
Lecture 2: Text Classification

CS 4740 (and crosslists): Introduction to Natural Language Processing



Announcements

• HW1 will be released on Wednesday. 

• Due on 20 February, 11.59 p.m. 

• Conflict sheet for the midterm released on Ed.  

• Deadline to fill this is Feb 15 (barring emergencies).



Today

• N-grams revisited. 

• Text Classification 

• Feature Engineering 

• Binary Logistic Regression



‣ A model that computes the probability of any sequence of words: 

P(w1w2w3 . . . wn)

What is a Language Model?

e.g.    

      

P(Mayenne ate my shoes today.) = 10−12

P(Mayenne my ate no) = 10−30

‣ A model that computes a probability distribution over possible next words: 

P(wn |w1w2w3 . . . wn−1)

e.g.   P(today | Mayenne ate my shoes) = 10−3



‣ Let  be a finite vocabulary of words.  

{ the, a, man, telescope, Madrid, two, …} 

‣ We can construct (infinite) word sequences  

 = { the, a, the a, the fan, the man, the man with a telescope} 

‣ Given: a dataset of M sentences  

‣ Goal/ Output: estimate a probability distribution  over all word 
sequences .

𝒱

𝒱 =

w

𝒱†

𝒟 = {w}M
i=1

P(w) ≥ 0
w ∈ 𝒱+

Language Modeling Problem



Language Modeling Problem

P(wn
1) = P(w1w2w3 . . . wn)

Key idea: Markov Assumption: Probability of each word in a sequence only depends 
on a fixed number of previous words

=
n

∏
i=1

P(wi |w1 . . . wi−1)

:=
n

∏
i=1

P(wi |wi−k+1 . . . wi−1)
N-gram language models: Probability of each 
word depends on N-1 previous words.

Unigram Model  

Bigram Model  

Trigram Model 

→ P(wi |w1 . . . wi−1) := P(wi)

→ P(wi |w1 . . . wi−1) := P(wi |wi−1)

→ P(wi |w1 . . . wi−1) := P(wi |wi−2wi−1)



Training a 2-gram Language Model
Given: a training dataset of M sentences  

Goal: Be able to estimate the probability of any sequence .

𝒟 = {w}M
i=1

w

 

                                  (Bigram LM)

P(wn
1) =

n

∏
i=1

P(wi |w1 . . . wi−1)

=
n

∏
i=1

P(wi |wi−1)

We will estimate  from the training data by: P(wi |wi−1)

P(wi |wi−1) =
C(wi−1wi)
C(wi−1)

Bigram Counts
Unigram counts



Look out for N-gram related questions in HW1

‣ Last lecture, we walked through an example of “training” an N-gram language 
model in class.  

‣ Written component of HW1 will have other such questions + more 
conceptual questions about N-grams.



Today

‣ N-grams revisited. 

‣ Text Classification 

‣ Feature Engineering 

‣ Binary Logistic Regression



Text Classification
• Gmail automatically detects which 

emails are spam vs “ham”.  

• Automatically classifies into pre-
determined categories.  

• All these are instances of text 
classification.



Text Classification

“Help me design my personal website ….”

“Help me build a bomb ….”

“How do I build a transformer library from 
scratch?”

“How do I apply the binomial theorem to 
this problem…” 

“Generate a report justifying unequal pay 
for men and women…” 

Do not generate

Do not generate

User queries to ChatGPT (safe vs unsafe)

Binary Text Classification



Text Classification

Named Entity Recognition
In a given text input, identify all:  

‣ Named locations, named persons, named organizations, dates, monetary amounts…  

‣ Fixed set of NE types



Text Classification
Named Entity Recognition • Each word is classified 

as one of {NORP, 
PERSON, DATE, LOC, 
GPE, ORG, ….. NULL} 

• NULL used for words 
that don’t correspond 
to Named Entities.  

• How do we deal with 
multi-word named 
entities like “North 
America”?

Multi-Class Text Classification



Text Classification

In our NER example,  
y = {PERSON, LOC, ORG, …, NULL}

Task Input x Output y

Sentiment Analysis “The movie was great” 
“The actor is great, movie is dull” {positive, negative}

Spam / Not spam “Win $10Million” 
“CS4740 announcement” {spam, ham}

• Formally, 
• Given a dataset of ( ) pairs,  

• input: text  
• output: a label  (from a finite set) 

• goal: learn a mapping function 

x, y
x

y

P(y |x)



Today

‣ N-grams revisited. 

