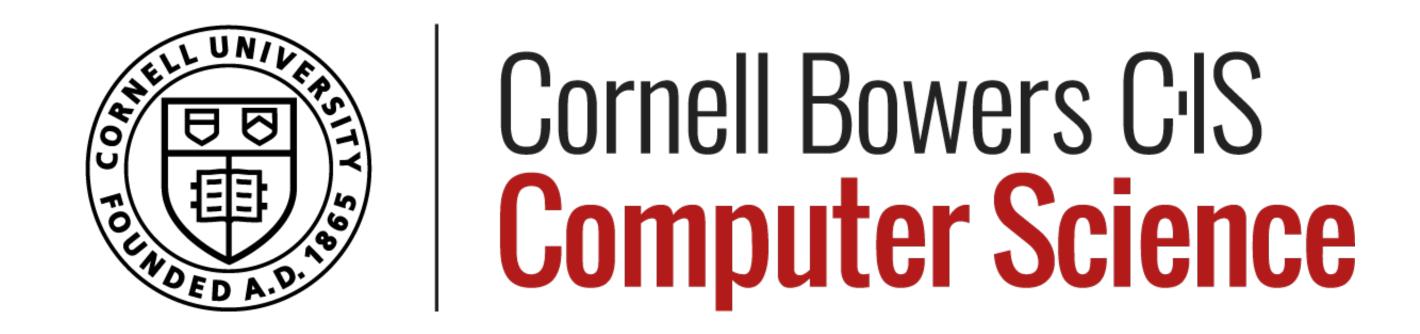
# Lecture 2: N-gram Language Models



Claire Cardie, Tanya Goyal

CS 4740 (and crosslists): Introduction to Natural Language Processing

#### Administrivia

- HW0 due on Friday, 11.59 p.m.
- HW1 will be released next Monday, Feb 3.
  - We will post a mega-thread on ed to find a partner.
  - Optional partner-matching service.

# What is a Language Model?

A model that computes a probability distribution over any sequence of words:





legacy example from Cornell NLP course.

e.g.

 $P(Mayenne ate my shoes today.) = 10^{-12}$ 

 $P(Mayenne ate my) = 10^{-9}$ 

 $P(I \text{ ate dinner in Collegetown.}) = 2 \times 10^{-10}$ 

 $P(\text{Collegetown Bagels slaps.}) = 10^{-14}$ 

Q: Why would we ever want to do this?

Grammar Error Correction

```
P(You're\ nice.) >> P(Your\ nice.)
```

- Automatic Speech Recognition (ASR)
  - Input: Audio, Output: Text



P(Isawavan) >>>> P(Eyesawe of an)

What else?



Credit: Yoav Artzi's LM-Class

- ASR Noisy Channel System
  - Input: Audio a, Output: Text w
- We want to decode w from given acoustics a:

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} P(\mathbf{w} \mid a) - - - -$$



$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

$$\arg \max_{\mathbf{w}} P(\mathbf{w} \mid a) = \arg \max_{\mathbf{w}} \frac{P(a \mid \mathbf{w})P(\mathbf{w})}{P(a)}$$

Acoustic Model:

