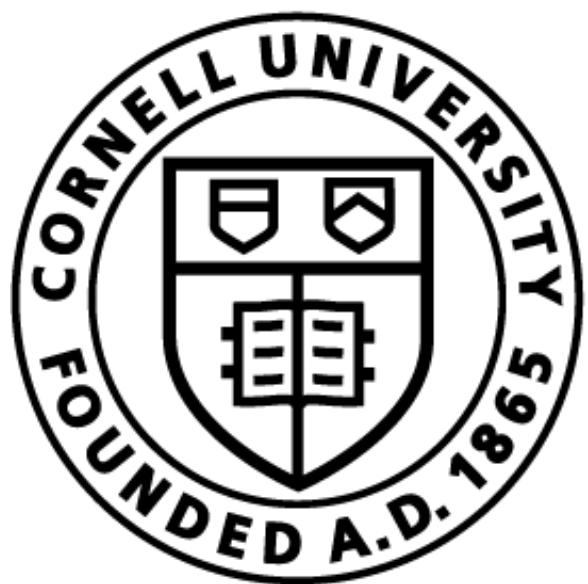


Lecture 3: Word Embeddings, FFNN



Cornell Bowers CIS
Computer Science

Tanya Goyal

CS 4740 (and crosslists): Introduction to Natural Language Processing

Reminders

- HW1 released, due on 21 February, 11.59 p.m.
- Declare your partner (if working in a group) by 15 February, 11.59 p.m.

Today

- Recap: Logistic Regression
- Word Vectors or Word Embeddings
 - Similarity?
 - TF-IDF
 - Word2Vec
- Feed Forward Neural Networks

Recap: Binary Logistic Regression

- **Training Data**

- input text \mathbf{x}

- output label $y \in \{0,1\}$

Feature Engineering

$$f_0 = 1 \longrightarrow w_0$$

$$f_1 = \#\text{words} \longrightarrow w_1$$

$$f_2 = \#\text{"great"} \longrightarrow w_2$$

$$f_3 = \#\text{positive words} \longrightarrow w_3$$

$$f_4 = \#\text{negative words} \longrightarrow w_4$$

$$P(y = 1 | \mathbf{x}) = \frac{e^{\sum_i w_i f_i}}{1 + e^{\sum_i w_i f_i}}$$

$$P(y = 0 | \mathbf{x}) = \frac{1}{1 + e^{\sum_i w_i f_i}}$$

Goal: Learn Weights $\mathbf{w} = [w_0, w_1 \dots w_K]$

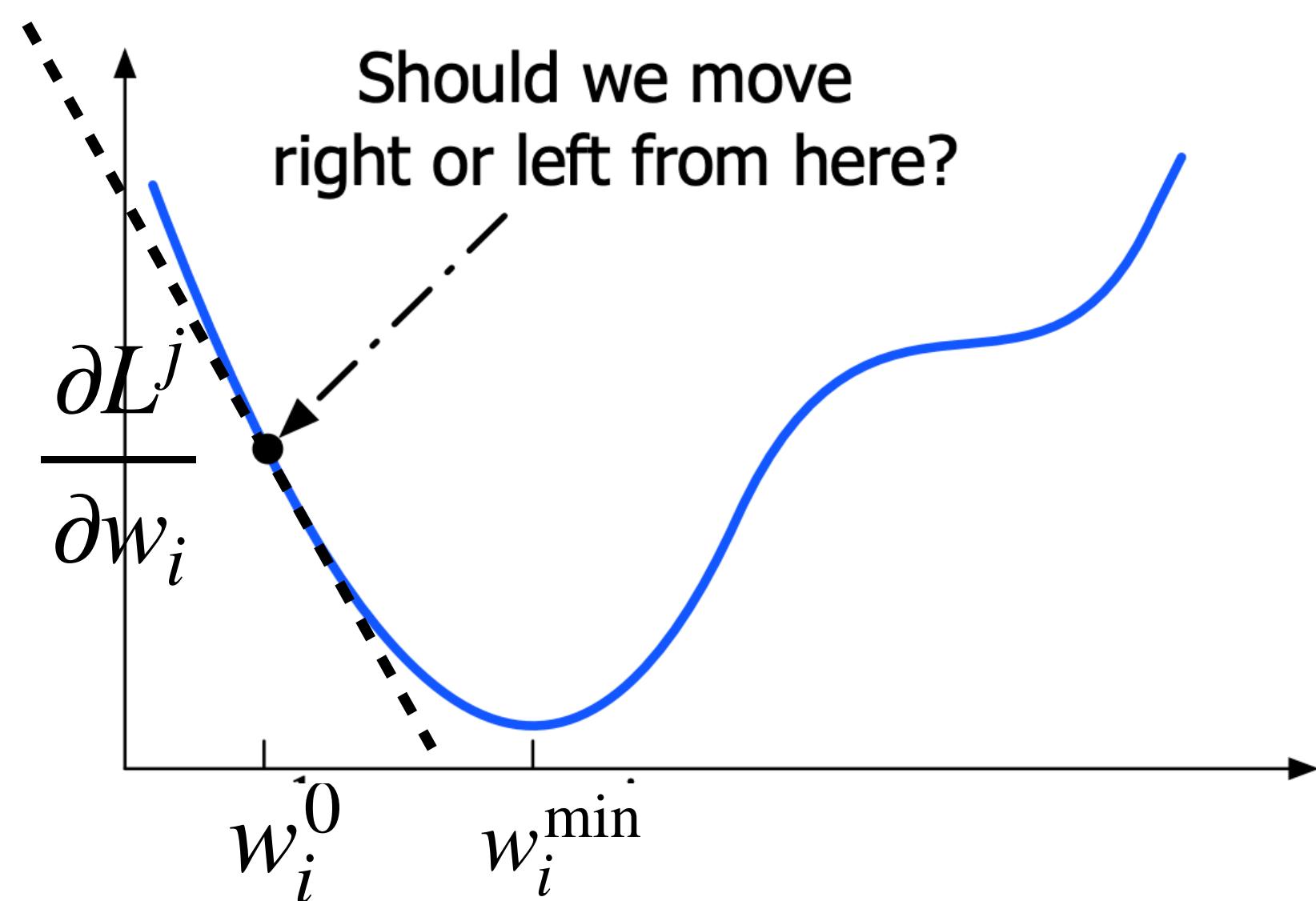
Recap: Binary Logistic Regression

Learning Weights $\mathbf{w} = [w_0, w_1 \dots w_K]$

j = Index of datapoint.
 i = Index of feature.
 t = Training time step.

Minimize negative log likelihood
using **stochastic gradient descent**.

$$w^{\text{MLE}} = \arg \min_w \sum_{j=1}^N -\log P(y^j | x^j; w)$$
$$L^j(y^j, x^j; w)$$



$$w_i^{t+1} = w_i^t - \alpha \frac{\partial L(y^j, x^j, w^t)}{\partial w_i}$$

Recap: Binary Logistic Regression

j = Index of datapoint.
 i = Index of feature.
 t = Training time step.

