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We know how to plan.
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We figured out 
perception.
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:KDW�PDNHV�XS�ŗVWDWHŘ�DQG�ŗDFWLRQŘ�LQ�WKH�XWLOLW\�IXQFWLRQ"

How does a robot build up state?
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st st+1 st+2at at+1

:KDW�PDNHV�XS�ŗVWDWHŘ�DQG�ŗDFWLRQŘ�LQ�WKH�XWLOLW\�IXQFWLRQ"

pose

(x, y, ψ)

vel

( ·x, ·y, ·ψ)

:KDW�PDNHV�XS�ŗVWDWHŘ�DQG�ŗDFWLRQŘ�LQ�WKH�XWLOLW\�IXQFWLRQ"

type

(pedestrian, car, cyclist)

But we do not observe 
these directly!
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zt zt+1 zt+2

$FWLRQV�
�� :KLFK�VORW�VKRXOG�WKH�$9�WDNH"�
�� +RZ�VKRXOG�WKH�$9�H[HFXWH�WKDW�PDQHXYHU":KDW�PDNHV�XS�ŗVWDWHŘ�DQG�ŗDFWLRQŘ�LQ�WKH�XWLOLW\�IXQFWLRQ"

:KDW�PDNHV�XS�ŗVWDWHŘ�DQG�ŗDFWLRQŘ�LQ�WKH�XWLOLW\�IXQFWLRQ"

camera

lidar

Estimate state from 

observations



Frustum PointNets: 3D Instance Segmentation
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Qi et al. 2018
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Let’s talk about prediction!

(Forecasting)
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Much of forecasting 

for self-driving is built on 

shaky foundations



Traditional Architecture
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Raw sensor

data
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Should these be decoupled?
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Shaky foundations of forecasting

Are we using the right model?

Are we collecting data correctly?

Are we using the right loss?



18

Example: Learning forecasts for merging actors

1. Predict 5s future trajectory

Goal

R

2. Plan with 5s future trajectory



Activity!
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Train a learner to predict 5s future.

Data?

Model: Input / Output?

Loss?



Think-Pair-Share!
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Think (30 sec): Train a learner to predict 5s future.

Pair: Find a partner 

Share (45 sec): Partners exchange 

       ideas 

Data?

Model: Input / 
Output?

Loss?



Why is my current position not sufficient to predict future?
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Simple latent variables:

 


Velocity, Acceleration may not be observable

Complex latent variables: 


Intent (turning left, making a lane change) are 

not observable and must be inferred from past actions  



Sequence 
Model

(We are just going to 
use this as a 

black-box)



A very brief history of sequence prediction in robotics
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Kalman Filter + Prediction
Handcraft observation models, apply 
Bayes rule to figure out latent state, 
predict. Problem: Tuning it is hard!

RNN, LSTMs
Learn the filter! 

Problem: Forget long sequences since 
only one hidden state vector, vanishing/
exploding gradients

Transformers
Retain all hidden state. 

Problem: Pay O(H^2) computation



Many good introductory resources on transformers
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https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-gpt2/



Back to 
forecasting



Model: Use a transformer to map history to future
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stst−1st−2 st+1 st+2
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Data: Drive around the car and collect data

Merge 

after

Train Data

Merge 

before
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Loss: L2 Loss from Ground Truth

stst−1st−2 st+1 st+2
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We have model, data, loss.

Let’s deploy!
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Forecasts have huge variance!

Planner brakes aggressively!
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Why is the forecast so whacky?
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Why is the forecast so whacky?
Marginalizing/Averaging

 over multiple modes! 

Mode A: 

Robot merges 

after 

Mode B: 

Robot merges 

before 
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What robot does depends 

on other humans

What other humans do 

depends on the robot



Forecasting-or-planning: 

a chicken-or-egg problem
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Solution: Train Conditional Forecasts
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…, st−2, st−1, st

History Forecast
st+1, st+2, st+3, st+4

Plan
at1, at+2, at+3

(What you are 
conditioning on)
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How can I use conditional 
forecasts in practice?
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Pseudo code for planning with forecasts

Initialize with a library of candidate trajectories 


For :  


Call conditional forecast with history and   
to predict  for all the agents


Compute cost of  using 


Return cheapest plan 

Ξ

ξplan ∈ Ξ

ξplan
ξforecast

ξplan ξforecast

ξ*plan
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Pseudo code for planning with forecasts

Initialize with a library of candidate trajectories 


For :  


Call conditional forecast with history and   
to predict 


Compute cost of  using 


Return cheapest plan 

Ξ

ξplan ∈ Ξ

ξplan
ξforecast

ξplan ξforecast
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Trajectories are 
continuous 

sequences of 
motion. Space 
of all candidate 
trajectories is 

huge!!
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There is a discrete grammar 
for self-driving … 
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3 fundamental modes of space-time paths

A Yields to B 

A A A

B B B

B Yields to A Not Yield
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Mode  A single basin of forecast≡

≡

R

A

B

R Yields to A

B Yields to R
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Mode  A single basin of forecast≡

≡

R

AB

C

R Yields to A
R Yields to B
C Yields to R
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Instead of containing on 
plans, just condition on 

modes
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Back to the scene
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Message Passing on a Graph

Infer what modes others 
are likely to choose

Given a set of modes 
chosen by the robot
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Message Passing on a Graph

Forecast actors given modes

Given a set of modes 
chosen by the robot

Infer what modes others 
are likely to choose
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Message Passing on a Graph

Forecast actors given modes

Given a set of modes 
chosen by the robot

Infer what modes others 
are likely to choose

Plan given forecast
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A

B

C

R

R Yields to A

R Yields to B

C Yields to R
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Shaky foundations of forecasting

Are we using the right model?

Are we collecting data correctly?

Are we using the right loss?

Conditional forecasting
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Shaky foundations of forecasting
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Conditional forecasting
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What happens when we 
deploy the forecast at test 

time?



What happens when we deploy model?
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“The car will 
probably merge 
ahead, so I can slow 
down very smoothly 
…”

“What the heck 
does this truck 
want to do, go 

ahead or 
behind ?!?!”

“?!@#!@“

“?!@#!@“
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We gathered data when the 
human was driving the AV



We have seen this problem before!
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Solution: DAGGER for SysID
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DAGGER for Forecasting!
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Collect

Data

Aggregate

Data

Train

Forecaster

Plan with 

forecasts
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Shaky foundations of forecasting

Are we using the right model?

Are we collecting data correctly?

Are we using the right loss?

Conditional forecasting

Interactively collect data



Take a look at the two potential forecasts
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Ground 

Truth

Forecast

1

Forecast

2



They both have the same L2 loss
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Ground 
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2



They both have the same L2 loss. 

Which one do we prefer? Why?
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Shaky foundations of forecasting

Are we using the right model?

Are we collecting data correctly?

Are we using the right loss?

Conditional forecasting

Interactively collect data

Replace L2 loss with Cost loss
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tl;dr