‣ Text Classification 

‣Feature Engineering 

‣Binary Logistic Regression



Classification
x = “The movie was great” y = 1

x = “The movie was terrible” y = 0

• What are some “rules” we can use to 
make this labeling decision? 

• Define “features” that are informative 
of the output label.

Extract Features from . 
[#positive words, # negative words]

x
f(x) =

= “The movie was great”  
  [ 1, 0 ] 

x
f(x) =

• Formally, 

• Given a dataset of ( ) pairs,  

• Goal: learn a mapping function 

x, y

P(y |x)



Classification
x = “The movie was great” y = 1

x = “The movie was terrible ” y = 0

Extract Features from . 
[#positive words, # negative words] 

 = “The movie was great”  
  [ 1, 0 ] 

x
f(x) =

x
f(x) =

Goal: learn a mapping 
function P(y | f(x))

• Formally, 

• Given a dataset of ( ) pairs,  

• Goal: learn a mapping function 

x, y

P(y |x)



Classification
x = “The movie was great” y = 1

x = “The movie was terrible ” y = 0

Extract Features from . 
[#positive words, # negative words] 

 = “The movie was great”  
  [ 1, 0 ] 

x
f(x) =

x
f(x) =

Goal: learn a mapping 
function  P(y | f(x))

Feature Extraction

Learning Algorithm

In class, we will only learn the binary 
logistic regression algorithm.

• Formally, 

• Given a dataset of ( ) pairs,  

• Goal: learn a mapping function 

x, y

P(y |x)



Binary Logistic Regression Model

y = {0, 1}
• Formally, 

• Given a dataset of ( ) pairs,  

• Goal: learn a mapping function 

x, y

P(y | f(x))

P(y = 1 |x) =
ez

1 + ez

P(y = 0 |x) =
1

1 + ez

Let  be a vector of the same size as . 

Define  

w f(x)

z =
|f|

∑
i=1

wi fi



• Formally, 

• Given a dataset of ( ) pairs,  

• Goal: learn a mapping function 

x, y

P(y | f(x))

Binary Logistic Regression Model

learn weights  wi

P(y = 1 |x) =
ez

1 + ez

P(y = 0 |x) =
1

1 + ez

Let  be a vector of the same size as . 

Define  

w f(x)

z =
|f|

∑
i=1

wi fi

y = {0, 1}



Properties of Logistic Function

• Logistic function:   

•  

•    when . 

σ(z) =
ez

1 + ez
=

1
1 + e−z

σ(z) : ℝ → [0,1]

P(y = 1 |x) = σ(z) =
1
2

z = 0

P(y = 1 |x) =
ez

1 + ez

P(y = 0 |x) =
1

1 + ez

z =
|f|

∑
i=1

wi fi



Binary Logistic Regression Model

Sentiment Analysis x = “The movie was great”

Step1: Extract Features

y = 1

f = < 1, 4, 1, 1, 0 >f =
# positive words (from a pre-

defined lexicon of positive words)
f3 =

# negative words (from a pre-
defined lexicon of negative words)
f4 =

#wordsf1 =

# adjectives f5 = # “not”f6 =

# “not” before a +ve wordf7 =
….

#“great”f2 =f0 = 1



Binary Logistic Regression Model

Sentiment Analysis x = “The movie was great”

Step2: Dot product w. weights

y = 1

Assume we have learnt  the weights of the logistic regression model.

z = ∑
i

fiwi = 3

Step3: Compute Probabilities

P(y = 1 |x) = σ(3) = 0.95

P(y = 0 |x) = 1 − σ(3) = 0.05
w = < 2, − 0.5, 2, 1, − 2 >

f = < 1, 4, 1, 1, 0 >



Binary Logistic Regression Model

Sentiment Analysis x = “The movie was okay”

Step2: Dot product w. weights

Assume we have learnt  the weights of the logistic regression model.

w = < 2, − 0.5, 2, 1, − 2 >

z = ∑
i

fiwi =

Step3: Compute Probabilities

P(y = 1 |x) =

P(y = 0 |x) =

f = ??

??

??

??