Distribution over acoustic waves given a sentence

Language Model:
Distribution over word
sequences

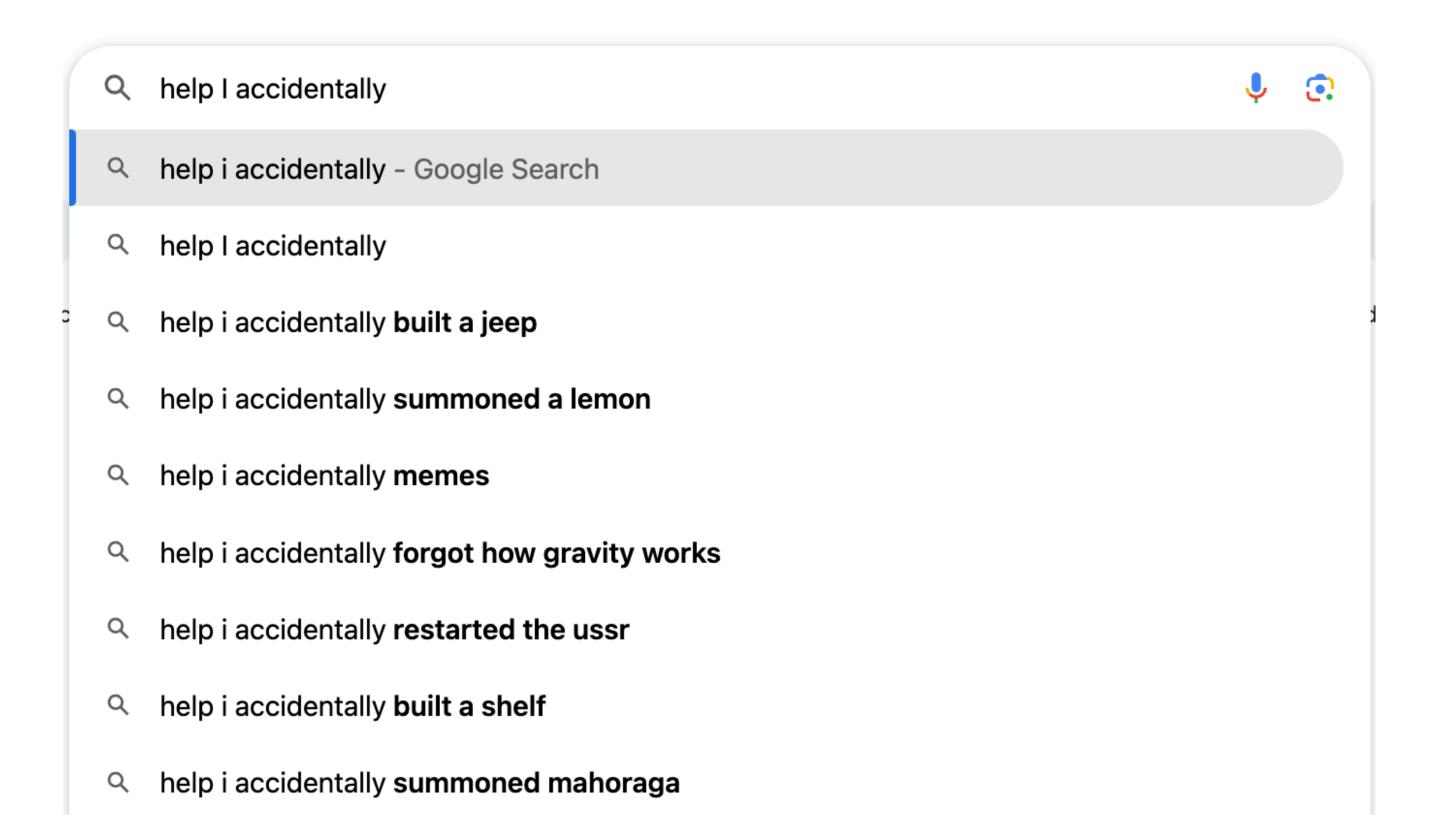
= arg max P(a | w) P(w)

 $\underset{\mathbf{w}}{\operatorname{arg\,max}} P(a \mid \mathbf{w}) P(\mathbf{w})$ 

