
Lecture 3: Word Embeddings,
FFNN

CS 4740 (and crosslists): Introduction to Natural Language Processing
Tanya Goyal

Reminders

• HW1 released, due on 21 February, 11.59 p.m.

• Declare your partner (if working in a group) by 15 February, 11.59 p.m.

Today

• Recap: Logistic Regression

• Word Vectors or Word Embeddings

• Similarity?

• TF-IDF

• Word2Vec

• Feed Forward Neural Networks

Recap: Binary Logistic Regression

• Training Data

• input text

• output label

x

y ∈ {0,1}

Feature Engineering

positive wordsf3 =

negative wordsf4 =

#wordsf1 =

#“great”f2 =

f0 = 1 w0

w1

w2

w4

w3

P(y = 1 |x) =
e ∑i wi fi

1 + e ∑i wi fi

P(y = 0 |x) =
1

1 + e ∑i wi fi

Goal: Learn Weights w = [w0, w1 . . . wK]

Recap: Binary Logistic Regression
Learning Weights w = [w0, w1 . . . wK]

Minimize negative log likelihood
using stochastic gradient
descent.

wMLE = arg min
w

N

∑
j=1

− log P(yj |xj; w)

w0
i wmin

i

wt+1
i = wt

i − α
∂L(yj, xj, wt)

∂wi

∂Lj

∂wi

Lj(yj, xj; w)

Index of datapoint.
Index of feature.
Training time step.

j =
i =
t =

Recap: Binary Logistic Regression

• Initialize

•

wt=0

∂Lj

∂wi
=

∂
∂wi

− log P(y = yj |xj; w0)

Predicted P(yj = 1 |xj) True yj

= f j
i σ (∑

i

wi f
j
i) − yj

• Update wt+1
i = wt

i − α .
∂Lj(yj, xj; w0)

∂wi

Replace with
t = 1

w1

Index of datapoint.
Index of feature.
Training time step.

j =
i =
t =

Multi-class Logistic Regression
• What if we have more than 2 classes?

• We need for

• In Binary Logistic Regression:

• Multinomial Logistic Regression:

,

Loss?

P(y = yi |x) i ∈ Y = {1...L}

P(y = 1 |x) = σ(z)

P(y = 1 |x) = 1 − P(y = 0 |x)

P(y = yi) =
ezi

∑L
j=1 ezi

zi = wi . x + b

HW1 - submission/other questions

HW1-programming walkthrough

• Task: Binary classification for entailment.

• Input: [premise] [hypothesis]

• Output: Entailment / Contradiction

P: "Children are smiling and waving at camera”

H1: "The kids are frowning"

H2: "There are children present”

(P, H1) Contradiction

(P, H2) Entailment

→

→

HW1-programming walkthrough

• Part 2: Simple n-gram feature engineering

HW1-programming walkthrough

• Part 2: Simple n-gram feature engineering.

• Part 3: Training a Logistic Regression Model

• Part 4: Your own feature engineering!!

• [IMPORTANT] Do not import libraries like “scikit-learn”, “matplotlib”, etc.
These packages are not downloaded on the autograder, will error out.

Today

• Recap: Logistic Regression

• Word Vectors or Word Embeddings

• Similarity?

• TF-IDF

• Word2Vec

• Feed Forward Neural Networks

Word Vectors

• In NLP, we represent word types with vectors.

-dimension vector, is fixed.

• Why vectors?

xCornell = [x1, x2, x3⋯, xd]

d d

xCornell

xYale Computing similarity between two words
(or sentences, or documents) is very useful
in NLP!

Word Vectors: Naive Option

• Represent words as one-hot vectors

 , , ….

• Issue?

xcat = [1 0 0 0..] xdog = [0 1 0 0...]

What word relations should similarity capture?

 Similarity

• Less strict definition than
synonyms.

• Share some element of meaning.

car / bicycle

But, car is more similar to truck

 cow / tiger

But, cow is more similar to chicken

Distributional Hypothesis
“You shall know a word by the company it keeps!

-Firth (1957)

• Words that occur in the same contexts tend to have similar meaning.

• E.g. car/bicycle

N words around the target
work, N can be decided.

A bottle of Tesgüino is on the table.
Everybody likes tesgüino.
Tesgüino makes you drunk.
We make tesgüino out of corn.

What could tesgüino mean?

• [] makes you drunk.

• After bottle of

• Other words seen in this context?
Alcohol, wine, whiskey, etc.

Distributional Hypothesis
“You shall know a word by the company it keeps!

-Firth (1957)

• Words that occur in the same contexts tend to have similar meaning.

