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Reminders

• HW1 released, due on 21 February, 11.59 p.m. 

• Declare your partner (if working in a group) by 15 February, 11.59 p.m.



Today

• Recap: Logistic Regression 

• Word Vectors or Word Embeddings 

• Similarity? 

• TF-IDF 

• Word2Vec 

• Feed Forward Neural Networks



Recap: Binary Logistic Regression

• Training Data 

• input text  

• output label 

x

y ∈ {0,1}

Feature Engineering

# positive wordsf3 =

# negative wordsf4 =

#wordsf1 =

#“great”f2 =

f0 = 1 w0

w1

w2

w4

w3

P(y = 1 |x) =
e ∑i wi fi

1 + e ∑i wi fi

P(y = 0 |x) =
1

1 + e ∑i wi fi

Goal: Learn  Weights w = [w0, w1 . . . wK]



Recap: Binary Logistic Regression
Learning  Weights w = [w0, w1 . . . wK]

Minimize negative log likelihood 
using stochastic gradient 
descent.

wMLE = arg min
w

N

∑
j=1

− log P(yj |xj; w)

w0
i wmin

i

wt+1
i = wt

i − α
∂L(yj, xj, wt)

∂wi

∂Lj

∂wi

Lj(yj, xj; w)

Index of datapoint. 
Index of feature. 
Training time step.

j =
i =
t =



Recap: Binary Logistic Regression

• Initialize  

•

wt=0

∂Lj

∂wi
=

∂
∂wi

− log P(y = yj |xj; w0)

Predicted P(yj = 1 |xj) True  yj

= f j
i σ (∑

i

wi f
j
i ) − yj

• Update wt+1
i = wt

i − α .
∂Lj(yj, xj; w0)

∂wi

 
Replace with  
t = 1

w1

Index of datapoint. 
Index of feature. 
Training time step.

j =
i =
t =



Multi-class Logistic Regression
• What if we have more than 2 classes?  

• We need  for  

• In Binary Logistic Regression:  

 

 

• Multinomial Logistic Regression:  

,              

Loss?

P(y = yi |x) i ∈ Y = {1...L}

P(y = 1 |x) = σ(z)

P(y = 1 |x) = 1 − P(y = 0 |x)

P(y = yi) =
ezi

∑L
j=1 ezi

zi = wi . x + b



HW1 - submission/other questions



HW1-programming walkthrough

• Task: Binary classification for entailment.  

• Input: [premise] [hypothesis]  

• Output: Entailment / Contradiction 

P: "Children are smiling and waving at camera” 

H1: "The kids are frowning" 

H2: "There are children present” 

(P, H1)  Contradiction 

(P, H2)  Entailment

→

→



HW1-programming walkthrough

• Part 2: Simple n-gram feature engineering



HW1-programming walkthrough

• Part 2: Simple n-gram feature engineering. 

• Part 3: Training a Logistic Regression Model  

• Part 4: Your own feature engineering!! 

• [IMPORTANT] Do not import libraries like “scikit-learn”, “matplotlib”, etc. 
These packages are not downloaded on the autograder, will error out. 



Today

• Recap: Logistic Regression 

• Word Vectors or Word Embeddings 

• Similarity? 

• TF-IDF 

• Word2Vec 

• Feed Forward Neural Networks



Word Vectors

• In NLP, we represent word types with vectors.  

 

-dimension vector,  is fixed. 

• Why vectors? 

xCornell = [x1, x2, x3⋯, xd]

d d

xCornell

xYale Computing similarity between two words 
(or sentences, or documents) is very useful 
in NLP!



Word Vectors: Naive Option

• Represent words as one-hot vectors  

  ,   , ….  

     

• Issue? 

xcat = [1 0 0 0..] xdog = [0 1 0 0...]



What word relations should similarity capture?

  Similarity 

• Less strict definition than 
synonyms.  

• Share some element of meaning.  

car / bicycle 

But, car is more similar to truck 

 cow / tiger 

But, cow is more similar to chicken



Distributional Hypothesis
“You shall know a word by the company it keeps!

-Firth (1957)

• Words that occur in the same contexts tend to have similar meaning. 

• E.g. car/bicycle 

N words around the target 
work, N can be decided.

A bottle of Tesgüino is on the table.  
Everybody likes tesgüino.  
Tesgüino makes you drunk.  
We make tesgüino out of corn.

What could tesgüino mean? 

• [ ] makes you drunk. 

• After bottle of  

• Other words seen in this context? 
Alcohol, wine, whiskey, etc.



Distributional Hypothesis
“You shall know a word by the company it keeps!

-Firth (1957)

• Words that occur in the same contexts tend to have similar meaning. 