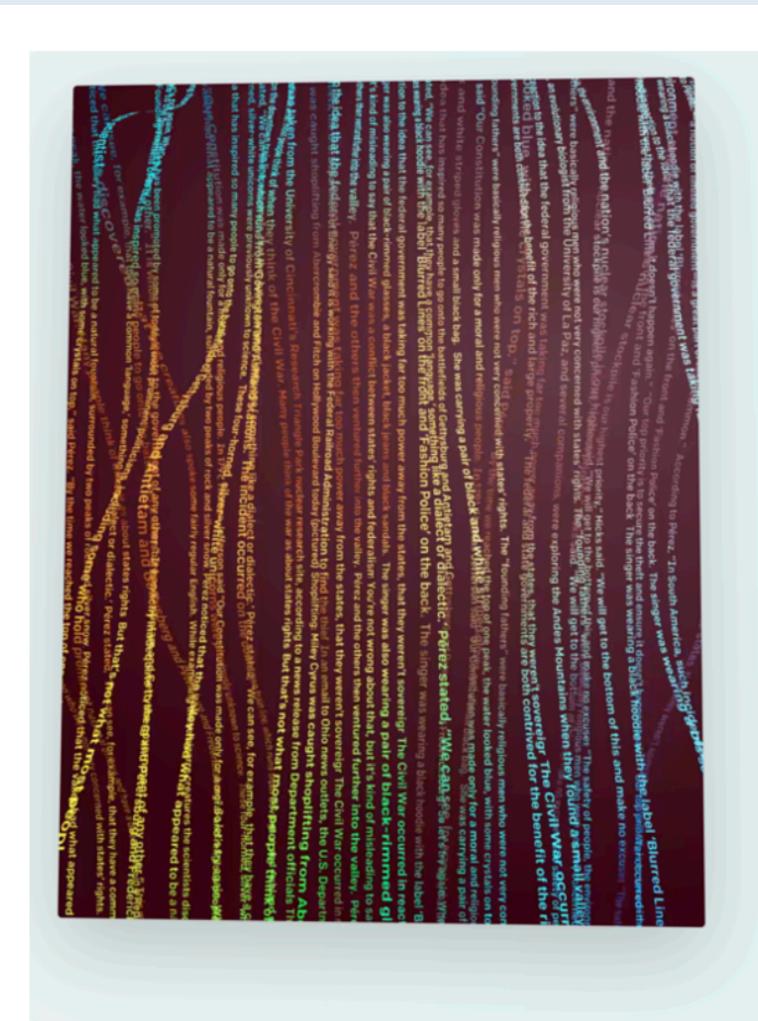
| the station signs are in deep in english     | -14732 |
|----------------------------------------------|--------|
| the stations signs are in deep in english    | -14735 |
| the station signs are in deep into english   | -14739 |
| the station 's signs are in deep in english  | -14740 |
| the station signs are in deep in the english | -14741 |
| the station signs are indeed in english      | -14757 |
| the station 's signs are indeed in english   | -14760 |
| the station signs are indians in english     | -14790 |
| the station signs are indian in english      | -14799 |
| the stations signs are indians in english    | -14807 |
| the stations signs are indians and english   | -14815 |

#### Where else are language models used?





# Language Models can be powerful



FEBRUARY 14, 2019

#### Better Language Models and Their Implications

We've trained a large-scale unsupervised language model which generates coherent paragraphs of text, achieves state-of-the-art performance on many language modeling benchmarks, and performs rudimentary reading comprehension, machine translation, question answering, and summarization — all without task-specific training.

⟨ VIEW CODE

THE READ PAPER

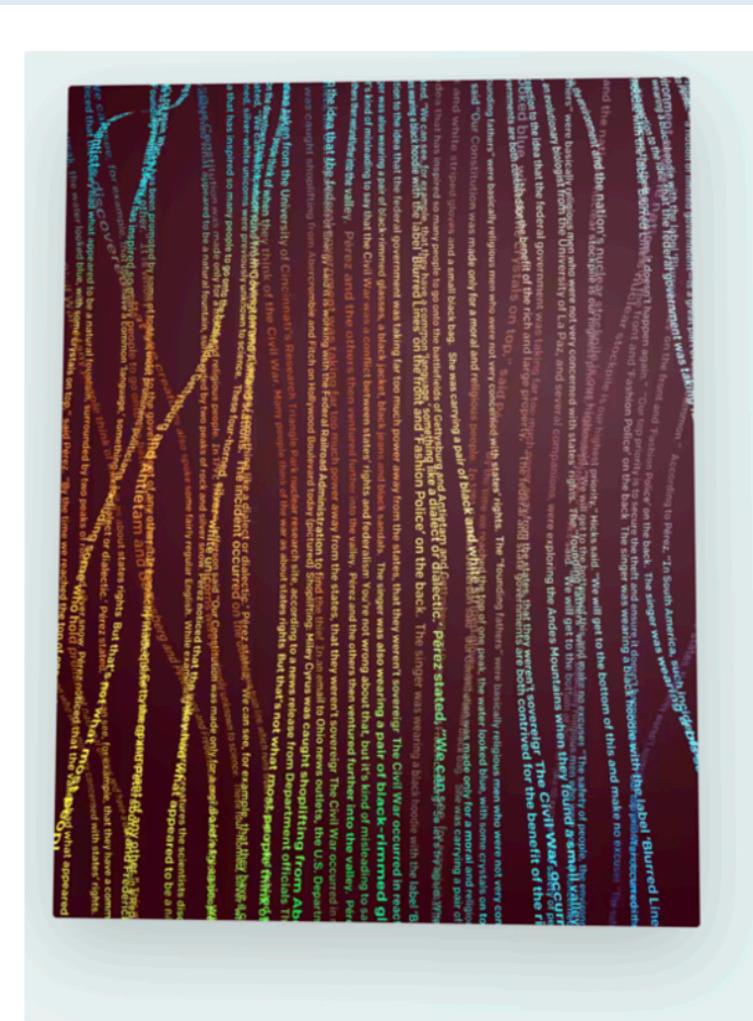
**↓** READ MORE

If any language task can be described as a text-to-text problem...