- Initialize $w^{t=0}$

$$\bullet \frac{\partial L^j}{\partial w_i} = \frac{\partial}{\partial w_i} - \log P(y = y^j | x^j; w^0)$$

$t = 1$

Replace with w^1

$$= f_i^j \left[\sigma \left(\sum_i w_i f_i^j \right) - y^j \right]$$

Predicted $P(y^j = 1 | x^j)$

True y^j

- Update $w_i^{t+1} = w_i^t - \alpha \cdot \frac{\partial L^j(y^j, x^j; w^0)}{\partial w_i}$

Multi-class Logistic Regression

- What if we have more than 2 classes?
- We need $P(y = y_i | x)$ for $i \in Y = \{1 \dots L\}$
- In Binary Logistic Regression:

$$P(y = 1 | x) = \sigma(z)$$

$$P(y = 1 | x) = 1 - P(y = 0 | x)$$

- Multinomial Logistic Regression:

$$P(y = y_i) = \frac{e^{z_i}}{\sum_{j=1}^L e^{z_j}}, \quad z_i = \mathbf{w}_i \cdot \mathbf{x} + b$$

Loss?

HW1 - submission/other questions

HW1 release (+ important instructions) #17

Tanya Goyal STAFF

4 days ago in [HWK1 - Announcements by staff](#)

UNPIN

STAR

WATCHING

150
VIEWS

HW1 is released in this [overleaf project](#). The homework has two sections:

4

- **Section A:** This is a written section and tests your conceptual knowledge of n-gram language models, text classification and word embeddings.
- **Section B:** This section outlines a programming assignment to implement a binary logistic regression classifier for the text entailment task.

Please keep in mind that this assignment has two deadlines:

- Your partner declaration is due **February 16, 11.59 p.m.** We will create a dummy assignment `hw1-partnerdeclaration` on gradescope for this purpose. Note that submission to this is ungraded but **mandatory!!**
- Your final submission, both for the written and the coding components are due **February 21, 11.59 p.m.** We will create two different assignments `hw1-written` and `hw1-programming` for you to submit these.

Please refer to the instructions at the start of the overleaf, as well as the submission instructions at the bottom of the page.

HW1-programming walkthrough

- Task: Binary classification for entailment.
- Input: [premise] [hypothesis]
- Output: Entailment / Contradiction

P: "Children are smiling and waving at camera"

H1: "The kids are frowning"

H2: "There are children present"

$(P, H1) \rightarrow$ Contradiction

$(P, H2) \rightarrow$ Entailment

HW1-programming walkthrough

- Part 2: Simple n-gram feature engineering

Bag of words

I love this movie! It's sweet, but with satirical humor. The dialogue is great and the adventure scenes are fun... It manages to be whimsical and romantic while laughing at the conventions of the fairy tale genre. I would recommend it to just about anyone. I've seen it several times, and I'm always happy to see it again whenever I have a friend who hasn't seen it yet!

HW1-programming walkthrough

- Part 2: Simple n-gram feature engineering.
- Part 3: Training a Logistic Regression Model
- Part 4: Your own feature engineering!!

- **[IMPORTANT]** Do not import libraries like “scikit-learn”, “matplotlib”, etc.
These packages are not downloaded on the autograder, will error out.

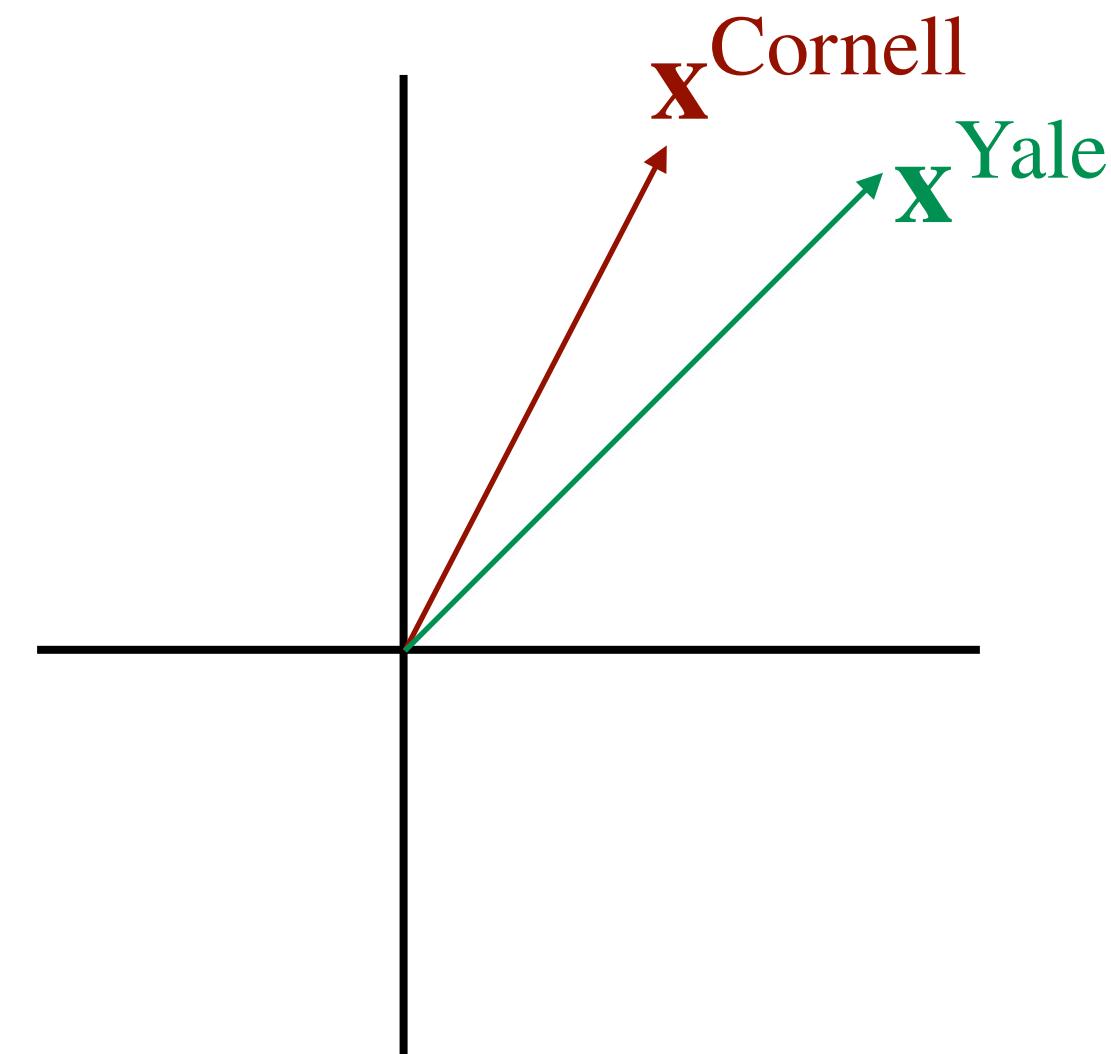
Word Vectors

- In NLP, we represent word types with **vectors**.

$$\mathbf{x}^{\text{Cornell}} = [x_1, x_2, x_3 \dots, x_d]$$

d -dimension vector, d is fixed.

- Why vectors?