• E.g. car/bicycle  

N words around the target 
work, N can be decided.

A bottle of Tesgüino is on the table.  
Everybody likes tesgüino.  
Tesgüino makes you drunk.  
We make tesgüino out of corn.

What could tesgüino mean? 

• [ ] makes you drunk. 

• After bottle of  

• Other words seen in this context? 
Alcohol, wine, whiskey, etc.

Use information about shared context to decide 
dimensions of word vector?



Distributional Hypothesis

• Two words are similar if they occur in similar contexts. Represent context as a vector? 



Word-word co-occurrence matrix

• Two words are similar if they occur in similar contexts. Represent context as a vector? 

is traditionally followed by cherry pie, a traditional dessert  
often mixed, such as strawberry rhubarb pie. Apple pie computer 
peripherals and personal digital assistants. These devices usually  
a computer. This includes information available on the internet

aardvark … computer data result pie sugar …

cherry 0 … 2 8 9 442 25 …

stawberry 0 … 0 0 1 60 29 …

digital 0 … 1670 1683 85 5 4 …

information 0 … 3325 3982 378 5 13 …



Word-word co-occurrence matrix

aardvark … computer data result pie sugar …

digital 0 … 1670 1683 85 5 4 …

information 0 … 3325 3982 378 5 13 …

Properties of these vectors? 

• Size = |vocabulary| , say 10K -50K 

• Sparse



Cosine Similarity Metric

• Cosine similarity of vectors  and .⃗w ⃗v

cosine( ⃗v, ⃗w ) =
⃗v . ⃗w

| ⃗v | | ⃗w |
=

∑N
i viwi

∑N
i v2

i ∑N
i w2

i

 is the count of word v in context of word i 
 is the count of word v in context of word i

vi
wi

• Cosine similarity is 1/-1 when  and  point in the same/opposite direction.  

• Cosine similarity is 0 when  and   are orthogonal.

⃗w ⃗v

⃗w ⃗v



Issues with raw frequency counts

aardvark … computer data result pie sugar … a 
cherry 0 … 2 8 9 442 25 … 7543

stawberry 0 … 0 0 1 60 29 … 9121
digital 0 … 1670 1683 85 5 4 … 6923

information 0 … 3325 3982 378 5 13 … 8345

• Overly frequent words like “a”, “the”, “it”, etc. are not informative, they 
co-occur frequently with most words. 

• They dominate cosine similarity computation.



tf-idf

• tf: term frequency 

 

• idf: inverse document frequency 

 

• tf-idf 

tft,d = {1 + log10 count(t, d) if count(t, d) > 0
0 otherwise

idft = log ( N
dft )

wt,d = tft,d × idft

# 
occurrences of word t 
in doc d (context in our 
case).

count(t, d) =

# documents 
containing word t. 
N = # documents

dft =

Value of a word t in document d

What words will have 
low idf?



dense word vectors



Dense word vectors

• What is the dimension of tf-idf vectors? 

• dense word vectors: represent words as an embedding in the vector 
space. 

• Typically lower dimension than tf-idf  (e.g. deepseek r1’s 
embedding size is 7168) 

• Not sparse. 

• Dimensions do not have intuitive meanings (e.g. “denote co-
occurrence with word j” as in sparse vectors.) 

• How do we learn vector embeddings?  

• Multiple approaches: Skip-grams, CBOW.



Intuition: Skip-gram Model

• Word2Vec: Popular embedding methods from 2013. 

• Very fast to train. 

• Idea: 

• Instead of: counting how often a word w appears near ``cherry’’. 

• Train a binary classifier on a prediction task: 

Is word w likely to occur near word ``cherry’’? 

c is a context word of w 

c is not a context word of w

P( + |w, c) ←

P( − |w, c) = 1 − P( − |w, c) ←

Q: Why do we care 
about this task?



Intuition: Skip-gram Model

c is a context word of w 

c is not a context word of w

P( + |w, c) ←

P( − |w, c) = 1 − P( + |w, c) ←

• From distribution hypothesis, we want: 

P( + |w, c) ≈ c . w Word vector for word  w

Context vector for word  c
This is not a probability.

P( + |w, c) = σ(c . w) =
1

1 + exp(−c . w)



Possible strategy

• Let’s represent words as vectors of some length. 

• Let’s initialize those vectors w/ say 300 dimensions.  

• Total dimension of embeddings |V| * 300 

• Get some training data:  

• (w, c) pairs of words that co-occur (+)   

• (w, n) pairs of words that do not co-occur (-): 

• .Use a learning algorithm to adjust these word vectors such that 

• Maximize the similarity of (w, c) pairs with label + 

• Minimize the similarity of (w, n) pairs with label -



Skip-gram with negative sampling (SGNS)

• Training Data? 