#### Sentiment Analysis:

What is the sentiment of I loved the movie? Very positive.

# Language Models can be powerful



FEBRUARY 14, 2019

#### Better Language Models and Their Implications

We've trained a large-scale unsupervised language model which generates coherent paragraphs of text, achieves state-of-the-art performance on many language modeling benchmarks, and performs rudimentary reading comprehension, machine translation, question answering, and summarization — all without task-specific training.

⟨
⟩ VIEW CODE

THE READ PAPER

**↓** READ MORE

If any language task can be described as a text-to-text problem...

#### Machine Translation:

What is the translation of "J'aime Lucy" in English? I love Lucy.

...then conceptually, we can solve it by just generating the answer as a continuation of a "prompt"

It would need to be a very powerful LM though!

Let  $\mathcal{V}$  be a finite vocabulary of words.

$$\mathcal{V} = \{ \text{ the, a, man, telescope, Madrid, two, } \ldots \}$$

We can construct (infinite) word sequences w

 $\mathcal{V}^{\dagger} = \{ \text{ the, a, the a, the fan, the man, the man with a telescope} \}$ 

- ► Input: a dataset of sentences  $\mathscr{D} = \{\mathbf{w}\}_{i=1}^{M}$
- Goal: estimate a probability distribution over all word sequences:

$$P(\mathbf{w}), P(\mathbf{w}) \geq 0 \text{ for all } \mathbf{w} \in \mathcal{V}^{\dagger}$$

- Use: estimate  $P(\mathbf{w})$ , where  $\mathbf{w}$  is a sentence.
- ightharpoonup Learning Input: M observations of raw sentences  $\mathbf{w}$
- Learning Output: model that computes  $P(\mathbf{w})$  over any  $\mathbf{w}$

- Probabilities should broadly indicate plausibility of sentences:
  - P(I saw a van) > P(eyes awe of an)
  - ▶ Not only grammaticality:  $P(artichokes intimidate zippers) \sim 0$
  - Plausibility depends on the context.

- Use: estimate  $P(\mathbf{w})$ , where  $\mathbf{w}$  is a sentence.
- ightharpoonup Learning Input: M observations of raw sentences  $\mathbf{w}$
- Learning Output: model that computes  $P(\mathbf{w})$  over any  $\mathbf{w}$

So, how do we estimate  $P(\mathbf{w})$ ?

Naive option: empirical distribution over the training data.

$$P(\mathbf{w}) = \frac{c(\mathbf{w})}{M}$$

Problem? Does not generalize to unseen sentences!

First, let's decompose  $P(\mathbf{w})$ 

$$P(\mathbf{w}) = P(w_1 w_2 w_3 \dots w_n)$$
applying chain rule
$$= P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_2 w_1) \dots P(w_n \mid w_1 \dots w_{n-1})$$

assumption: probability of a word depends on previous words only

$$= \prod_{i=1}^{n} P(w_i \mid w_1 \dots w_{i-1})$$

P(I saw a man) = P(I) P(saw | I) P(a | I saw) P(man | I saw a)

$$P(\mathbf{w}) = P(w_1 w_2 w_3 \dots w_n) = \prod_{i=1}^n P(w_i | w_1 \dots w_{i-1})$$

Can we now use count based estimates?

$$= P(w_1) P(w_2 | w_1) P(w_3 | w_2 w_1) \dots P(w_n | w_1 \dots w_{n-1})$$

If a test sentence **w** is unseen in the training data, this will again be zero!

$$P(\mathbf{w}) = P(w_1 w_2 w_3 \dots w_n) = \prod_{i=1}^n P(w_i | w_1 \dots w_{i-1})$$

#### Key idea: Markov Assumption

Probability of each word in a continuation only depends on a fixed number of previous words

$$\approx \prod_{i=1}^{n} P(w_i | w_{i-k+1} \dots w_{i-1})$$

N-gram language models: Probability of each word depends on N-1 previous words.

