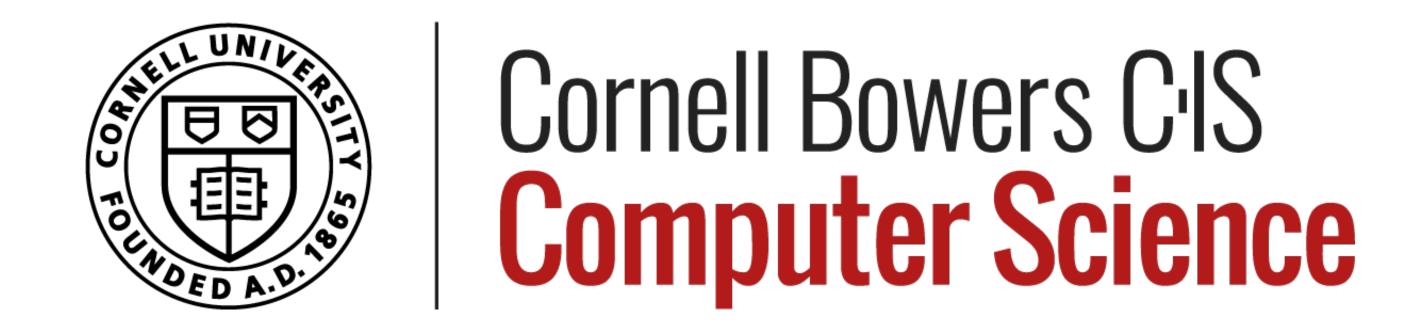
Lecture 7: Word Embeddings



Claire Cardie, Tanya Goyal

CS 4740 (and crosslists): Introduction to Natural Language Processing

Reminders

- HW1 milestone due today, 11.59 p.m.
- HW1 due on 21 February, 11.59 p.m.

HW1 - submission/other questions

- [IMPORTANT] Do not import libraries like "matplotlib", etc. These packages are not downloaded on the autograder, will error out.
- **stringify_labeled_doc**: To pass the unit tests, you only need to deal with punctuations .?! at the end of sentence.

["I", "submitted", "the", "hw", "."] \rightarrow I submitted the hw.

• apply_smoothing: For the milestone, we only grade based on whether your values are non zero (or -infinity in the log scale). But the submission will tell you if your values are close to the official implementation.

Today

- Recap: Logistic Regression
- Word Vectors or Word Embeddings
 - Similarity?
 - TF-IDF
 - Word2Vec

Recap: Binary Logistic Regression

Training Data

• input text X

output label $y \in \{0,1\}$

Feature Engineering

$$f_0 = 1$$
 w_0
 $f_1 = \text{#words}$ w_1
 $f_2 = \text{#"great"}$ w_2
 $f_3 = \text{# positive words}$ w_3
 $f_4 = \text{# negative words}$ w_4

$$P(\mathbf{y} = 1 \mid \mathbf{x}) = \frac{e^{\sum_{i} w_{i} f_{i}}}{1 + e^{\sum_{i} w_{i} f_{i}}}$$

$$P(\mathbf{y} = 0 \mid \mathbf{x}) = \frac{1}{1 + e^{\sum_{i} w_{i} f_{i}}}$$

Goal: Learn Weights $\mathbf{w} = [w_0, w_1 \dots w_K]$

Recap: Binary Logistic Regression

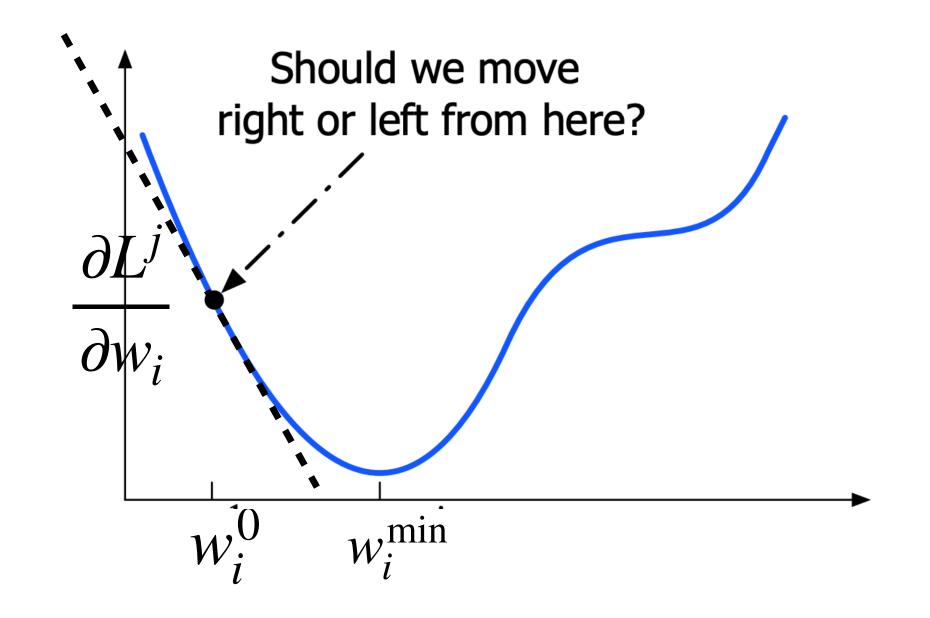
Learning Weights $\mathbf{w} = [w_0, w_1 \dots w_K]$

j = Index of datapoint. i = Index of feature. t = Training time step.