• This is freely available! Use any text as supervision data. 

... lemon, a tablespoon of apricot jam a pinch ...
c1 c2 c3 c4w

Assume context words 
are in +/- 2 word window

• Negative data?  

• Randomly sample words other words from the vocab.

<apricot jam>, +
<apricot a>, +
<apricot tablespoon>, +
<apricot of>, +

<apricot aardvark>, -
<apricot digital>, -

• No need for hand labeled supervision data.  

• Similar idea as language modeling!



Possible strategy

• Let’s represent words as vectors of some length. 

• Let’s initialize those vectors w/ say 300 dimensions.  

• Total dimension of embeddings |V| * 300 

• Get some training data:  

• (w, c) pairs of words that co-occur (+)   

• (w, c) pairs of words that do not co-occur (-): 

• .Use a learning algorithm to adjust these word vectors such that 

• Maximize the similarity of (w, c) pairs with label + 

• Minimize the similarity of (w, c) pairs with label -



Skip-gram with negative sampling (SGNS)

• Classification model. What is our objective? 
Maximize log likelihood of the data.

P( + |w, c) =
exp(c . w)

1 + exp(c . w)

P( − |w, c) =
1

1 + exp(c . w)

Q: Why are the 
features and what are 
the weights here?

∑
(w,c)∈+

log P( + |w, c) + ∑
(w,c)∈−

log P( − |w, c)

negative word  

• Focusing on one target word
L(θ) = log P( + |w, cpos) + log P( − |w, cneg)



Skip-gram with negative sampling (SGNS)

P( + |w, c) =
exp(c . w)

1 + exp(c . w)

P( − |w, c) =
1

1 + exp(c . w)

• Focusing on one target word (log likelihood)

= log
exp(cpos . w)

1 + exp(cpos . w)
+ log

1
1 + exp(cneg . w)

Vo
ca

b 
si

ze

DimensionDimension

L(θ) = log P( + |w, cpos) + log P( − |w, cneg)



Putting it all together: Skip-gram Also

• Initialize ,  

• For each training sample: 

 

 

Co W0

∂L
∂cpos

= [σ(cpos . w) − 1] w

∂L
∂cneg

= [σ(cneg . w)] w

∂L
∂w

= [σ(cpos . w) − 1] cpos + [σ(cneg . w)] cneg Self-study: derive this!

• Gradient update! 



Putting it all together: Skip-gram Also

• To represent word w, we can  

• Concatenate  and  

• Keep 

ci wi

wi



Word2Vec: Embeddings capture analogies

vector(king) - vector(man) + vector(woman)  vector(queen)≈

vector(Paris) - vector(France) + vector(Italy)  vector(Rome)≈



Word2Vec: Embeddings capture relations



Word2Vec: Embeddings capture relations



Word2Vec: Embeddings capture biases!

vector(doctor) - vector(father) + vector(mother)  vector(nurse)≈

vector(man) - vector(computer programmer) + vector(woman)  vector(homemaker)≈

https://arxiv.org/pdf/1607.06520.pdf

https://arxiv.org/pdf/1607.06520.pdf


Word2Vec: Embeddings capture biases!

vector(doctor) - vector(father) + vector(mother)  vector(nurse)≈

vector(man) - vector(computer programmer) + vector(woman)  vector(homemaker)≈

https://arxiv.org/pdf/1607.06520.pdf

https://arxiv.org/pdf/1607.06520.pdf


Today

• Recap: Logistic Regression 

• Word Vectors or Word Embeddings 

• Similarity? 

• TF-IDF 

• Word2Vec 

• Feed Forward Neural Networks



NN “dark ages”
• Neural Network algorithms date from the 80s. 

• ConvNets: Yann LeCun applied them to MNIST data in 1998. 

• LSTMs (Long Short Term Memory) Networks: Hochreiter and Schmidhuber 1997 

Slide Credit: Greg Durrett



2008-2013: A glimmer of light
• Collobert and Weston 2011: “NLP (almost) from scratch 

• Feedforward NNs can replace “feature engineering” 

• AlexNet in 2012 for Image Classification 

• 2014 onwards, things start working! 

• Kim (2014): ConvNets for NLP sentiment classification 

• Sutskever et al. (2014): seq-to-seq models for machine translations. 

• 2015: all tasks attacked by neural-first approach 

• 2018-2019: NLP entered the pre-training paradigm (ELMo, GPT, BERT) 

• 2020+: the emergence of large language models (GPT-3, ChatGPT, etc)
Slide Credit: Greg Durrett
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