Assumption: Each word  $w_i$  is sampled from a i.i.d. distribution.

$$P(\mathbf{w}) = P(w_1 w_2 w_3 \dots w_n) = \prod_{i=1}^n P(w_i)$$
where  $w_i \in \mathcal{V} \cup \text{STOP}$ 

#### Does this solve this sparsity problem?

To a large extent, yes. We can compute probability of an unseen sentence by multiplying probability of words.

Assumption: Each word  $w_i$  is sampled from a i.i.d. distribution.

$$P(\mathbf{w}) = P(w_1 w_2 w_3 \dots w_n) = \prod_{i=1}^n P(w_i)$$
where  $w_i \in \mathcal{V} \cup \text{STOP}$ 

#### How do we learn this?

Parameter of a unigram LM are probabilities of each word in  $\mathcal{V}$ .

$$P(w) = \frac{c(w)}{c()}$$

Assumption: Each word  $w_i$  is sampled from a i.i.d. distribution.

$$P(\mathbf{w}) = P(w_1 w_2 w_3 \dots w_n) = \prod_{i=1}^n P(w_i)$$

where  $w_i \in \mathcal{V} \cup STOP$ 

Note: In addition to assigning a probability distribution to some sentence, we can also generate/ decode a sentence!

```
i=0
repeat
i++
w_i \sim P(w)
until w_i = \text{STOP}
return
< w_1 w_2 \dots w_i >
```

Assumption: Each word  $w_i$  is sampled from a i.i.d. distribution.

$$P(\mathbf{w}) = P(w_1 w_2 w_3 \dots w_n) = \prod_{i=1}^n P(w_i)$$

where 
$$w_i \in \mathcal{V} \cup STOP$$

#### Let's generate!

- [thrift, did, eighty, said, hard, 'm, july, bullish]
- [
- [after, any, on, consistently, hospital, lake, of, of, other, and, factors, raised, analyst, too, allowed, mexico, never, consider, fall, bungled, davison, that, obtain, price, lines, the, to, sass, the, the, further, board, a, details, machinists, between, nasdaq]

More frequent words will have higher prob.

P(the the) > P(ice cream)

#### N=2

$$P(\mathbf{w}) = P(w_1 w_2 w_3 \dots w_n) = \prod_{i=1}^n P(w_i | w_{i-1})$$

where 
$$w_i \in \mathcal{V} \cup \{\text{STOP}\}\ \text{and}\ w_0 =$$

#### Let's generate!

- [texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, said, mr., gurria, mexico, 's, motion, control, proposal, without, permission, from, five, hundred, fifty, five, yen]
- [although, common, shares, rose, forty, six, point, four, hundred, dollars, from, thirty, seconds, at, the, greatest, play, disingenuous, to, be, reset, annually, the, buy, out, of, american, brands, vying, for, mr., womack, currently, sharedata, incorporated, believe, chemical, prices, undoubtedly, will, be, as, much, is, scheduled, to, conscientious, teaching]
- [this, would, be, a, record, november]

#### Can be extended to any N.

$$P(\mathbf{w}) = P(w_1 w_2 w_3 \dots w_n) = \prod_{i=1}^n P(w_i | w_{i-(N-1)} \dots w_{i-1})$$

#### But how do we learn this?

Remember, parameters are these probabilities.

Maximum likelihood estimates has a closed-form solution: relative frequencies.

E.g. for bi-gram models: 
$$q_{MLE}(u \mid v) = \frac{c(u, v)}{c(v)}$$

#### **Training Counts**

198015222 the first

194623024 the same

168504105 the following

158562063 the world

•••

14112454 the door

-----

23135851162 the \*

 $P_{ML}(door|the)$  14.112.454

$$= \frac{14,112,454}{2,313,581,162} = 0.0006$$

- $\blacktriangleright$  Learning Input: M observations of raw sentences  $\mathbf{w}$
- **Learning Output:** model that computes  $P(\mathbf{w})$  over any  $\mathbf{w}$

$$P(\mathbf{w}) = P(w_1 w_2 w_3 \dots w_n) = \prod_{i=1}^n P(w_i | w_{i-(N-1)} \dots w_{i-1})$$

Compute ML estimates using the 
$$M$$
 observations. 
$$q_{MLE}(u \mid v \dots) = \frac{c(u,v\dots)}{c(v\dots)}$$
 Use it to assign probabilities to any test sentence or

generate

# N-gram Models on Shakespeare

#### ► 1-gram

- ▶ To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have gram
- Hill he late speaks; or! a more to leg less first you enter

#### ► 2-gram

- Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow.
- What means, sir. I confess she? then all sorts, he is trim, captain.