Computing similarity between two words (or sentences, or documents) is very useful in NLP!

Word Vectors: Naive Option

- Represent words as **one-hot vectors**

$$x^{\text{cat}} = [1 \ 0 \ 0 \ 0 \dots], \ x^{\text{dog}} = [0 \ 1 \ 0 \ 0 \dots], \dots$$

Lookup table:

Index	0	1	2	3	4
Word	cat	dog	the	Language	...

- Issue?

What word relations should similarity capture?

Similarity

- Less strict definition than synonyms.
- Share *some* element of meaning.

car / bicycle

But, car is *more* similar to truck

cow / tiger

But, cow is *more* similar to chicken

Distributional Hypothesis

"You shall know a word by the company it keeps!"

-Firth (1957)

N words around the target work, N can be decided.

- Words that occur in the same **contexts** tend to have similar meaning.
 - E.g. car/bicycle

A bottle of **Tesgüino** is on the table.
Everybody likes **tesgüino**.
Tesgüino makes you drunk.
We make **tesgüino** out of corn.

What could **tesgüino** mean?

- [] makes you drunk.
- After bottle of
- Other words seen in this context?
Alcohol, wine, whiskey, etc.

Distributional Hypothesis

"You shall know a word by the company it keeps!"

-Firth (1957)

*N words around the target
work, N can be decided.*

- Wo
- E

***Use information about shared context to decide
dimensions of word vector?***

A bott

Everyb

Tesgüino makes you drunk.

We make **tesgüino** out of corn.

- After bottle of
- Other words seen in this context?
Alcohol, wine, whiskey, etc.

Distributional Hypothesis

- Two words are similar if they occur in similar **contexts**. Represent **context** as a vector?

...government debt problems turning into banking crises as happened in 2009...

...saying that Europe needs unified banking regulation to replace the hodgepodge...

...India has just given its banking system a shot in the arm...

These **context words** will represent **banking**

Word-word co-occurrence matrix

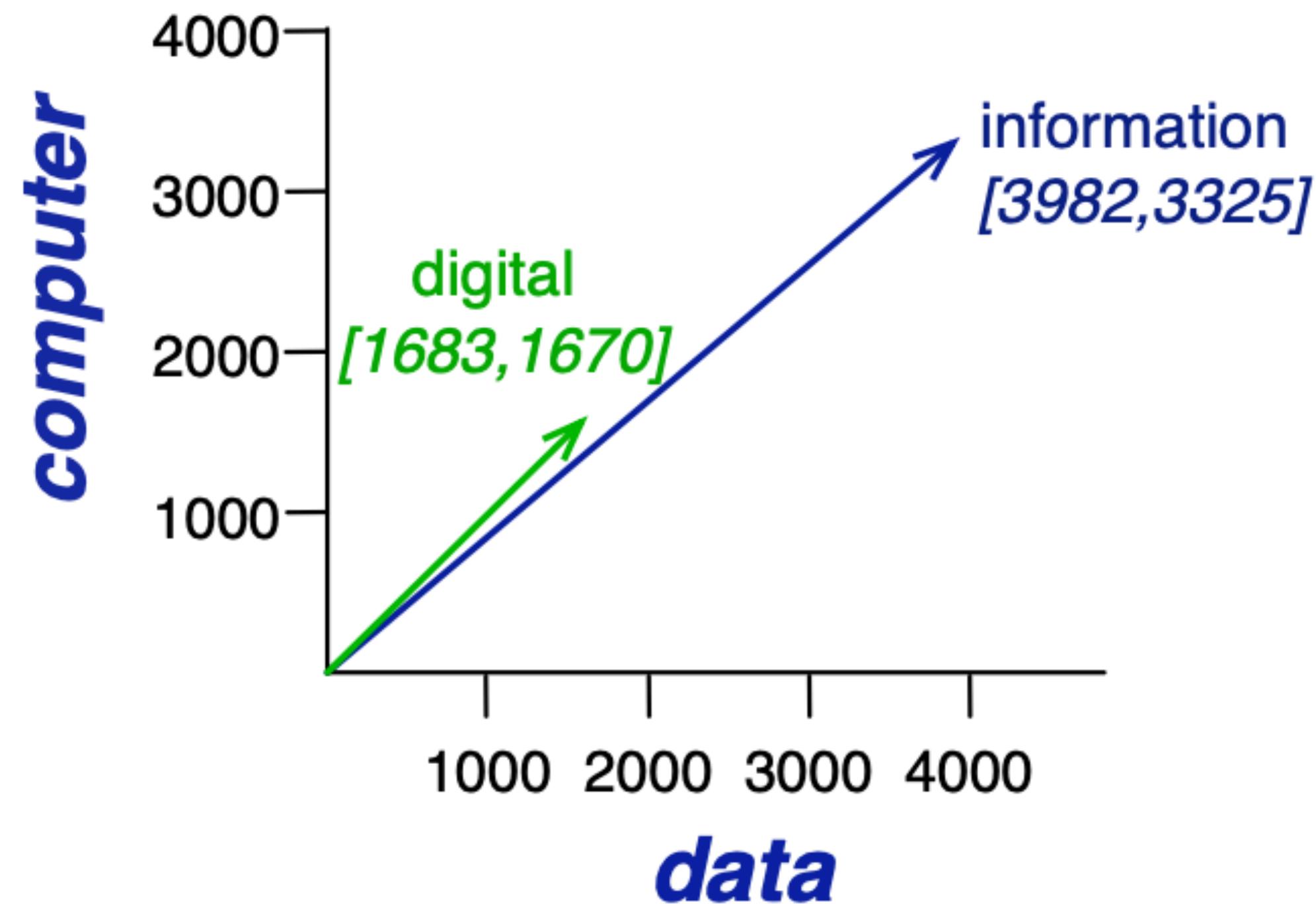
- Two words are similar if they occur in similar **contexts**. Represent **context** as a vector?

*is traditionally followed by **cherry** pie, a traditional dessert often mixed, such as **strawberry** rhubarb pie. Apple pie computer peripherals and personal **digital** assistants. These devices usually a computer. This includes **information** available on the internet*

	aardvark	...	computer	data	result	pie	sugar	...
cherry	0	...	2	8	9	442	25	...
strawberry	0	...	0	0	1	60	29	...
digital	0	...	1670	1683	85	5	4	...
information	0	...	3325	3982	378	5	13	...

Word-word co-occurrence matrix

	aardvark	...	computer	data	result	pie	sugar	...
digital	0	...	1670	1683	85	5	4	...
information	0	...	3325	3982	378	5	13	...



Properties of these vectors?

- Size = $|\text{vocabulary}|$, say 10K - 50K
- Sparse

Cosine Similarity Metric

- Cosine similarity of vectors \vec{w} and \vec{v} .

$$\text{cosine}(\vec{v}, \vec{w}) = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}| |\vec{w}|} = \frac{\sum_i^N v_i w_i}{\sqrt{\sum_i^N v_i^2} \sqrt{\sum_i^N w_i^2}}$$

v_i is the count of word v in context of word i
 w_i is the count of word v in context of word i

- Cosine similarity is 1/-1 when \vec{w} and \vec{v} point in the same/opposite direction.
- Cosine similarity is 0 when \vec{w} and \vec{v} are orthogonal.

