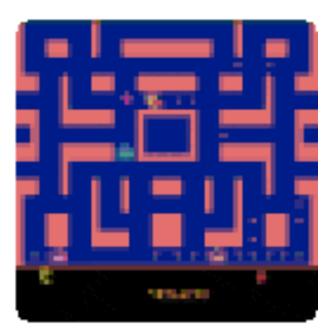
Danijar Hafner * Google Research

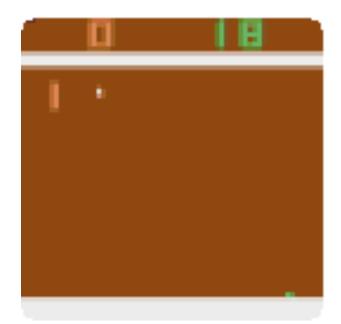
Timothy Lillicrap
DeepMind

Mohammad Norouzi Google Research

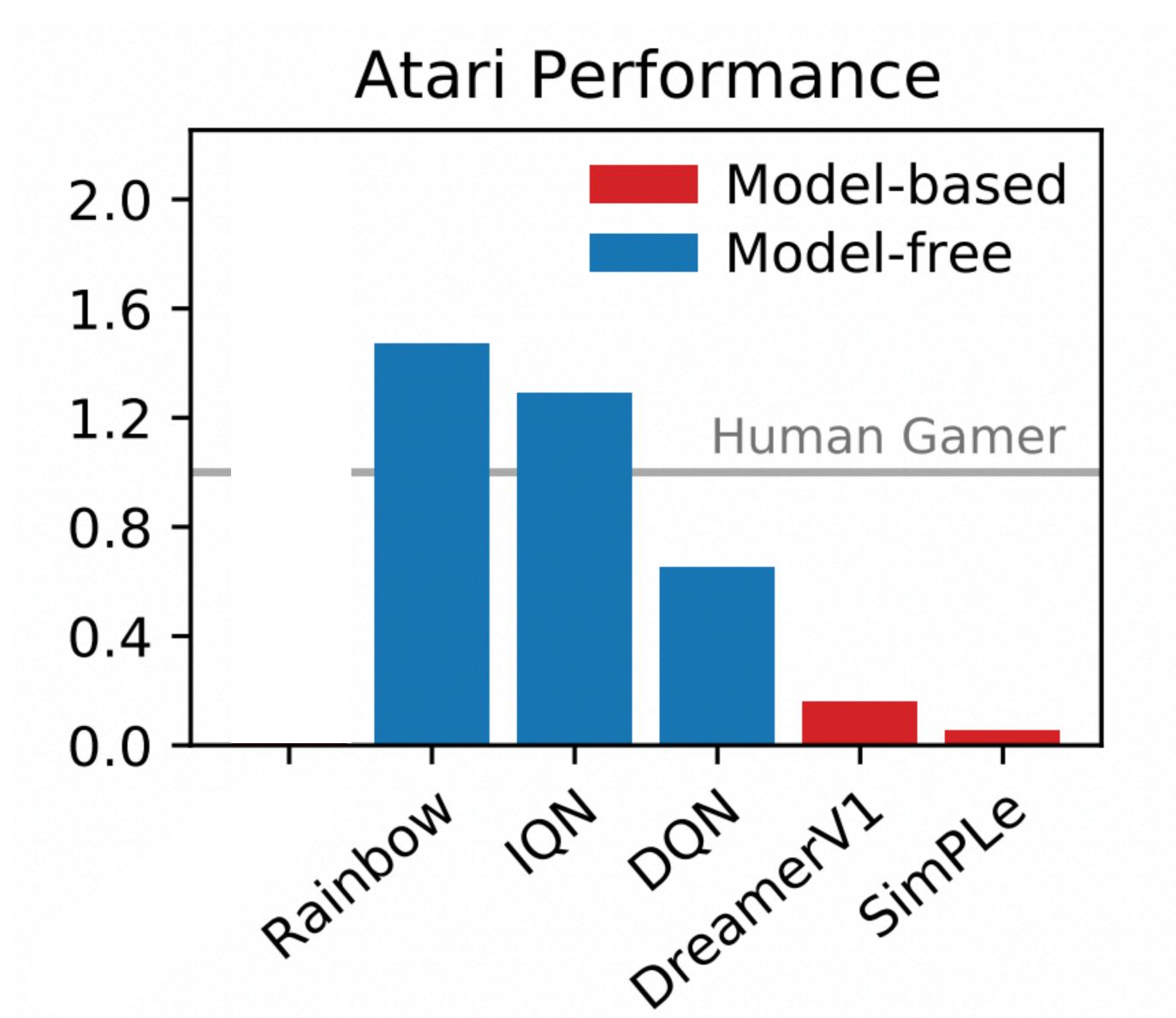
Jimmy Ba
University of Toronto



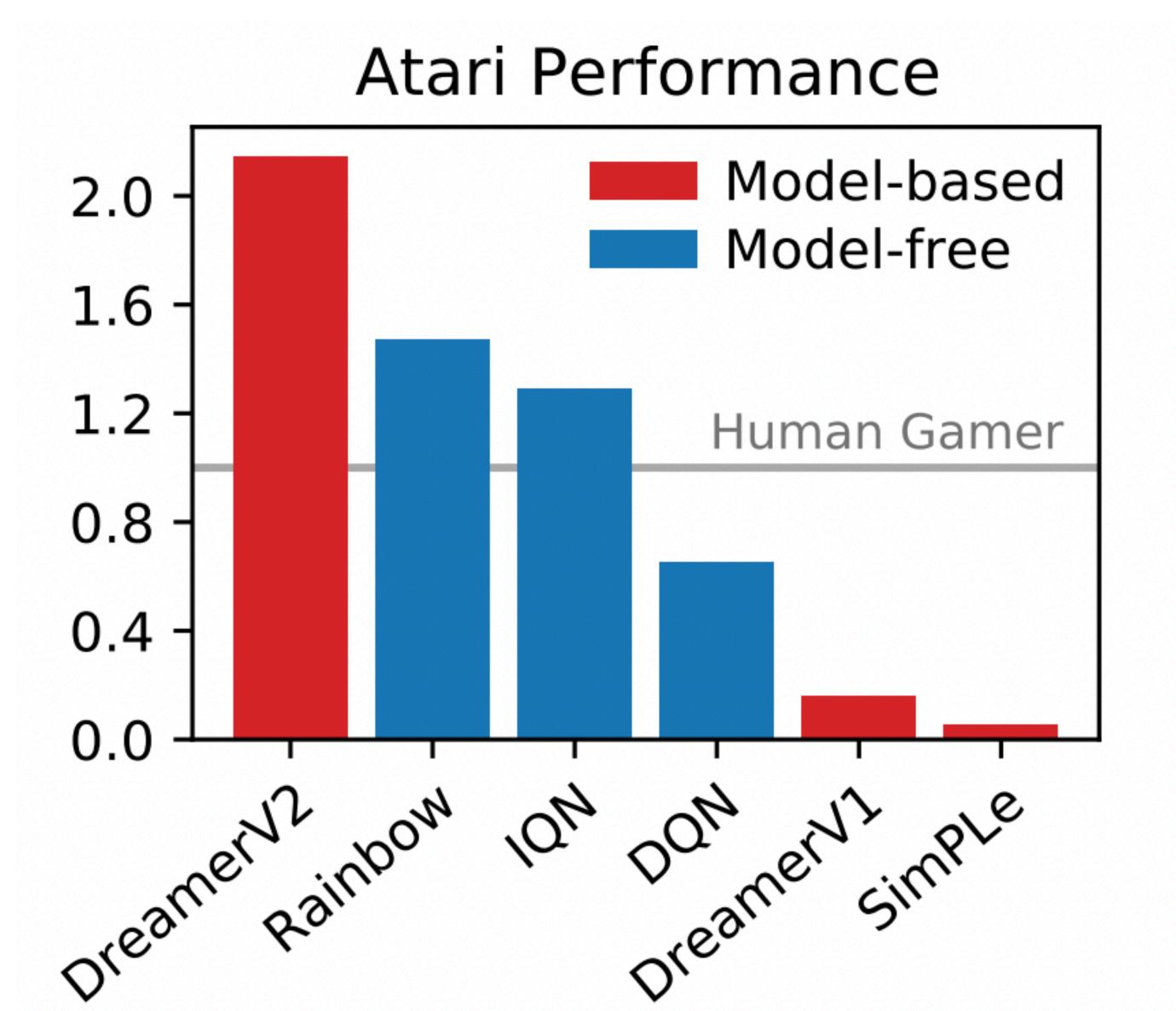