#### ► 3-gram

- Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, 'tis done.
- This shall forbid it should be branded, if renown made it empty.

#### ► 4-gram

- King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv'd in;
- It cannot be but so.

### N-gram Models on Shakespeare

#### Corpus statistics

- ► 884,647 tokens, vocabulary size of =29,066
- ► Shakespeare produced 300,000 bigram types out of = 844M possible bigrams
  - So 99.96% of the possible bigrams were never seen (have zero entries in the table)

How should we choose N?

Because it was a sunny day, I should take a \_\_\_\_\_\_.

#### Suppose N=2:

P (raincoat | Because it was a sunny day, I should take a) = P (raincoat | a)

P (hat | Because it was a sunny day, I should take a) = P (hat | a)

#### Suppose N=3:

P (raincoat | Because it was a sunny day, I should take a) = P (raincoat | take a)

P (hat | Because it was a sunny day, I should take a) = P (hat | take a)

How should we choose N?

```
rainy
Because it was a sunny day, I should take a _____.
```

#### Suppose N=2:

P (raincoat | Because it was a sunny day, I should take a) = P (raincoat | a)

P (hat | Because it was a sunny day, I should take a) = P (hat | a)

#### Suppose N=3:

P (raincoat | Because it was a sunny day, I should take a) = P (raincoat | take a)

P (hat | Because it was a sunny day, I should take a) = P (hat | take a)

How should we choose N?

Solution: Increase N?

We run into the previous sparsity problem! (65)



# Sparsity in LMs

What happens if we encounter zero counts in the training data?

#### **Training Set**

- ... denied the allegations
- ... denied the reports
- ... denied the claims
- ... denied the request

#### **Test Set**

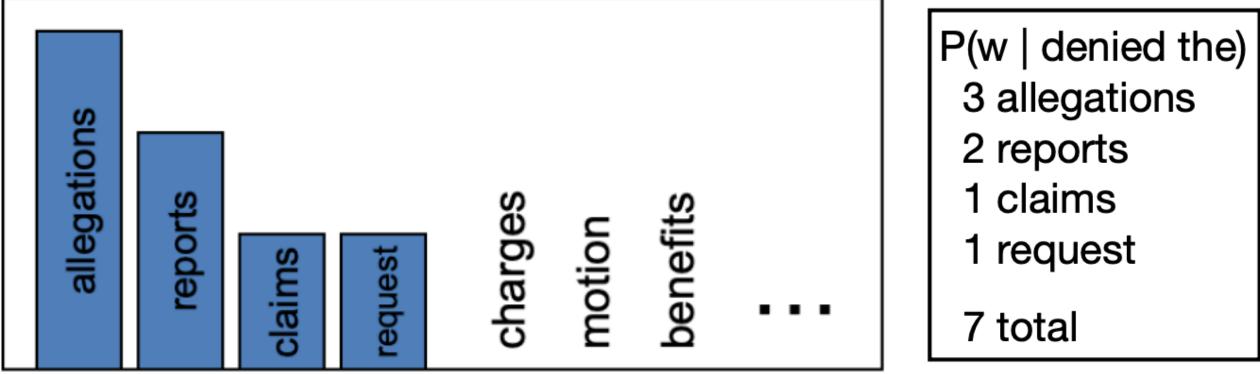
- ... denied the offer
- ... denied the loan

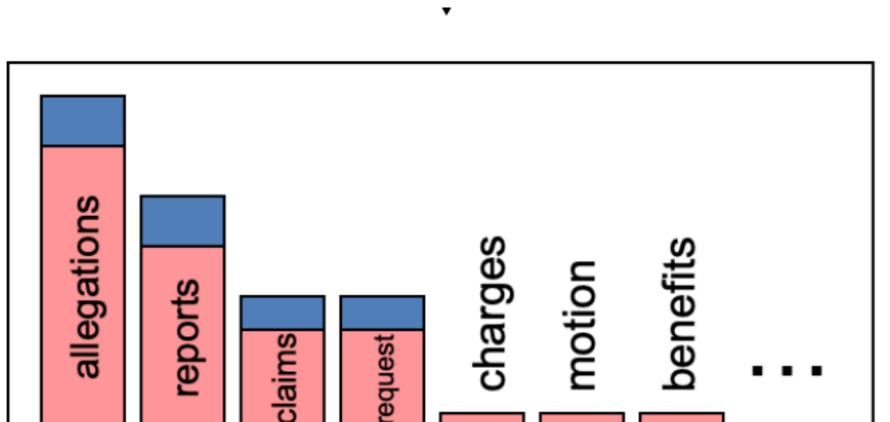
$$p(\text{offer} | \text{denied the}) = 0$$

ightharpoonup A single n-gram with zero probability –> probability of the entire sequence is 0.