Issues with raw frequency counts

	aardvark	...	computer	data	result	pie	sugar	...	a
cherry	0	...	2	8	9	442	25	...	7543
strawberry	0	...	0	0	1	60	29	...	9121
digital	0	...	1670	1683	85	5	4	...	6923
information	0	...	3325	3982	378	5	13	...	8345

- Overly frequent words like “a”, “the”, “it”, etc. are not informative, they co-occur frequently with most words.
- They dominate cosine similarity computation.

tf-idf

- **tf: term frequency**

$$tf_{t,d} = \begin{cases} 1 + \log_{10} \text{count}(t, d) & \text{if } \text{count}(t, d) > 0 \\ 0 & \text{otherwise} \end{cases}$$

count(t, d) = # occurrences of word t in doc d (context in our case).

- **idf: inverse document frequency**

$$\text{idf}_t = \log \left(\frac{N}{df_t} \right)$$

*df_t = # documents containing word t.
N = # documents*

What words will have low idf?

- **tf-idf**

$$w_{t,d} = tf_{t,d} \times \text{idf}_t$$

Value of a word t in document d

dense word vectors

Dense word vectors

- What is the dimension of tf-idf vectors?
- dense word vectors: represent words as an **embedding** in the vector space.
 - Typically lower dimension than tf-idf (e.g. deepseek r1's embedding size is 7168)
 - Not sparse.
 - Dimensions do not have intuitive meanings (e.g. "denote co-occurrence with word j" as in sparse vectors.)
- How do we learn vector embeddings?
 - Multiple approaches: Skip-grams, CBOW.

Intuition: Skip-gram Model

- Word2Vec: Popular embedding methods from 2013.
- Very fast to train.
- Idea:
 - *Instead of*: counting how often a word w appears near “cherry”.
 - Train a binary classifier on a **prediction** task:

Is word w *likely* to occur near word “cherry”?

$P(+ | w, c) \leftarrow c \text{ is a context word of } w$

$P(- | w, c) = 1 - P(+ | w, c) \leftarrow c \text{ is not a context word of } w$

Q: Why do we care about this task?

Intuition: Skip-gram Model

$$P(+ | w, c) \leftarrow c \text{ is a context word of } w$$

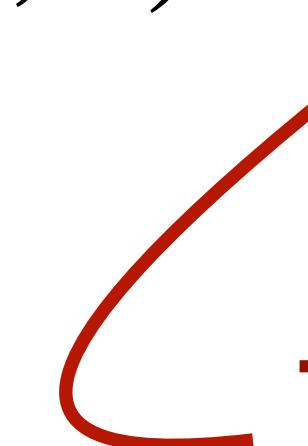
$$P(- | w, c) = 1 - P(+ | w, c) \leftarrow c \text{ is not a context word of } w$$

- From distribution hypothesis, we want:

$$P(+ | w, c) \approx \mathbf{c} \cdot \mathbf{w}$$

Word vector for word w

Context vector for word c

 This is not a probability.

$$P(+ | w, c) = \sigma(\mathbf{c} \cdot \mathbf{w}) = \frac{1}{1 + \exp(-\mathbf{c} \cdot \mathbf{w})}$$

Possible strategy

- Let's represent words as vectors of some length.
- Let's initialize those vectors w/ say 300 dimensions.
 - Total dimension of embeddings $|V| * 300$
- Get some training data:
 - (w, c) pairs of words that co-occur (+)
 - (w, n) pairs of words that do not co-occur (-):
- Use a learning algorithm to adjust these word vectors such that
 - **Maximize** the similarity of (w, c) pairs with label +
 - **Minimize** the similarity of (w, n) pairs with label -

Skip-gram with negative sampling (SGNS)

- **Training Data?**

<apricot jam>, +

- This is freely available! Use any text as supervision data.

<apricot tablespoon>, +

... lemon, a **tablespoon of apricot jam a** pinch ...

c1 c2 w c3 c4

*Assume context words
are in +/- 2 word window*

<apricot aardvark>, -

- Negative data?

<apricot digital>, -

- Randomly sample words other words from the vocab.

- No need for hand labeled supervision data.
- Similar idea as language modeling!

Possible strategy

- Let's represent words as vectors of some length.
- Let's initialize those vectors w/ say 300 dimensions.
 - Total dimension of embeddings $|V| * 300$
- Get some training data:
 - (w, c) pairs of words that co-occur (+)
 - (w, c) pairs of words that do not co-occur (-):
- Use a learning algorithm to adjust these word vectors such that
 - **Maximize** the similarity of (w, c) pairs with label +
 - **Minimize** the similarity of (w, c) pairs with label -

Skip-gram with negative sampling (SGNS)

- Classification model. What is our objective?
Maximize log likelihood of the data.

$$\sum_{(w,c) \in +} \log P(+) | w, c) + \sum_{(w,c) \in -} \log P(- | w, c)$$

- Focusing on one target word

$$L(\theta) = \log P(+) | w, c_{\text{pos}}) + \log P(- | w, c_{\text{neg}})$$

Q: Why are the features and what are the weights here?

negative word

Skip-gram with negative sampling (SGNS)

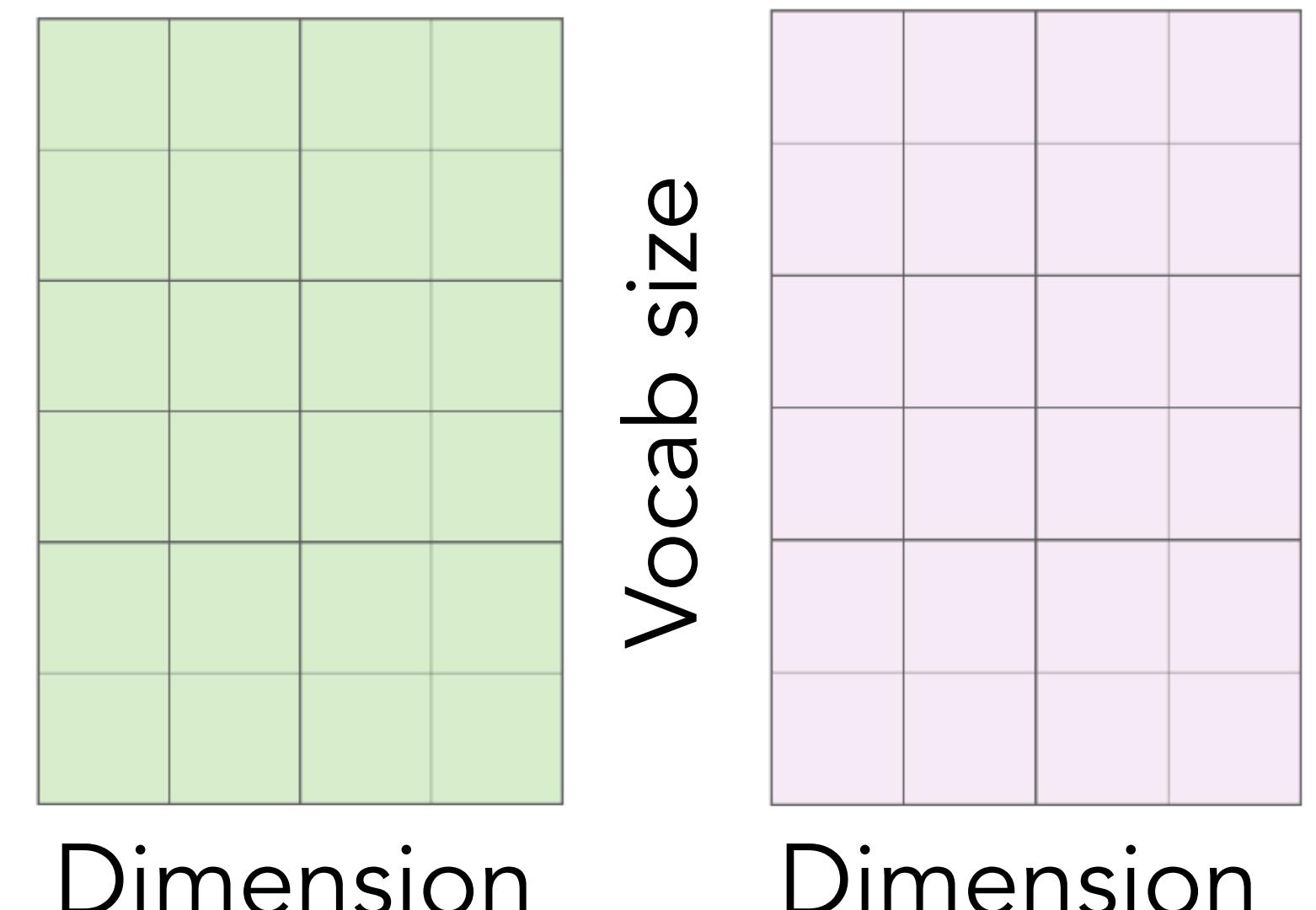
- Focusing on one target word (log likelihood)