Minimize negative log likelihood using stochastic gradient descent.

$$w^{\text{MLE}} = \arg\min_{w} \sum_{j=1}^{N} \left[-\log P(y^{j} | x^{j}; w) \right]$$

$$L^{j}(y^{j}, x^{j}; w)$$



$$w_i^{t+1} = w_i^t - \alpha \frac{\partial L(y^j, x^j, w^t)}{\partial w_i}$$

Recap: Binary Logistic Regression

• Initialize $w^{t=0}$ t=1 $\frac{\partial L^{j}}{\partial w_{i}} = \frac{\partial}{\partial w_{i}} - \log P(y = y^{j} | x^{j}; w^{0})$ Replace with w^{1} $=f_i^j \left| \sigma \left(\sum_i w_i f_i^j \right) - y^j \right|$ True y^j Predicted $P(y^j = 1 | x^j)$. Update $w_i^{t+1} = w_i^t - \alpha$. $\frac{\partial L^j(y^j, x^j; w^0)}{\partial w_i}$

j = Index of datapoint. i = Index of feature. t = Training time step.

Word similarity as a practical NLP concept

Q: How tall is Mt. Everest?

A1: Mt. Everest is 29029 feet high.

A2: Mt. Everest is 1000000 years old.

How do we know A1 answers the question and A2 does not?

What word relations should similarity capture?

Synonymity

- Words that have the same meaning in some/all contexts
- high/tall, couch/sofa, big/large, automobile/car

Antonymy

- Senses that are opposite with respect to one feature of meaning
- dark/light, short/long, fast/slow

Similarity

- Less strict definition than synonyms.
- Share some element of meaning.

car / bicycle

But, car is *more* similar to truck

cow / tiger

But, cow is more similar to chicken

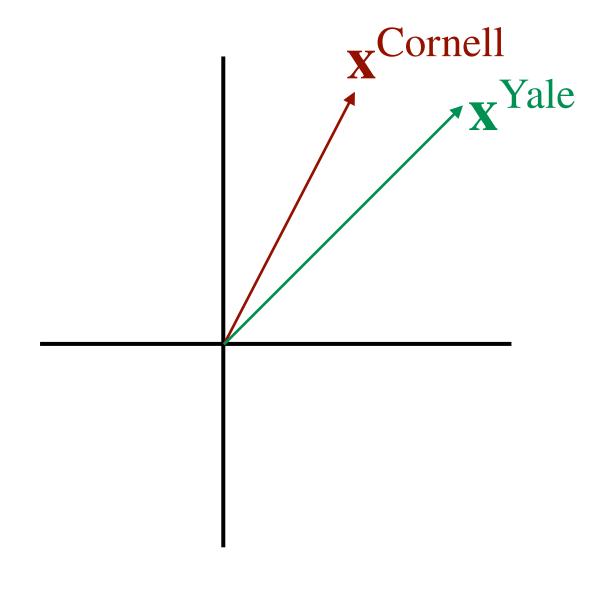
Word Vectors

• In NLP, we represent word types with vectors.

$$\mathbf{x}^{\text{Cornell}} = [x_1, x_2, x_3 \cdots, x_d]$$

d-dimension vector, d is fixed.

• Why vectors?



Computing similarity between two words (or sentences, or documents) is very useful in NLP!

Distributional Hypothesis

"You shall know a word by the company it keeps!

-Firth (1957)

N words around the target work, N can be decided.

- Words that occur in the same contexts tend to have similar meaning.
 - E.g. car/bicycle

A bottle of **Tesgüino** is on the table.

Everybody likes tesgüino.

Tesgüino makes you drunk.

We make **tesgüino** out of corn.

What could tesgüino mean?

- [] makes you drunk.
- After bottle of
- Other words seen in this context?
 Alcohol, wine, whiskey, etc.

Distributional Hypothesis

"You shall know a word by the company it keeps!

N words around the target work, N can be decided.

- Wo
 - Use information about shared context to decide dimensions of word vector?

A bott

Every

Tesgüino makes you drunk.

We make **tesgüino** out of corn.

- After bottle of
- Other words seen in this context?
 Alcohol, wine, whiskey, etc.

Word-word co-occurrence matrix

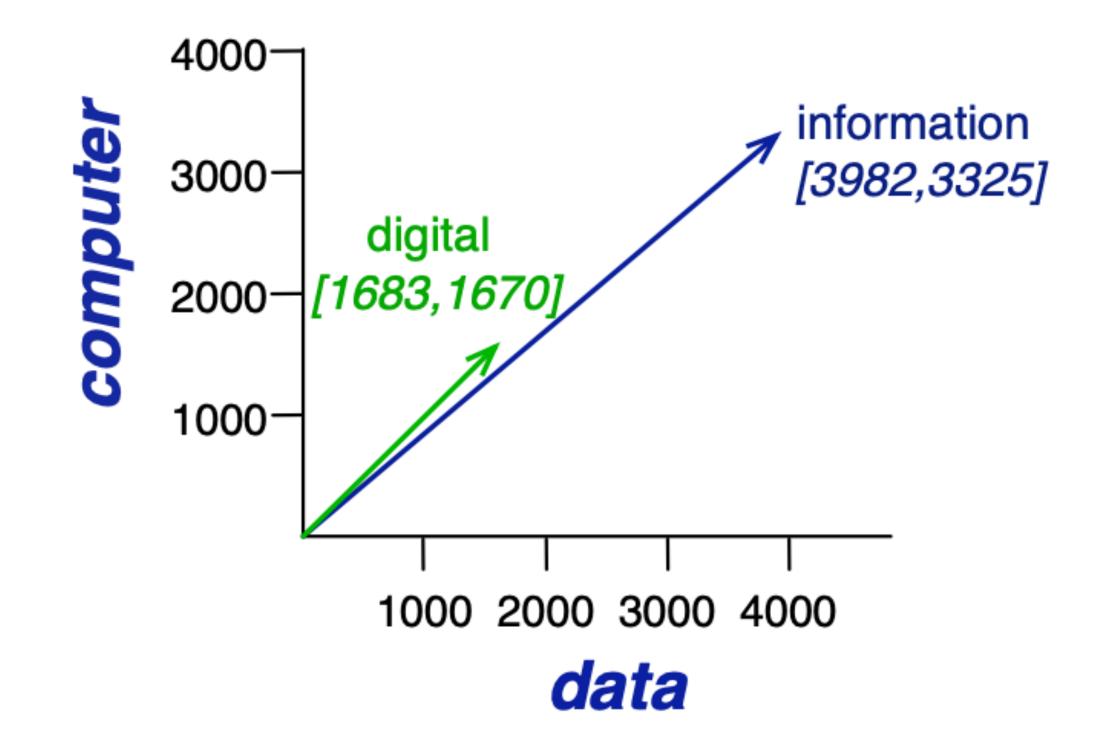
• Two words are similar if they occur in similar contexts. Represent context as a vector?