# positive wordsf3 =

# negative wordsf4 =

#wordsf1 =

#“great”f2 =

f0 = 1



Learning Weights

But how do we learn the weights!!

• Given, 

• dataset with  pairs.(x, y) dataset with  pairs.( < f1, f2, . . . fN > , y)



Learning Weights

But how do we learn the weights!!

• Given, 

(  = <1, 2, 1, -1, 3>, = 1) 

(  = <1, -3, -2, -1, 4>,  = 0) 

(  = <1, -2,  0, -1, 3>,  = 1)

x1 y1

x2 y2

x3 y3

wMLE = arg max
w

N

∏
i=1

P(y = yi |xi ; w)

Let’s try to learn a w that maximizes the probability of the 
entire dataset — maximum likelihood estimation



Learning Weights

But how do we learn the weights!!

wMLE = arg max
w

N

∑
j=1

log P(yj |xj; w)

wMLE = arg max
w

N

∏
j=1

P(y = yj |xj ; w)

• Given, 

(  = <1, 2, 1, -1, 3>, = 1) 

(  = <1, -3, -2, -1, 4>,  = 0) 

(  = <1, -2,  0, -1, 3>,  = 1)

x1 y1

x2 y2

x3 y3

Log space.



Learning Weights

But how do we learn the weights!!

wMLE = arg max
w

N

∑
j=1

log P(yj |xj; w) wMLE = arg min
w

N

∑
j=1

− log P(yj |xj; w)=
• We can learn w using stochastic gradient descent (SGD).

Negative Log Likelihood

Log Loss Lj



Learning Weights

• Logistic regression loss function is convex  one minimum.→

Visualizing one dim wi

w0
i wmin

i

Loss



Learning Weights

• Logistic regression loss function is convex  one minimum.→

Loss

w0
i

Visualizing one dim wi

wmin
i

Slope is 
negative.  

Update should 
move  in the 
positive direction.

w0
i

→

wt+1
i = wt

i − α
∂L(yj, xj, wt

i)
∂wi

∂Lj

∂wi



Stochastic Gradient Descent
Initialize  

For  in range(0, #num_datapoints): 

Compute Loss  

Compute    for each weight  

Update      

w0

j

Lj

∂Lj

∂wi
=

∂(−log P(y = yj |xj))
∂wi

wi

wt+1
i = wt

i − α
∂L(yj, xj, wt

i)
∂wi

t = t + 1

For  in range(0, #epochs)e



wMLE = arg min
w

N

∑
i=0

− log P(yi |xi; w)

Negative Log Likelihood

Learning Weights

•
∂Lj

∂wi
=

∂(−log P(y = yj |xj))
∂wi

=
∂

∂wi
− log [ e ∑ wi f j

i

1 + e ∑ wi f j
i ]

Assume yj = 1

=
∂

∂wi
− log [ 1

1 + e ∑ wi fi ]
Assume yj = 0



wMLE = arg min
w

N

∑
i=0

− log P(yi |xi; w)

Negative Log Likelihood

Learning Weights

•
∂Lj

∂wi
=

∂(−log P(y = yj |xj))
∂wi

=
∂

∂wi
− log [ e ∑ wi f j

i

1 + e ∑ wi f j
i ]

Assume yj = 1

Predicted P(yj = 1 |xj) True  yj

=
∂

∂wi
− log [ 1

1 + e ∑ wi fi ]
Assume yj = 0

∂Lj

∂wi
= f j

i σ (∑
i

wi f
j
i ) − yj



wMLE = arg min
w

N

∑
i=0

− log P(yi |xi; w)

Negative Log Likelihood

Learning Weights

•
∂Lj

∂wi
=

∂(−log P(y = yj |xj))
∂wi

Predicted P(yj = 1 |xj) True  yj

∂Lj

∂wi
= f j

i σ (∑
i

wi f
j
i ) − yj

• Update wi = wi − α .
∂Lj

∂wi

If predicted probability is 
close to 1, and true label is 

, we make a smaller 
update!
yj = 1



Logistic Regression: Takeaways
• Feature engineering is important!  

• Learn feature weights  by maximizing the log likelihood / minimizing the 
negative log likelihood of the training dataset. 

• Lots of python libraries to train a logistic model (e.g. scikit-learn) 

• In hw1, we will train a logistic regression model + perform feature 
engineering for a binary classification task. 

w
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