$$L(\theta) = \log P(+) | w, c_{\text{pos}}) + \log P(- | w, c_{\text{neg}})$$

$$= \log \frac{\exp(\mathbf{c}_{\text{pos}} \cdot \mathbf{w})}{1 + \exp(\mathbf{c}_{\text{pos}} \cdot \mathbf{w})} + \log \frac{1}{1 + \exp(\mathbf{c}_{\text{neg}} \cdot \mathbf{w})}$$

$$P(+) | w, c = \frac{\exp(\mathbf{c} \cdot \mathbf{w})}{1 + \exp(\mathbf{c} \cdot \mathbf{w})}$$

$$P(-) | w, c = \frac{1}{1 + \exp(\mathbf{c} \cdot \mathbf{w})}$$



Putting it all together: Skip-gram Also

- Initialize C^o, W^0
- For each training sample:

$$\frac{\partial L}{\partial \mathbf{c}_{\text{pos}}} = [\sigma(\mathbf{c}_{\text{pos}} \cdot \mathbf{w}) - 1] \mathbf{w}$$

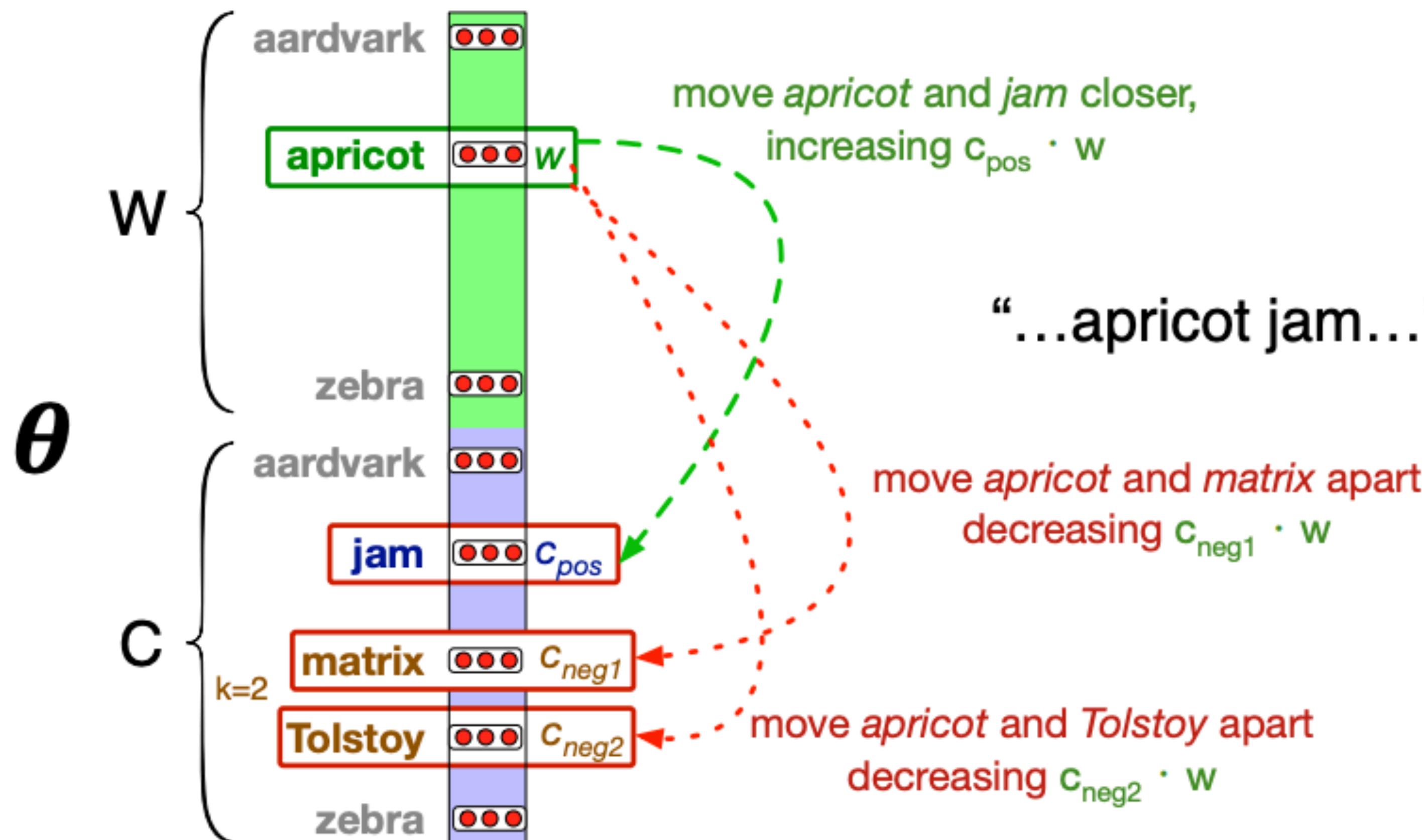
$$\frac{\partial L}{\partial \mathbf{c}_{\text{neg}}} = [\sigma(\mathbf{c}_{\text{neg}} \cdot \mathbf{w})] \mathbf{w}$$

$$\frac{\partial L}{\partial \mathbf{w}} = [\sigma(\mathbf{c}_{\text{pos}} \cdot \mathbf{w}) - 1] \mathbf{c}_{\text{pos}} + [\sigma(\mathbf{c}_{\text{neg}} \cdot \mathbf{w})] \mathbf{c}_{\text{neg}}$$

Self-study: derive this!