• E.g. car/bicycle

N words around the target
work, N can be decided.

A bottle of Tesgüino is on the table.
Everybody likes tesgüino.
Tesgüino makes you drunk.
We make tesgüino out of corn.

What could tesgüino mean?

• [] makes you drunk.

• After bottle of

• Other words seen in this context?
Alcohol, wine, whiskey, etc.

Use information about shared context to decide
dimensions of word vector?

Distributional Hypothesis

• Two words are similar if they occur in similar contexts. Represent context as a vector?

Word-word co-occurrence matrix

• Two words are similar if they occur in similar contexts. Represent context as a vector?

is traditionally followed by cherry pie, a traditional dessert
often mixed, such as strawberry rhubarb pie. Apple pie computer
peripherals and personal digital assistants. These devices usually
a computer. This includes information available on the internet

aardvark … computer data result pie sugar …

cherry 0 … 2 8 9 442 25 …

stawberry 0 … 0 0 1 60 29 …

digital 0 … 1670 1683 85 5 4 …

information 0 … 3325 3982 378 5 13 …

Word-word co-occurrence matrix

aardvark … computer data result pie sugar …

digital 0 … 1670 1683 85 5 4 …

information 0 … 3325 3982 378 5 13 …

Properties of these vectors?

• Size = |vocabulary| , say 10K -50K

• Sparse

Cosine Similarity Metric

• Cosine similarity of vectors and .⃗w ⃗v

cosine(⃗v, ⃗w) =
⃗v . ⃗w

| ⃗v | | ⃗w |
=

∑N
i viwi

∑N
i v2

i ∑N
i w2

i

 is the count of word v in context of word i
 is the count of word v in context of word i

vi
wi

• Cosine similarity is 1/-1 when and point in the same/opposite direction.

• Cosine similarity is 0 when and are orthogonal.

⃗w ⃗v

⃗w ⃗v

Issues with raw frequency counts

aardvark … computer data result pie sugar … a
cherry 0 … 2 8 9 442 25 … 7543

stawberry 0 … 0 0 1 60 29 … 9121
digital 0 … 1670 1683 85 5 4 … 6923

information 0 … 3325 3982 378 5 13 … 8345

• Overly frequent words like “a”, “the”, “it”, etc. are not informative, they
co-occur frequently with most words.

• They dominate cosine similarity computation.

tf-idf

• tf: term frequency

• idf: inverse document frequency

• tf-idf

tft,d = {1 + log10 count(t, d) if count(t, d) > 0
0 otherwise

idft = log (N
dft)

wt,d = tft,d × idft

occurrences of word t
in doc d (context in our
case).

count(t, d) =

documents
containing word t.
N = # documents

dft =

Value of a word t in document d

What words will have
low idf?

dense word vectors

Dense word vectors

• What is the dimension of tf-idf vectors?

• dense word vectors: represent words as an embedding in the vector
space.

• Typically lower dimension than tf-idf (e.g. deepseek r1’s
embedding size is 7168)

• Not sparse.

• Dimensions do not have intuitive meanings (e.g. “denote co-
occurrence with word j” as in sparse vectors.)

• How do we learn vector embeddings?

• Multiple approaches: Skip-grams, CBOW.

Intuition: Skip-gram Model

• Word2Vec: Popular embedding methods from 2013.

• Very fast to train.

• Idea:

• Instead of: counting how often a word w appears near ``cherry’’.

• Train a binary classifier on a prediction task:

Is word w likely to occur near word ``cherry’’?

c is a context word of w

c is not a context word of w

P(+ |w, c) ←

P(− |w, c) = 1 − P(− |w, c) ←

Q: Why do we care
about this task?

Intuition: Skip-gram Model

c is a context word of w

c is not a context word of w

P(+ |w, c) ←

P(− |w, c) = 1 − P(+ |w, c) ←

• From distribution hypothesis, we want:

P(+ |w, c) ≈ c . w Word vector for word w

Context vector for word c
This is not a probability.

P(+ |w, c) = σ(c . w) =
1

1 + exp(−c . w)

Possible strategy

• Let’s represent words as vectors of some length.

• Let’s initialize those vectors w/ say 300 dimensions.

• Total dimension of embeddings |V| * 300

• Get some training data:

• (w, c) pairs of words that co-occur (+)

• (w, n) pairs of words that do not co-occur (-):

• .Use a learning algorithm to adjust these word vectors such that

• Maximize the similarity of (w, c) pairs with label +

• Minimize the similarity of (w, n) pairs with label -

Skip-gram with negative sampling (SGNS)

• Training Data?