is traditionally followed by **cherry** pie, a traditional dessert often mixed, such as **strawberry** rhubarb pie. Apple pie computer peripherals and personal **digital** assistants. These devices usually a computer. This includes **information** available on the internet

	aardvark	• • •	computer	data	result	pie	sugar	• • •
cherry	0	• • •	2	8	9	442	25	• • •
stawberry	0	• • •	0	0	1	60	29	• • •
digital	0	• • •	1670	1683	85	5	4	• • •
information	0	• • •	3325	3982	378	5	13	• • •

Word-word co-occurrence matrix

	aardvark	• • •	computer	data	result	pie	sugar	• • •
digital	0	• • •	1670	1683	85	5	4	• • •
information	0	• • •	3325	3982	378	5	13	• • •



Properties of these vectors?

- Size = |vocabulary|, say 10K-50K
- Sparse

Cosine Similarity Metric

• Cosine similarity of vectors \overrightarrow{w} and \overrightarrow{v} .

$$cosine(\vec{v}, \vec{w}) = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}||\vec{w}|} = \frac{\sum_{i}^{N} v_{i}w_{i}}{\sqrt{\sum_{i}^{N} v_{i}^{2}} \sqrt{\sum_{i}^{N} w_{i}^{2}}}$$

 v_i is the count of word v in context of word i w_i is the count of word v in context of word i

- Cosine similarity is 1/-1 when \overrightarrow{w} and \overrightarrow{v} point in the same/opposite direction.
- Cosine similarity is 0 when \overrightarrow{w} and \overrightarrow{v} are orthogonal.

Issues with raw frequency counts

	aardvark	• • •	computer	data	result	pie	sugar	• • •	a
cherry	0	• • •	2	8	9	442	25	• • •	7543
stawberry	0	• • •	0	0	1	60	29	• • •	9121
digital	0	• • •	1670	1683	85	5	4	• • •	6923
information	0	• • •	3325	3982	378	5	13	• • •	8345

- Overly frequent words like "a", "the", "it", etc. are not informative, they co-occur frequently with most words.
- They dominate cosine similarity computation.

tf-idf

• tf: term frequency

$$tf_{t,d} = \begin{cases} 1 + \log_{10} \operatorname{count}(t,d) & \text{if } \operatorname{count}(t,d) > 0\\ 0 & \text{otherwise} \end{cases}$$

count(t,d) = # occurrences of word t in doc d.

idf: inverse document frequency

$$idf_t = log\left(\frac{N}{df_t}\right)$$

$$df_t = \# documents$$

 $containing word t.$
 $N = \# documents$

What words will have low idf?

tf-idf

$$w_{t,d} = \mathsf{tf}_{t,d} \times \mathsf{idf}_t$$

Value of a word t in document d

dense word vectors

Dense word vectors

- What is the dimension of tf-idf vectors?
- dense word vectors: represent words as an **embedding** in the vector space.
 - Typically lower dimension than tf-idf (e.g. deepseek r1's embedding size is 7168)
 - Not sparse.
 - Dimensions do not have intuitive meanings (e.g. "denote cooccurrence with word j" as in sparse vectors.)
- How do we learn vector embeddings?
 - Multiple approaches: Skip-grams, CBOW.

Intuition: Skip-gram Model

- Word2Vec: Popular embedding methods from 2013.
- Very fast to train.
- Idea:
 - Instead of: counting how often a word w appears near "cherry".
 - Train a binary classifier on a **prediction** task:

Is word w *likely* to occur near word "cherry"?