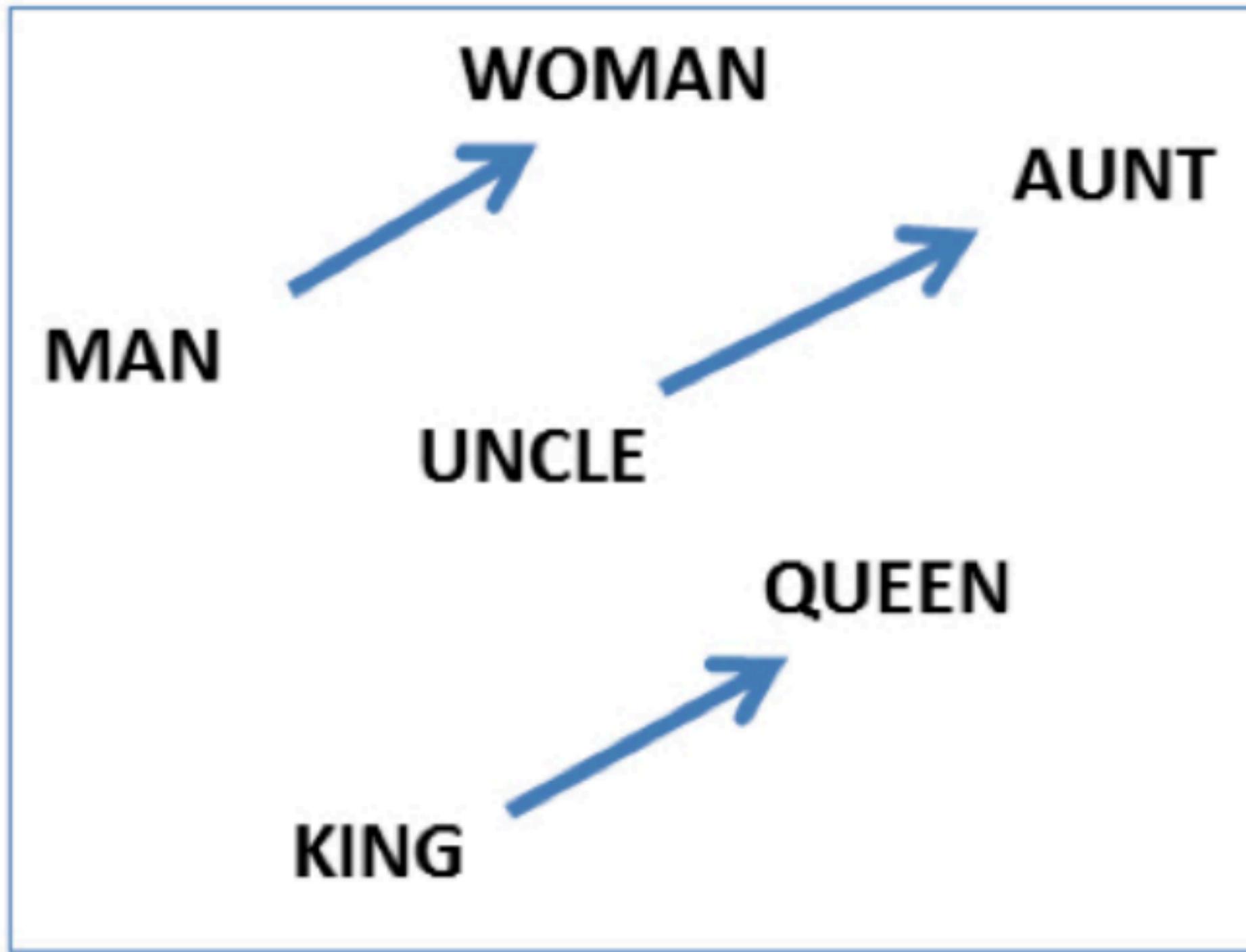
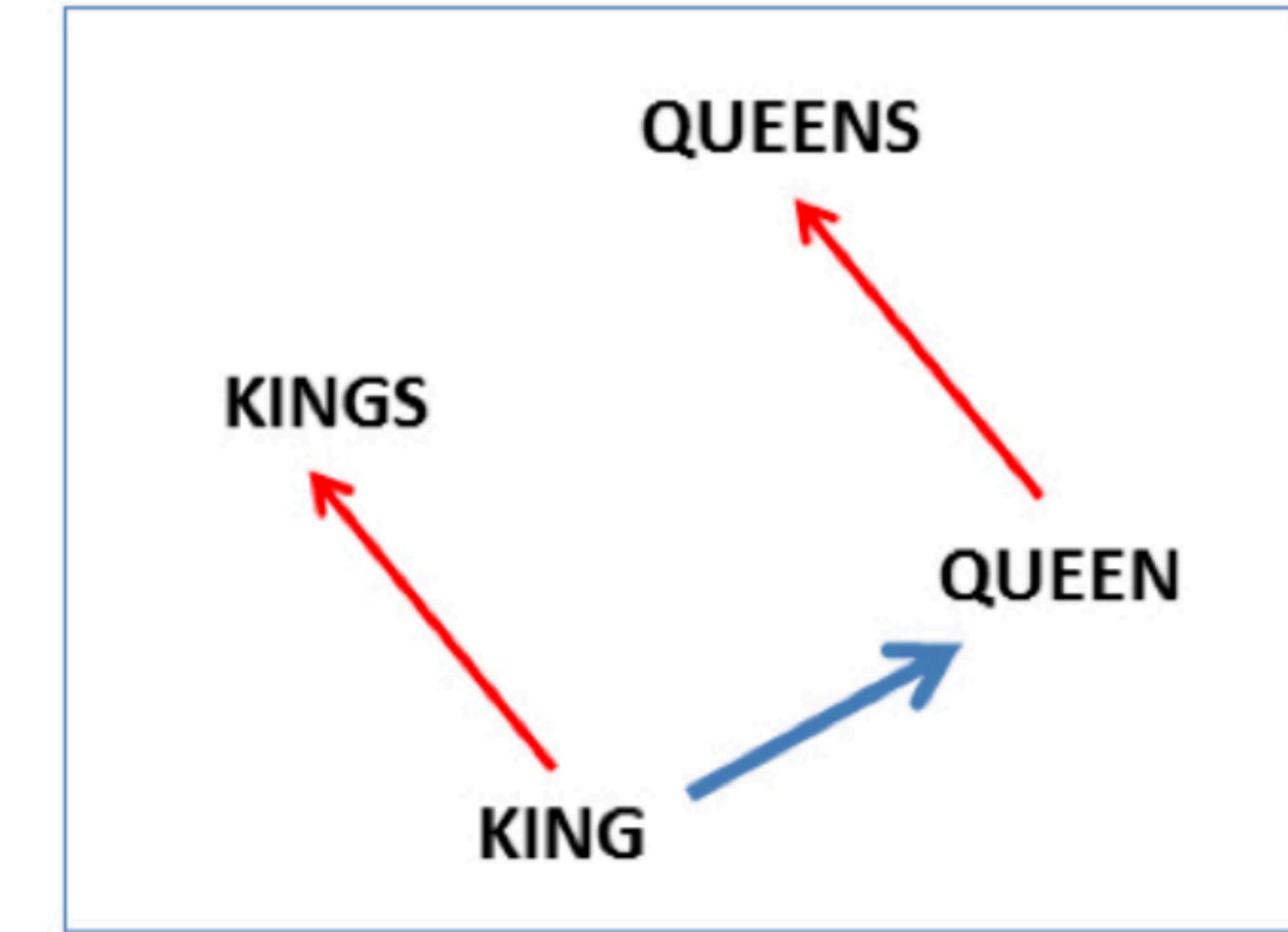
- Gradient update!

