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We know how to plan.

Decision
Making



We figured out
\ perception.
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pOSe

(X, y, y)
vel

(%, ¥, @)

type

(pedestrian, car, cyclist)

But we do not observe
these directly!




B

Estimate state from
observations
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Qi et al. 2018

Frustum PointNets: 3D Instance Segmentation

2D region (from CNN) to 3D frustum
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Let s talk about prediction!

(Forecasting)
O

@

Prediction
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Much of forecasting
for self-driving is built on
shaky foundations



Map &
Vehicle State

| Perception l-p| Forecasting |3

Raw sensor
data

Traditional Architecture

Motion
Planning

Control
actions
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Should these be decoupled?’

|
. i Motion |

—p| Perception |-p |
| Planning

Vehicle State

Raw sensor o Control
data actions
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Shaky foundations of forecasting
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Are we using the right model?
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Are we collecting data correctly?

Are we using the right loss?
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Example: Learning forecasts for merging actors

Goal

1. Predict bs future trajectory

2. Plan with bs future trajectory
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Train a learner to predict bs future.

Model: Input / Output?

Data?’

[ oss?
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Think-Pair-Share!

Think (30 sec): Train a learner to predict 5s future.

Pair: Find a partner

Share (45 sec): Partners exchange

ideas Q

Model: Input /
Output?

Data?’

[ oss?
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Why is my current position not sufficient to predict future?

Simple latent variables:

Velocity, Acceleration may not be observable

Complex latent variables:

Intent (turning left, making a lane change) are
not observable and must be inferred from past actions
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Sequence i '
e | e

(We are just going to
use this as a

black-box)



A very brief history of sequence prediction in robotics

\ '
A/
-
-

Kalman Filter + Prediction

Handcraft observation models, apply
Bayes rule to figure out latent state,
predict. Problem: Tuning it is hard!

RNN, LSTMs

Learn the filter!

Problem: Forget long sequences since
only one hidden state vector, vanishing/
exploding gradients

Transformers

Retain all hidden state.
Problem: Pay O(H"2) computation

24



Many good introductory resources on transtformers

https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-gpt2/
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Back to
forecasting




Model: Use a transformer to map history to future

) W) W)

THE
TRANSFORMER

f— —1 5141 5142
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Data: Drive around the car and collect data
Train Data

v .
b

f )

[ ]

Merge
before
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L oss: L2 Loss from Ground Truth
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5141 5142




We have model, data, loss.
L et's deploy!
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Forecasts have huge variance!

Planner brakes aggressively!
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Why is the forecast so whacky?’



Why is the forecast so whacky?’

Marginalizing /Averaging
over multiple modes!

Mode A: D )
Robot merges
after
Mode B: D )

Robot merges

before &




What robot does depends

on other humans

What other humans do

depends on the robot
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Forecasting-or-planning:
a chicken-or-egg problem
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Solution:

Train Conditional Forecasts

= =
[l (=l
- R
| THE
TRANSFORMER
— 2 o
[ ] y
(What you are
conditioning on) 3
Plan Forecast

Upo ey 2> Ury3 St415 91425 51435 S144.



How can | use conditional
forecasts in practice?
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Pseudo code for planning with forecasts

Initialize with a library of candidate trajectories =

For & lan €

Call conditional forecast with history and ¢,
to predict ¢, o4 TOr all the agents

Compute cost of fplan using ffmecast

Return cheapest plan plan
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Pseudo code for planning with forecasts

Initialize with a library of candidate trajectories = . .
Trajectories are

For 5 lan continuous

sequences of
Call conditional forecast with history and ¢,,,,  motion. Space

to predict éforecast Of aII Cd ndidate

trajectories 1S

Compute cost of &, USING C,ocqsr huge!!

Return cheapest plan plan
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There is a discrete grammar
for selt-driving ...



3 fundamental modes of space-time paths

A Yields to B B Yields to A Not Yield
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Mode = A single basin of forecast

R Yields to A
B Yields to R
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Mode = A single basin of forecast

|

R Yields to A
R Yields to B

C Yields to R
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Instead of containing on
plans, just condition on
modes
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Message Passing on a Graph

Given a set of modes
O chosen by the robot

A Infer what modes others
are likely to choose
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Message Passing on a Graph

Given a set of modes
O chosen by the robot

Infer what modes others
are likely to choose

Forecast actors given modes
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Message Passing on a Graph

Given a set of modes
O chosen by the robot

Infer what modes others
are likely to choose

Forecast actors given modes

Plan given forecast
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ACTUAL ACTUAL
c 5 62.8

PLANNER PLANNER  MPH 70
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R Yields to A

R Yields to B

C Yields to R
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Shaky foundations of forecasting

Are we using the right model?

Conditional forecasting
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Are we using the right loss?
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Shaky foundations of forecasting
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What happens when we

deploy the forecast at test
time?



What happens when

we deploy model?

“What the heck
does this truck

want to do, go “_7_/@#_/@“

ahead or

Q behind ?2171"
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We gathered data when the
human was driving the AV



c

ave seen this problem before!
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Solution: DAGGER for SysID

Current Policy & Exploration Policy State  Action Next State

nd

€= Current Policy

«_Exploration

Policy
A bt A S\
y ggregate
i Dataset
New Model Fit Model

Extends our previous work [1]. Similar to [2,3]



DAGGER for Forecasting!

Collect
Data

| Aggregate

Data
Plan with | Train
forecasts Forecaster

01



Shaky foundations of forecasting

Are we using the right model?
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Conditional forecasting
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Are we collecting data correctly? |

Interactively collect data

Are we using the right loss?
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Take a look at the two potential forecasts
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They both have the same L2 loss
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They both have the same L2 loss.
Which one do we prefer? Why?

Ground 1 Forecast Forecast
Truth L g 1 p 5 2
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Shaky foundations of forecasting

¥

Are we using the right model?
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Conditional forecasting

A

I

| ll‘fl L

Are we collecting data correctly? |

Interactively collect data

Are we using the right loss?

Replace L2 loss with Cost loss
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t | - d r But what about forecasting and motion planning?
, i

- A

-m Perception Forecastin ioLion
qwm | P | 8 Planning

Map &
Vehicle State

l\\ j
Raw sensor Control
data actions
Forecasting-or-planning: Shaky foundations of forecasting
a chicken-or-egg problem Are we using the right model?
d Conditional forecasting
: 3’ Are we collecting data correctly?
“} Interactively collect data “ o=\
y Are we using the right loss?
- J_f’\ Replace L2 loss with Cost loss