$$P(+|w,c) \leftarrow c$$
 is a context word of w

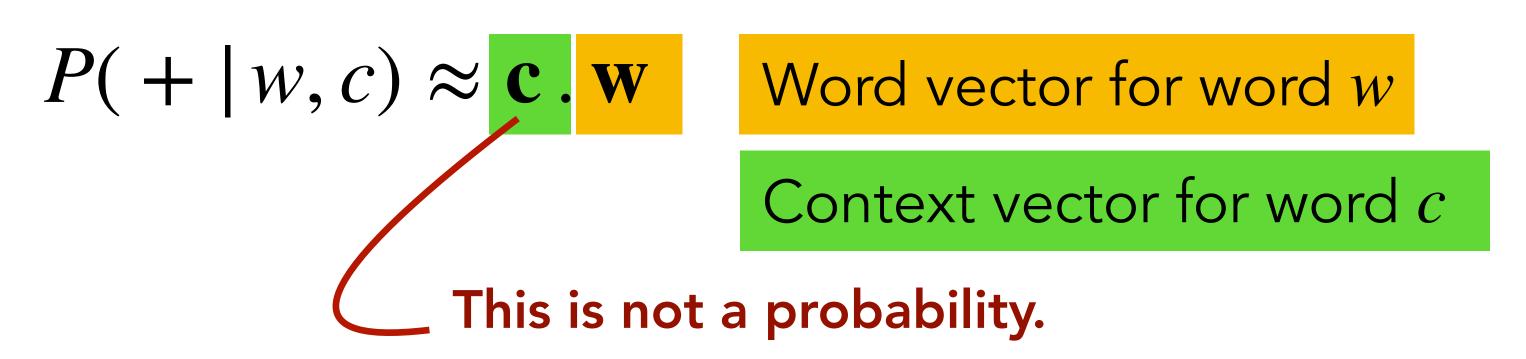
 $P(-|w,c) = 1 - P(-|w,c) \leftarrow c$ is not a context word of w

Q: Why do we care about this task?

Intuition: Skip-gram Model

$$P(+|w,c) \leftarrow c$$
 is a context word of w
$$P(-|w,c) = 1 - P(-|w,c) \leftarrow c$$
 is not a context word of w

From distribution hypothesis, we want:



$$P(+ | w, c) = \sigma(\mathbf{c} \cdot \mathbf{w}) = \frac{1}{1 + \exp(-\mathbf{c} \cdot \mathbf{w})}$$

Possible strategy

- Let's represent words as vectors of some length.
- Let's initialize those vectors w/ say 300 dimensions.
 - Total dimension of embeddings IVI * 300
- Get some training data:
 - ((w, c) pairs of words that co-occur (+)
 - (w, c) pairs of words that do not co-occur (-):
- .Use a learning algorithm to adjust these word vectors such that
 - Maximize the similarity of (w, c) pairs with label +
 - Minimize the similarity of (w, c) pairs with label -

Skip-gram with negative sampling (SGNS)

Assume context words are in +/- 2 word window

- <apricot aardvark>, <apricot digital>, -
- Negative data?
 - Randomly sample words other words from the vocab.

- No need for hand labeled supervision data.
- Similar idea as language modeling!

Possible strategy

- Let's represent words as vectors of some length.
- Let's initialize those vectors w/ say 300 dimensions.
 - Total dimension of embeddings IVI * 300
- Get some training data:
 - ((w, c) pairs of words that co-occur (+)
 - (w, c) pairs of words that do not co-occur (-):
- .Use a learning algorithm to adjust these word vectors such that
 - Maximize the similarity of (w, c) pairs with label +
 - Minimize the similarity of (w, c) pairs with label -

Skip-gram with negative sampling (SGNS)

Classification model. What is our objective?
 Maximize log likelihood of the data.

$$\sum_{(w,c)\in +} \log P(+ | w,c) + \sum_{(w,c)\in -} \log P(- | w,c)$$

Focusing on one target word

$$L(\theta) = \log P(+ | w, c) + \sum_{i}^{k} \log P(- | w, n_i)$$

$$P(+ | w, c) = \frac{\exp(\mathbf{c} \cdot \mathbf{w})}{1 + \exp(\mathbf{c} \cdot \mathbf{w})}$$

$$P(- | w, c) = \frac{1}{1 + \exp(\mathbf{c} \cdot \mathbf{w})}$$

Q: Why are the features and what are the weights here?