Putting it all together: Skip-gram Also

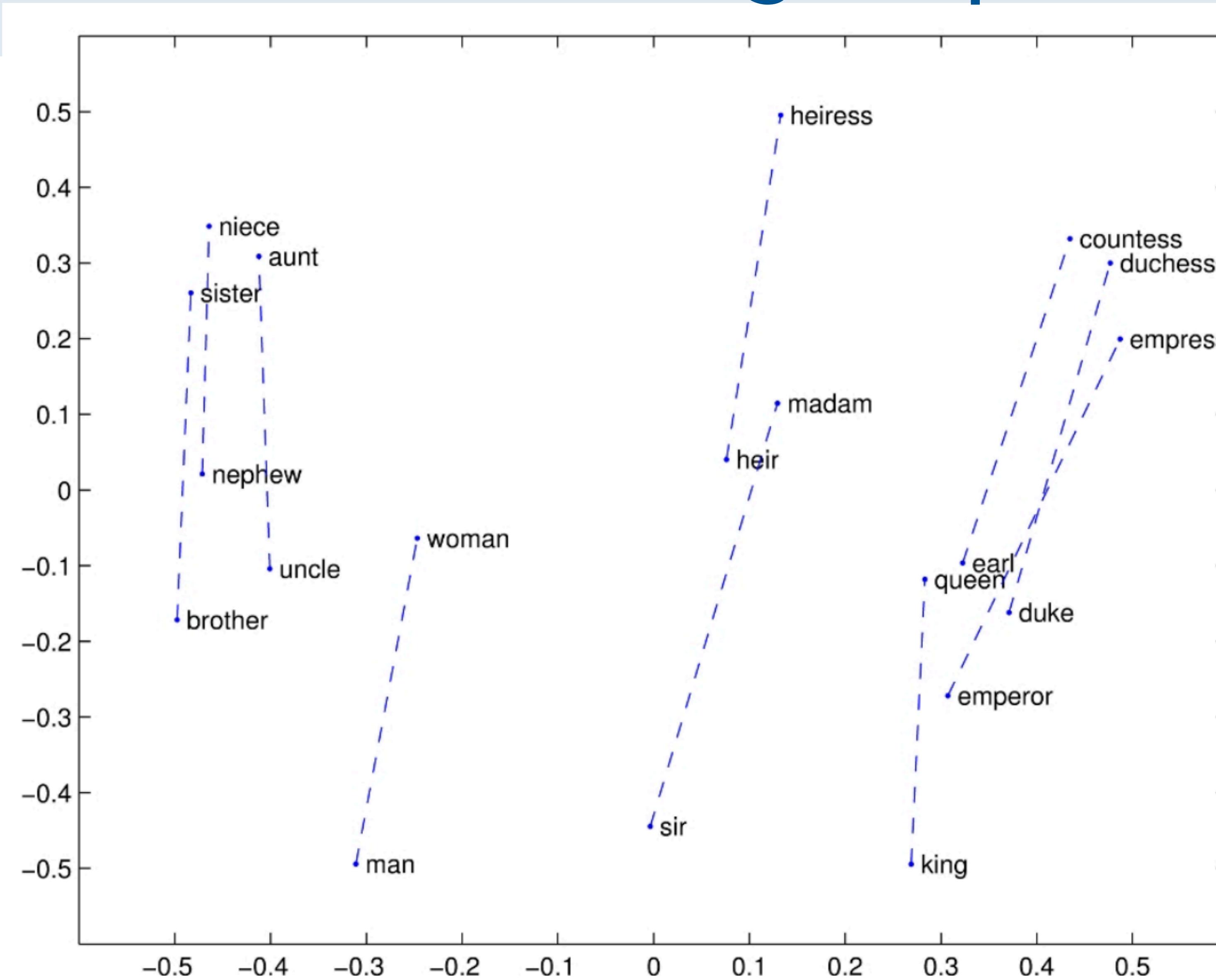


- To represent word w , we can
 - Concatenate \mathbf{c}^i and \mathbf{w}^i
 - Keep \mathbf{w}^i