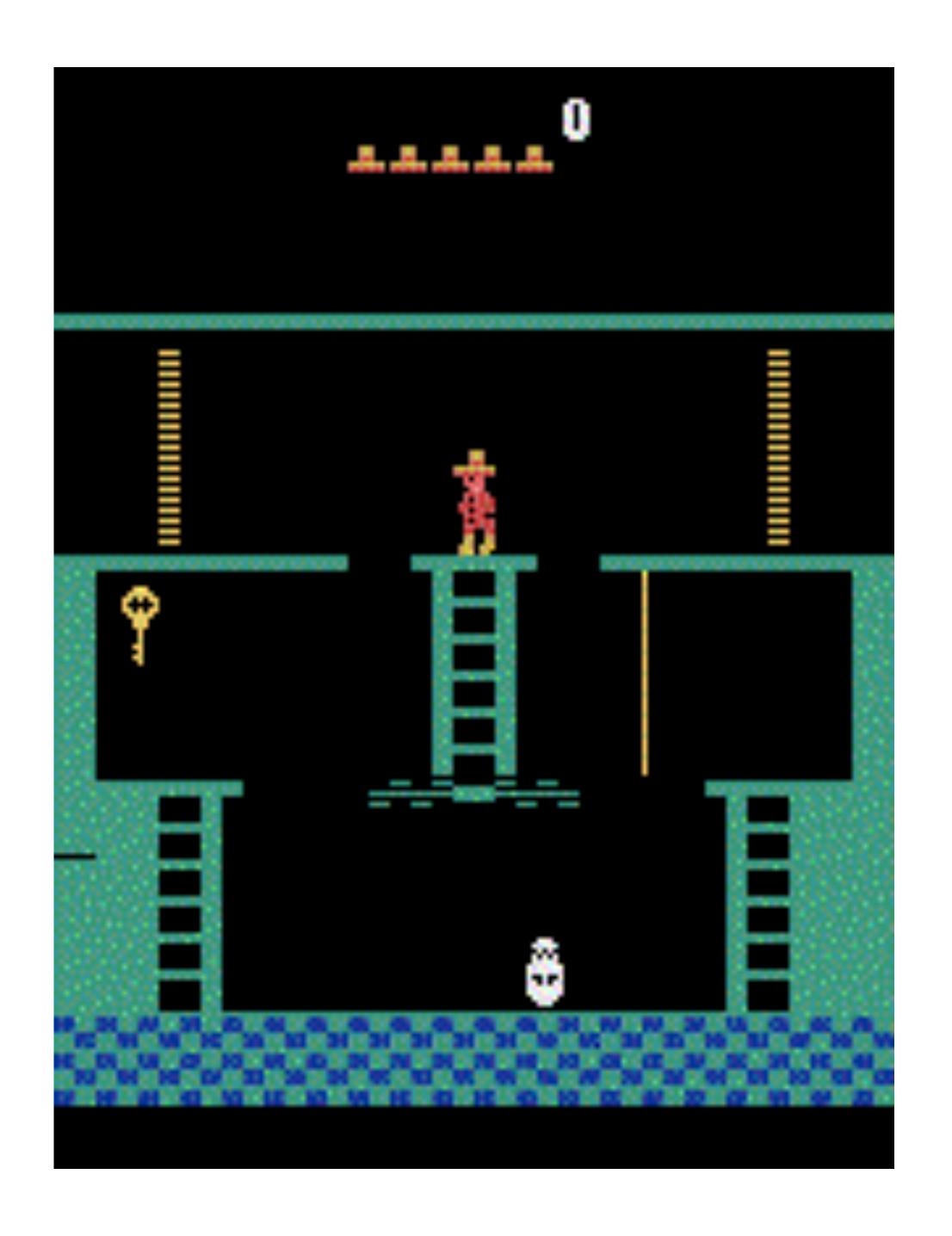


Atari was hard for Model Based RL



DreamerV2 beats all model free!