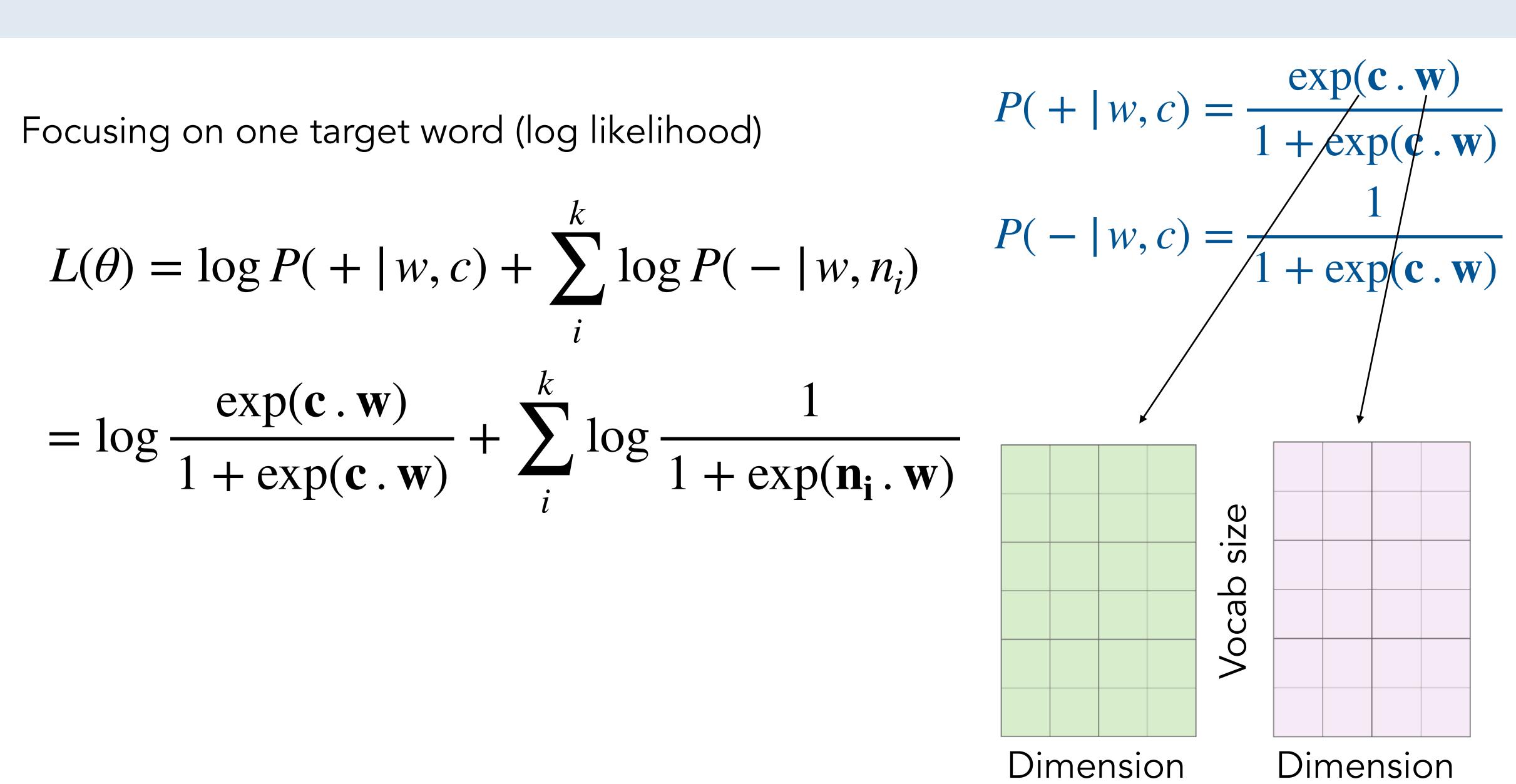
negative word n_i

Skip-gram with negative sampling (SGNS)

Focusing on one target word (log likelihood)

$$L(\theta) = \log P(+ | w, c) + \sum_{i}^{k} \log P(- | w, n_i)$$

$$= \log \frac{\exp(\mathbf{c} \cdot \mathbf{w})}{1 + \exp(\mathbf{c} \cdot \mathbf{w})} + \sum_{i}^{k} \log \frac{1}{1 + \exp(\mathbf{n_i} \cdot \mathbf{w})}$$



Putting it all together: Skip-gram Also

- Initialize C^o , W^0
- For each training sample:

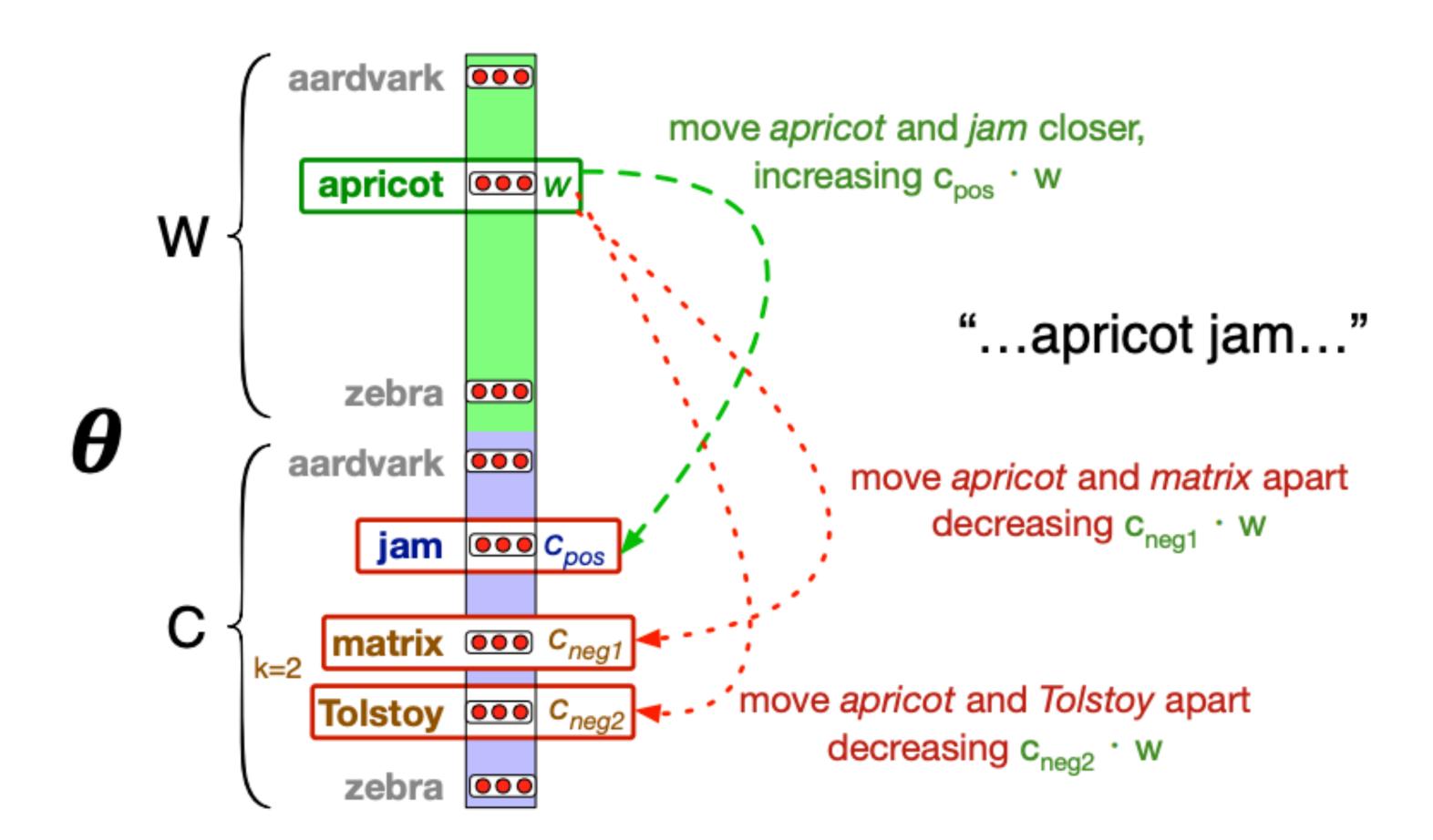
$$\frac{\partial L}{\partial \mathbf{c}_{pos}} = [\sigma(\mathbf{c}_{pos}.\mathbf{w}) - 1] \mathbf{w}$$
$$\frac{\partial L}{\partial \mathbf{c}_{neg}} = [\sigma(\mathbf{c}_{neg}.\mathbf{w})] \mathbf{w}$$