• This is freely available! Use any text as supervision data.

... lemon, a tablespoon of apricot jam a pinch ...
c1 c2 c3 c4w

Assume context words
are in +/- 2 word window

• Negative data?

• Randomly sample words other words from the vocab.

<apricot jam>, +
<apricot a>, +
<apricot tablespoon>, +
<apricot of>, +

<apricot aardvark>, -
<apricot digital>, -

• No need for hand labeled supervision data.

• Similar idea as language modeling!

Possible strategy

• Let’s represent words as vectors of some length.

• Let’s initialize those vectors w/ say 300 dimensions.

• Total dimension of embeddings |V| * 300

• Get some training data:

• (w, c) pairs of words that co-occur (+)

• (w, c) pairs of words that do not co-occur (-):

• .Use a learning algorithm to adjust these word vectors such that

• Maximize the similarity of (w, c) pairs with label +

• Minimize the similarity of (w, c) pairs with label -

Skip-gram with negative sampling (SGNS)

• Classification model. What is our objective?
Maximize log likelihood of the data.

P(+ |w, c) =
exp(c . w)

1 + exp(c . w)

P(− |w, c) =
1

1 + exp(c . w)

Q: Why are the
features and what are
the weights here?

∑
(w,c)∈+

log P(+ |w, c) + ∑
(w,c)∈−

log P(− |w, c)

negative word

• Focusing on one target word
L(θ) = log P(+ |w, cpos) + log P(− |w, cneg)

Skip-gram with negative sampling (SGNS)

P(+ |w, c) =
exp(c . w)

1 + exp(c . w)

P(− |w, c) =
1

1 + exp(c . w)

• Focusing on one target word (log likelihood)

= log
exp(cpos . w)

1 + exp(cpos . w)
+ log

1
1 + exp(cneg . w)

Vo
ca

b
si

ze

DimensionDimension

L(θ) = log P(+ |w, cpos) + log P(− |w, cneg)

Putting it all together: Skip-gram Also

• Initialize ,

• For each training sample:

Co W0

∂L
∂cpos

= [σ(cpos . w) − 1] w

∂L
∂cneg

= [σ(cneg . w)] w

∂L
∂w

= [σ(cpos . w) − 1] cpos + [σ(cneg . w)] cneg Self-study: derive this!

• Gradient update!

Putting it all together: Skip-gram Also

• To represent word w, we can

• Concatenate and

• Keep

ci wi

wi

Word2Vec: Embeddings capture analogies

vector(king) - vector(man) + vector(woman) vector(queen)≈

vector(Paris) - vector(France) + vector(Italy) vector(Rome)≈

Word2Vec: Embeddings capture relations

Word2Vec: Embeddings capture relations

Word2Vec: Embeddings capture biases!

vector(doctor) - vector(father) + vector(mother) vector(nurse)≈

vector(man) - vector(computer programmer) + vector(woman) vector(homemaker)≈

https://arxiv.org/pdf/1607.06520.pdf

https://arxiv.org/pdf/1607.06520.pdf

Word2Vec: Embeddings capture biases!

vector(doctor) - vector(father) + vector(mother) vector(nurse)≈

vector(man) - vector(computer programmer) + vector(woman) vector(homemaker)≈

https://arxiv.org/pdf/1607.06520.pdf

https://arxiv.org/pdf/1607.06520.pdf

Today

• Recap: Logistic Regression

• Word Vectors or Word Embeddings

• Similarity?

• TF-IDF

• Word2Vec

• Feed Forward Neural Networks

NN “dark ages”
• Neural Network algorithms date from the 80s.

• ConvNets: Yann LeCun applied them to MNIST data in 1998.

• LSTMs (Long Short Term Memory) Networks: Hochreiter and Schmidhuber 1997

Slide Credit: Greg Durrett

2008-2013: A glimmer of light
• Collobert and Weston 2011: “NLP (almost) from scratch

• Feedforward NNs can replace “feature engineering”

• AlexNet in 2012 for Image Classification

• 2014 onwards, things start working!

• Kim (2014): ConvNets for NLP sentiment classification

• Sutskever et al. (2014): seq-to-seq models for machine translations.

• 2015: all tasks attacked by neural-first approach

• 2018-2019: NLP entered the pre-training paradigm (ELMo, GPT, BERT)

• 2020+: the emergence of large language models (GPT-3, ChatGPT, etc)
Slide Credit: Greg Durrett

Slide Acknowledgements

‣ Earlier versions of this course offerings including materials from Claire
Cardie, Marten van Schijndel, Lillian Lee.

‣ NLP course by Mohit Iyyer.