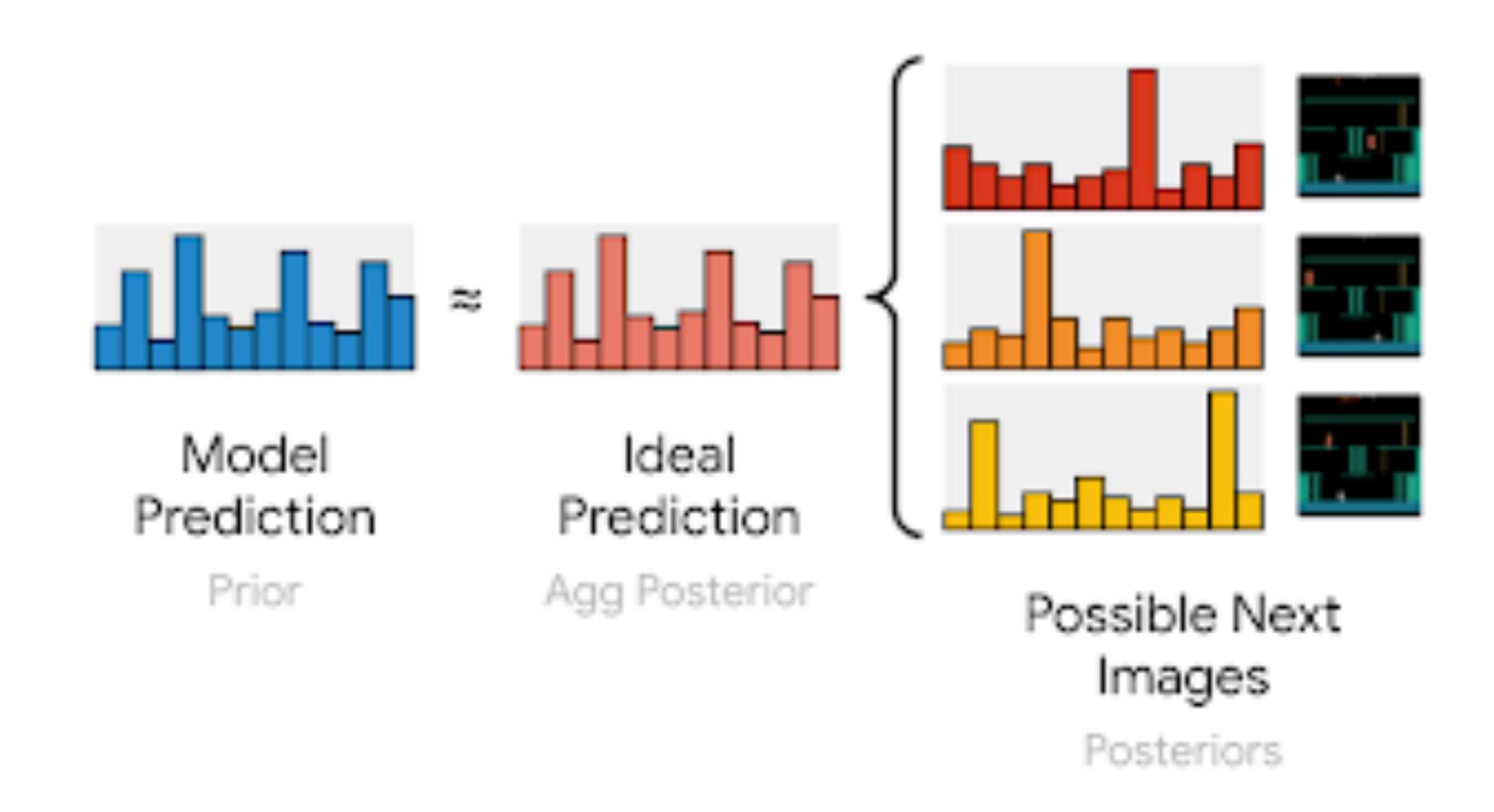
Montezuma's Revenge:

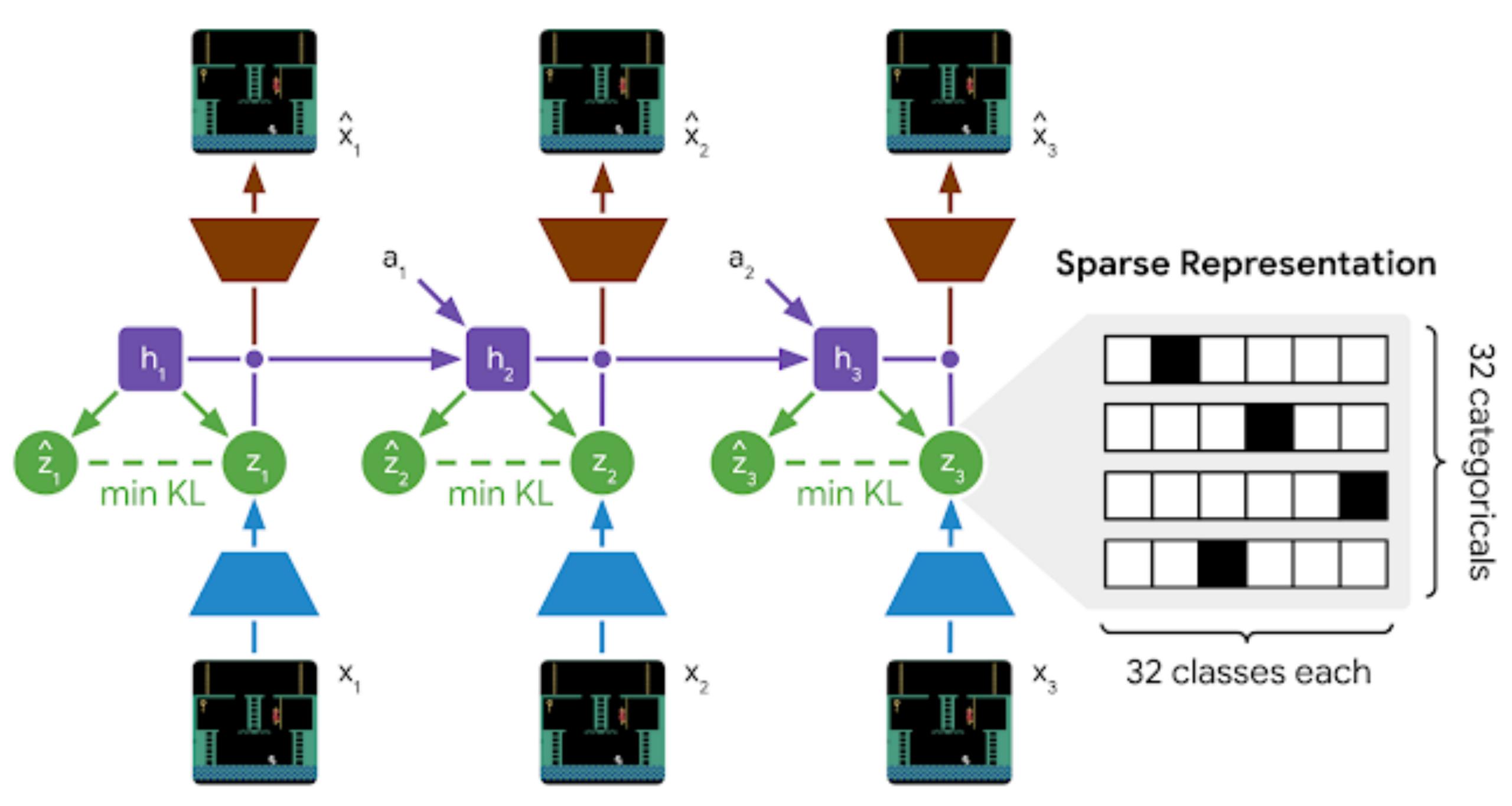
A really challenging Atari Game!