$$\frac{\partial L}{\partial \mathbf{w}} = [\sigma(\mathbf{c}_{\text{pos}} \cdot \mathbf{w}) - 1] \mathbf{c}_{\text{pos}} + \sum_{i}^{k} [\sigma(\mathbf{c}_{\text{neg}_{i}} \cdot \mathbf{w})] \mathbf{c}_{\text{neg}_{i}}$$

Self-study: derive this!

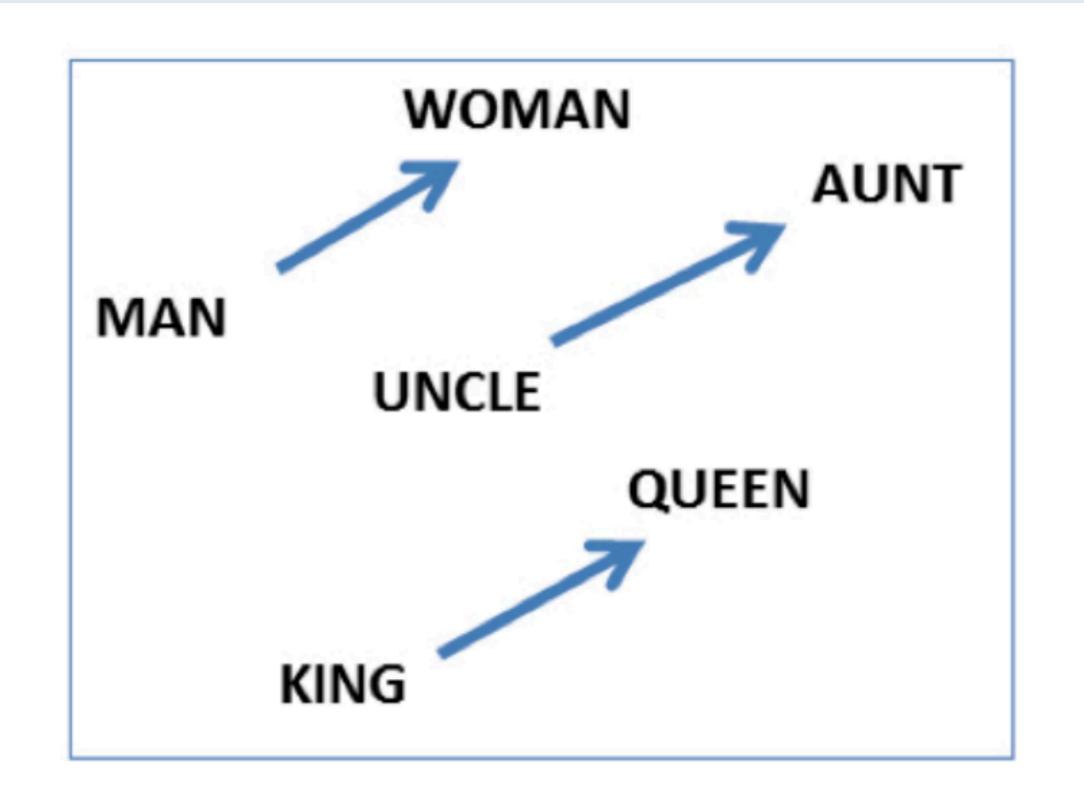
Gradient update!