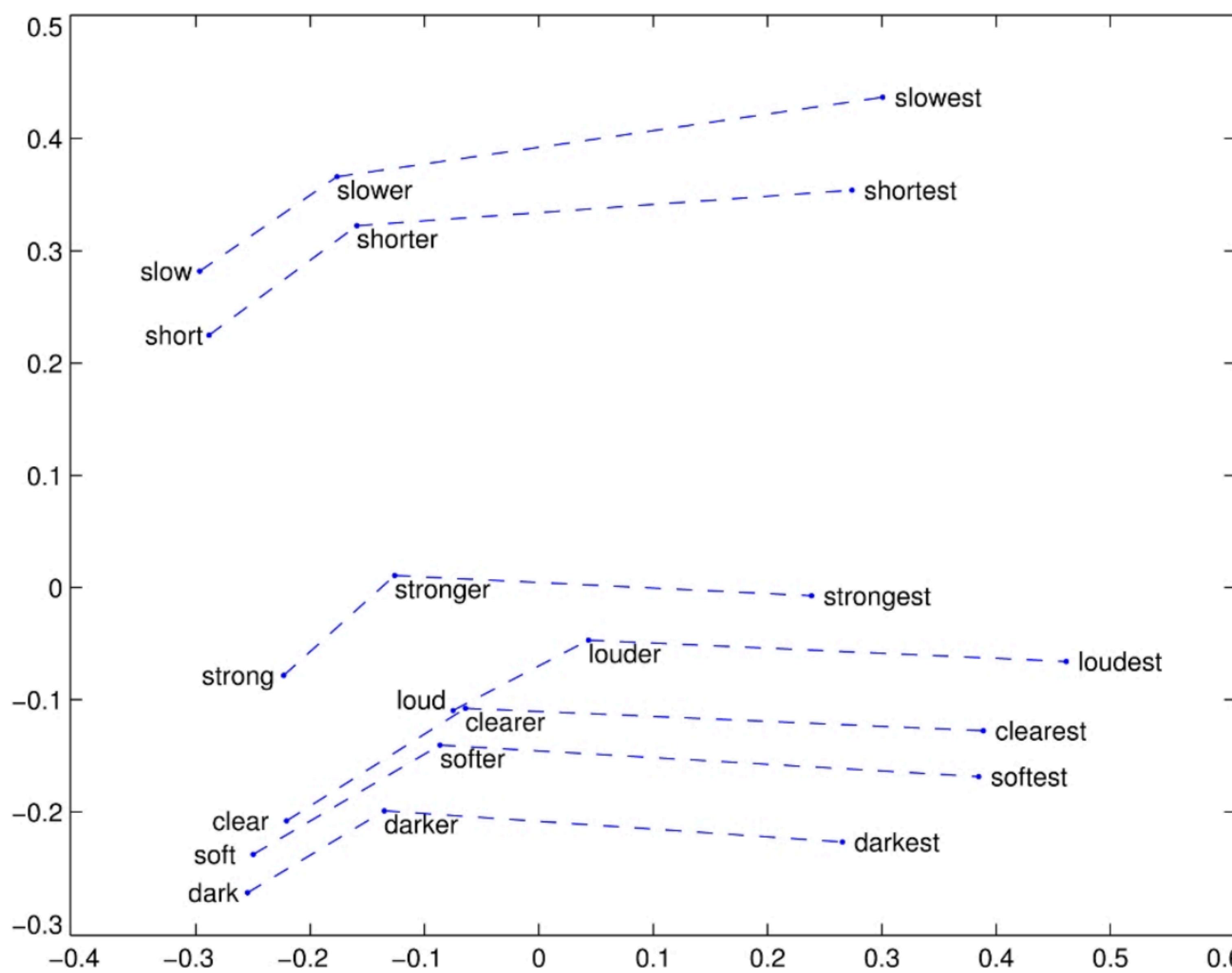
Word2Vec: Embeddings capture analogies


$$\text{vector(king)} - \text{vector(man)} + \text{vector(woman)} \approx \text{vector(queen)}$$
$$\text{vector(Paris)} - \text{vector(France)} + \text{vector(Italy)} \approx \text{vector(Rome)}$$

Word2Vec: Embeddings capture relations



Word2Vec: Embeddings capture relations



Word2Vec: Embeddings capture biases!

$\text{vector}(\text{doctor}) - \text{vector}(\text{father}) + \text{vector}(\text{mother}) \approx \text{vector}(\text{nurse})$

$\text{vector}(\text{man}) - \text{vector}(\text{computer programmer}) + \text{vector}(\text{woman}) \approx \text{vector}(\text{homemaker})$

Gender stereotype *she-he* analogies.

sewing-carpentry	register-nurse-physician	housewife-shopkeeper
nurse-surgeon	interior designer-architect	softball-baseball
blond-burly	feminism-conservatism	cosmetics-pharmaceuticals
giggle-chuckle	vocalist-guitarist	petite-lanky
sassy-snappy	diva-superstar	charming-affable
volleyball-football	cupcakes-pizzas	hairdresser-barber

Gender appropriate *she-he* analogies.

queen-king	sister-brother	mother-father
waitress-waiter	ovarian cancer-prostate cancer	convent-monastery

Word2Vec: Embeddings capture biases!

$\text{vector}(\text{doctor}) - \text{vector}(\text{father}) + \text{vector}(\text{mother}) \approx \text{vector}(\text{nurse})$

$\text{vector}(\text{man}) - \text{vector}(\text{computer programmer}) + \text{vector}(\text{woman}) \approx \text{vector}(\text{homemaker})$

Extreme *she* occupations

1. homemaker	2. nurse	3. receptionist
4. librarian	5. socialite	6. hairdresser
7. nanny	8. bookkeeper	9. stylist
10. housekeeper	11. interior designer	12. guidance counselor

Extreme *he* occupations

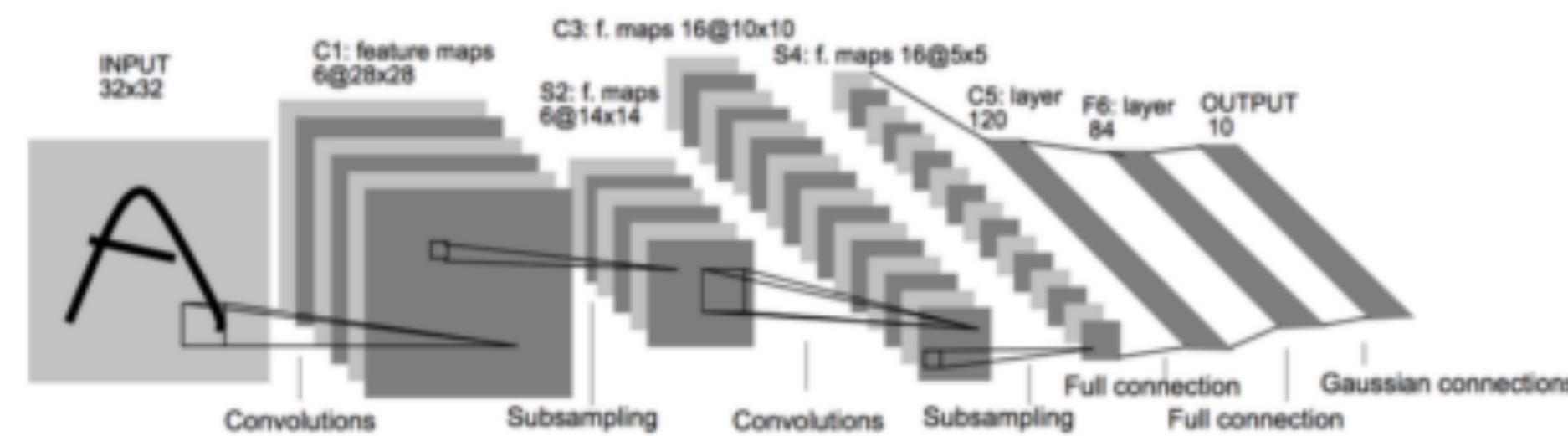
1. maestro	2. skipper	3. protege
4. philosopher	5. captain	6. architect
7. financier	8. warrior	9. broadcaster
10. magician	11. fighter pilot	12. boss

Today

- Recap: Logistic Regression
- Word Vectors or Word Embeddings
 - Similarity?
 - TF-IDF
 - Word2Vec
- Feed Forward Neural Networks

NN “dark ages”

- Neural Network algorithms date from the 80s.
- ConvNets: Yann LeCun applied them to MNIST data in 1998.



- LSTMs (Long Short Term Memory) Networks: Hochreiter and Schmidhuber 1997

2008-2013: A glimmer of light

- Collobert and Weston 2011: “**NLP (almost) from scratch**
 - Feedforward NNs can replace “feature engineering”
- AlexNet in 2012 for Image Classification
- **2014 onwards, things start working!**
 - Kim (2014): ConvNets for NLP sentiment classification
 - Sutskever et al. (2014): seq-to-seq models for machine translations.
 - 2015: all tasks attacked by neural-first approach
 - 2018-2019: NLP entered the pre-training paradigm (ELMo, GPT, BERT)
 - 2020+: the emergence of large language models (GPT-3, ChatGPT, etc)

Slide Acknowledgements

- ▶ Earlier versions of this course offerings including materials from Claire Cardie, Marten van Schijndel, Lillian Lee.
- ▶ NLP course by Mohit Iyyer.