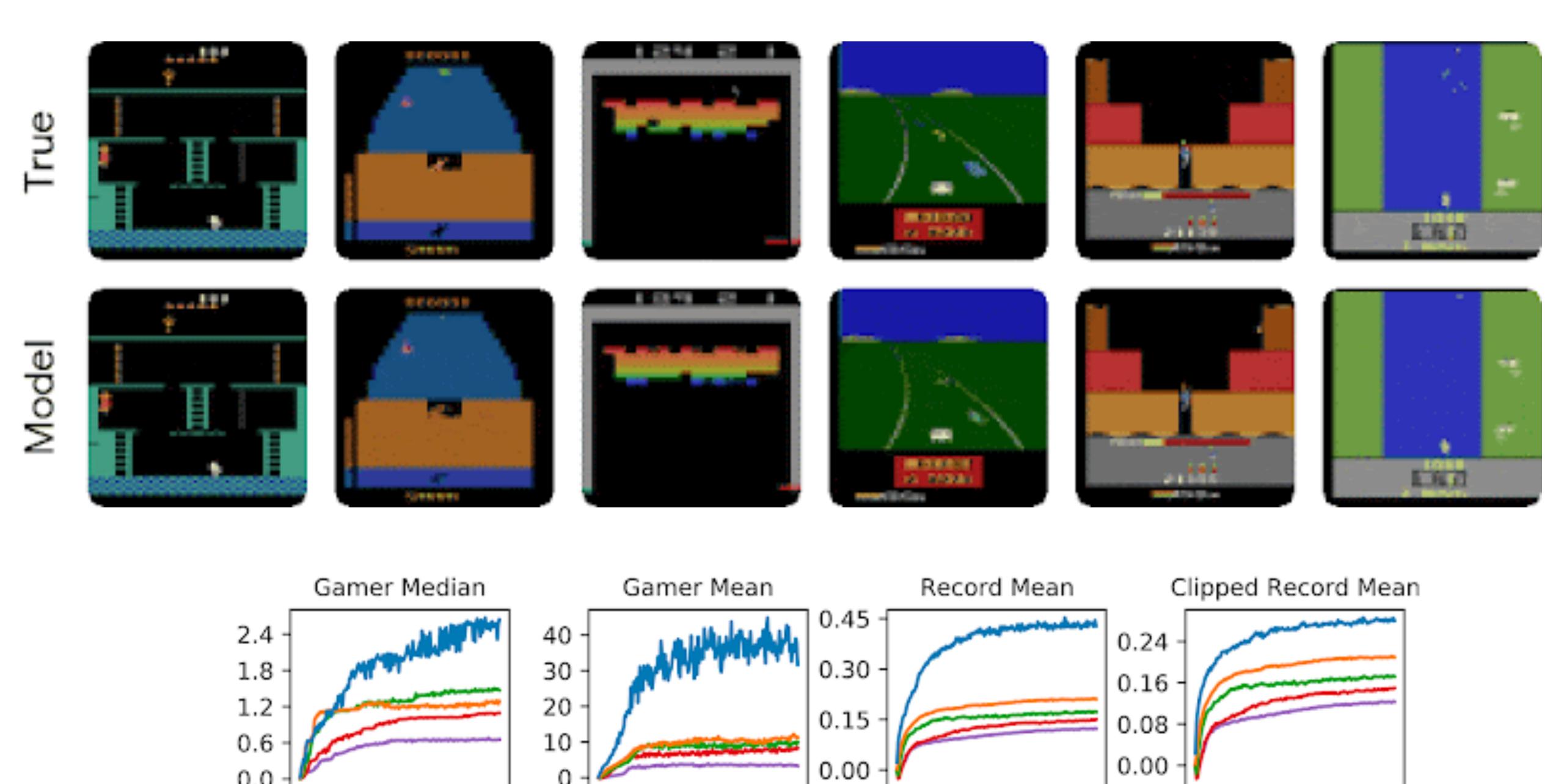
Challenge: Dreamer V1 predicts a single mode of dynamics

Dreamer V1 predicts single mode dynamics

Idea: Predict multiple discrete modes!







0.0 0.5 1.0 1.5 2.0

IQN

0.0 0.5 1.0 1.5 2.0

— C51

Rainbow

0.0

0.0 0.5 1.0 1.5 2.0

DreamerV2

0.0 0.5 1.0 1.5 2.0

— DQN

1e8