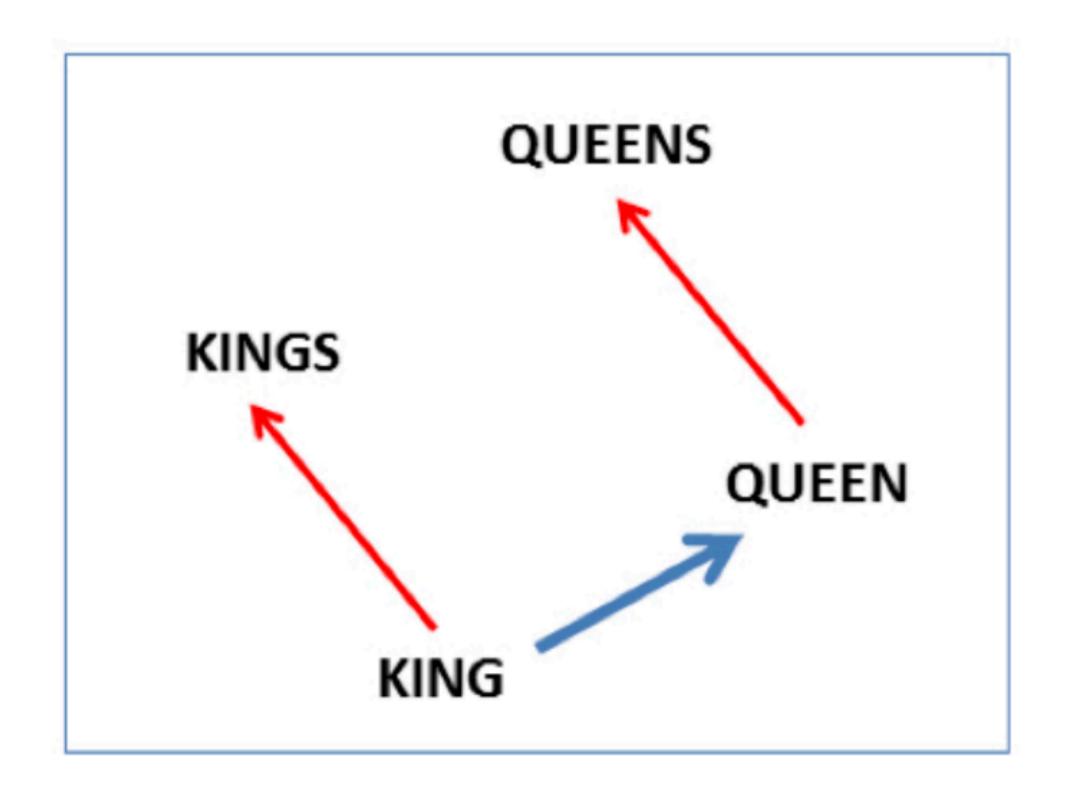
Putting it all together: Skip-gram Also



- To represent word w, we can
 - Concatenate \mathbf{c}^i and \mathbf{w}^i
 - Keep \mathbf{w}^i

Word2Vec: Embeddings capture analogies

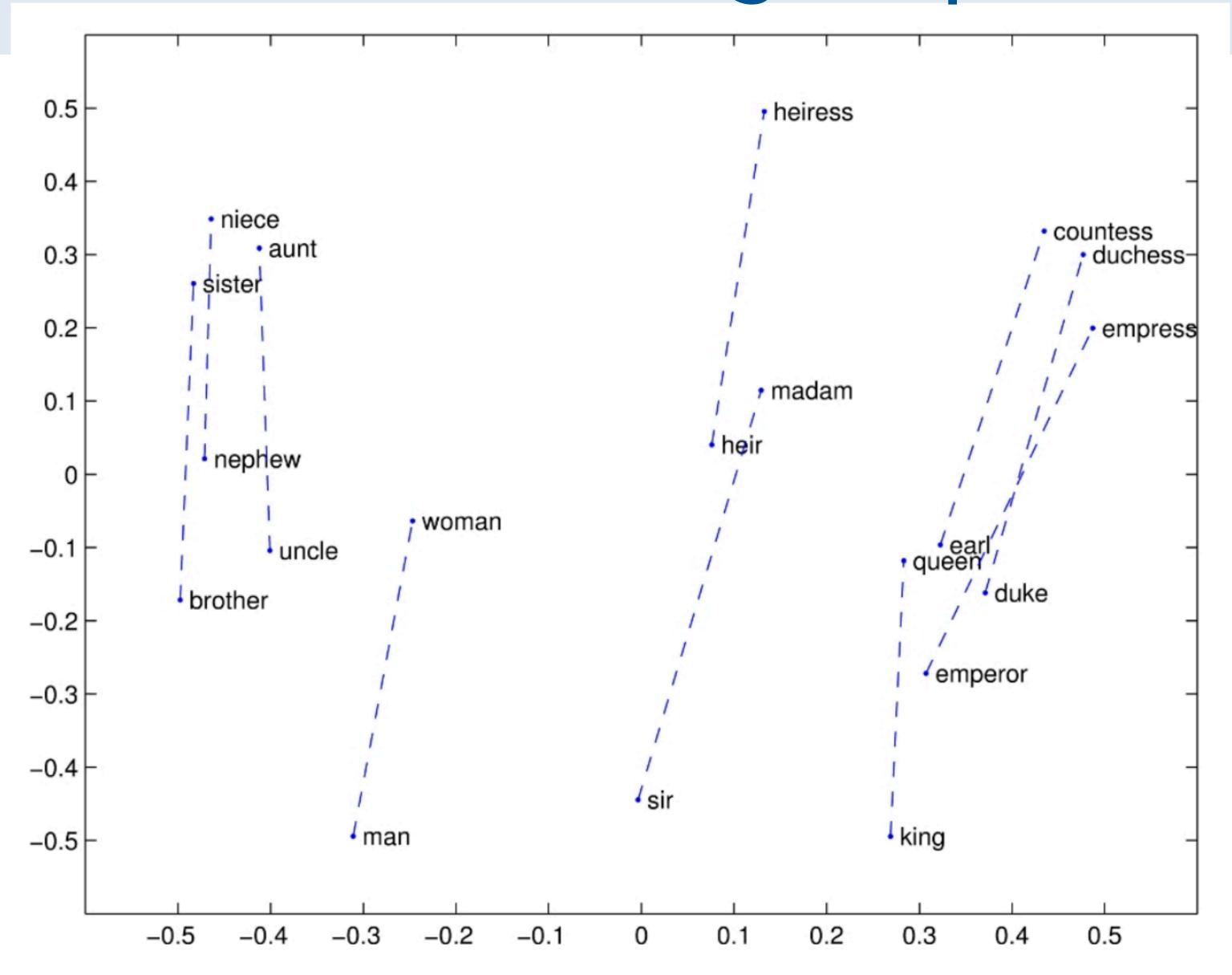




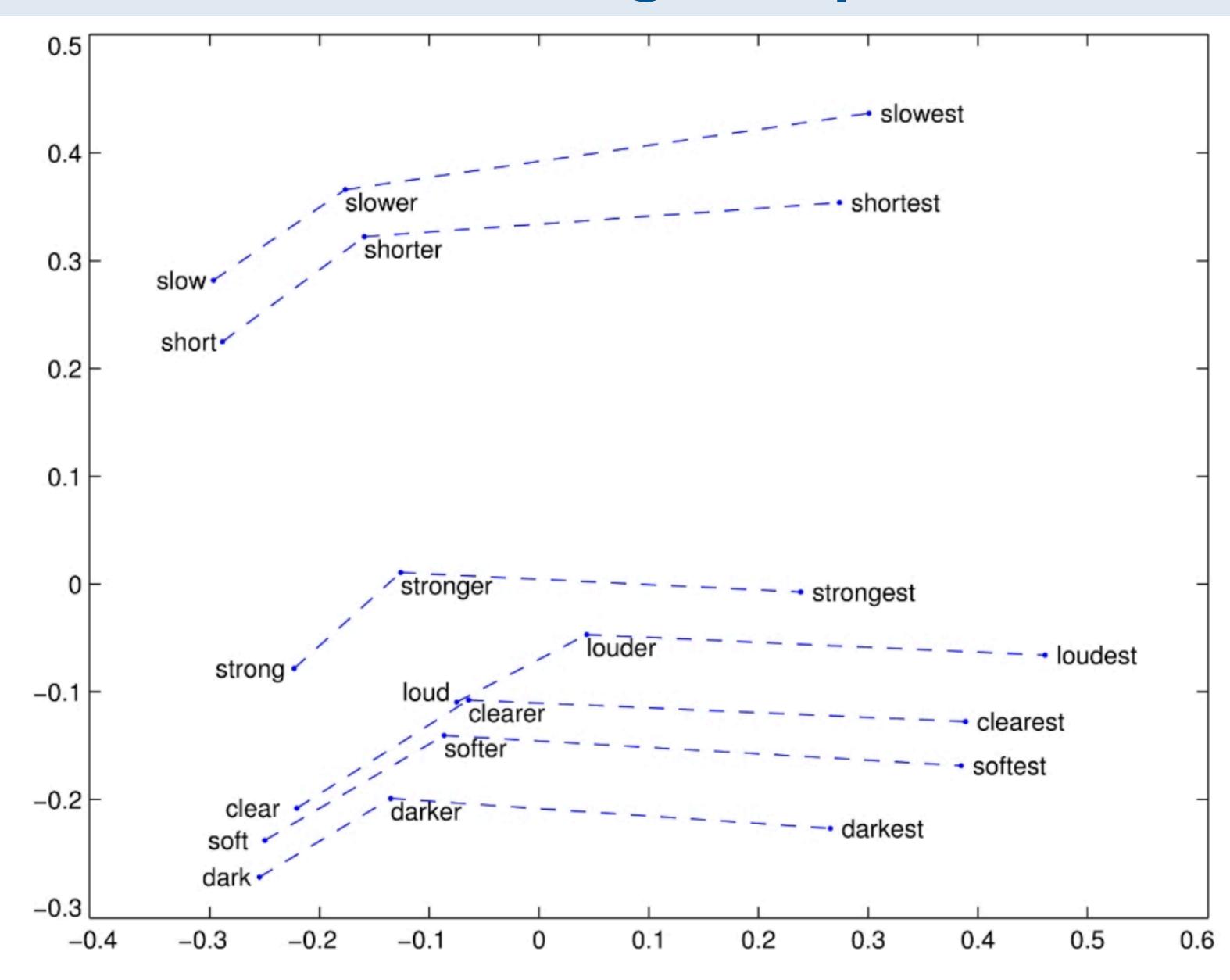
vector(king) - vector(man) + vector(woman) \approx vector(queen)

vector(Paris) - vector(France) + vector(Italy) \approx vector(Rome)

Word2Vec: Embeddings capture relations



Word2Vec: Embeddings capture relations



Word2Vec: Embeddings capture biases!

vector(doctor) - vector(father) + vector(mother) \approx vector(nurse)

vector(man) - vector(computer programmer) + vector(woman) \approx vector(homemaker)

Gender stereotype she-he analogies.

sewing-carpentry
nurse-surgeon
blond-burly
giggle-chuckle
sassy-snappy
volleyball-football

register-nurse-physician
interior designer-architect
feminism-conservatism
vocalist-guitarist
diva-superstar
cupcakes-pizzas

housewife-shopkeeper softball-baseball cosmetics-pharmaceuticals petite-lanky charming-affable hairdresser-barber

Gender appropriate she-he analogies.

queen-king waitress-waiter sister-brother mother-father ovarian cancer-prostate cancer convent-monastery

Word2Vec: Embeddings capture biases!

vector(doctor) - vector(father) + vector(mother) \approx vector(nurse)

vector(man) - vector(computer programmer) + vector(woman) \approx vector(homemaker)

Extreme she occupations

-	1 1	
	homemaker	
т.	nomemaker	

- 10. housekeeper

- 7. nanny 8. bookkeeper 9. stylist
- 2. nurse 3. receptionist
- 4. librarian 5. socialite 6. hairdresser

 - 11. interior designer 12. guidance counselor

Extreme he occupations

- 1. maestro
- 4. philosopher
- 7. financier
- 10. magician

- 2. skipper
- 5. captain
- 8. warrior
- 11. figher pilot

- 3. protege
- 6. architect
- 9. broadcaster
- 12. boss

Slide Acknowledgements

- Earlier versions of this course offerings including materials from Claire Cardie, Marten van Schijndel, Lillian Lee.
- NLP course by Mohit lyyer.