# Smoothing

- Goal: Estimating statistics from sparse data.
- Idea: **Steal** some probability mass from seen data.





P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other
7 total

# Smoothing

#### Add-one smoothing

Pretend we saw each word one more time that we did (even unseen ones). For 2-gram:

$$P_{MLE} = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})} \to P_{MLEAdd-1} = \frac{c(w_{i-1}, w_i) + 1}{c(w_{i-1}) + |\mathcal{V}|}$$

- Called Laplace Smoothing.
- Can be generalized to Add-K  $P_{MLEAdd-K} = \frac{c(w_{i-1}, w_i) + K}{c(w_{i-1}) + K \cdot |\mathcal{V}|}$

#### Raw counts: 9222 sentences

#### Bigrams

|         | i  | want | to  | eat | chinese | food | lunch | spend |
|---------|----|------|-----|-----|---------|------|-------|-------|
| i       | 5  | 827  | 0   | 9   | 0       | 0    | 0     | 2     |
| want    | 2  | 0    | 608 | 1   | 6       | 6    | 5     | 1     |
| to      | 2  | 0    | 4   | 686 | 2       | 0    | 6     | 211   |
| eat     | 0  | 0    | 2   | 0   | 16      | 2    | 42    | 0     |
| chinese | 1  | 0    | 0   | 0   | 0       | 82   | 1     | 0     |
| food    | 15 | 0    | 15  | 0   | 1       | 4    | 0     | 0     |
| lunch   | 2  | 0    | 0   | 0   | 0       | 1    | 0     | 0     |
| spend   | 1  | 0    | 1   | 0   | 0       | 0    | 0     | 0     |

#### Unigram

| i    | want | to   | eat | chinese | food | lunch | spend |
|------|------|------|-----|---------|------|-------|-------|
| 2533 | 927  | 2417 | 746 | 158     | 1093 | 341   | 278   |

Bi-gram probabilities 
$$P_{MLE}(w_i \mid w_{i-1}) = \frac{c(w_i w_{i-1})}{c(w_{i-1})}$$

|         | i       | want | to     | eat    | chinese | food   | lunch  | spend   |
|---------|---------|------|--------|--------|---------|--------|--------|---------|
| i       | 0.002   | 0.33 | 0      | 0.0036 | 0       | 0      | 0      | 0.00079 |
| want    | 0.0022  | 0    | 0.66   | 0.0011 | 0.0065  | 0.0065 | 0.0054 | 0.0011  |
| to      | 0.00083 | 0    | 0.0017 | 0.28   | 0.00083 | 0      | 0.0025 | 0.087   |
| eat     | 0       | 0    | 0.0027 | 0      | 0.021   | 0.0027 | 0.056  | 0       |
| chinese | 0.0063  | 0    | 0      | 0      | 0       | 0.52   | 0.0063 | 0       |
| food    | 0.014   | 0    | 0.014  | 0      | 0.00092 | 0.0037 | 0      | 0       |
| lunch   | 0.0059  | 0    | 0      | 0      | 0       | 0.0029 | 0      | 0       |
| spend   | 0.0036  | 0    | 0.0036 | 0      | 0       | 0      | 0      | 0       |

#### Smoothed counts (Add-1)

|         | i  | want | to  | eat | chinese | food | lunch | spend |
|---------|----|------|-----|-----|---------|------|-------|-------|
| i       | 6  | 828  | 1   | 10  | 1       | 1    | 1     | 3     |
| want    | 3  | 1    | 609 | 2   | 7       | 7    | 6     | 2     |
| to      | 3  | 1    | 5   | 687 | 3       | 1    | 7     | 212   |
| eat     | 1  | 1    | 3   | 1   | 17      | 3    | 43    | 1     |
| chinese | 2  | 1    | 1   | 1   | 1       | 83   | 2     | 1     |
| food    | 16 | 1    | 16  | 1   | 2       | 5    | 1     | 1     |
| lunch   | 3  | 1    | 1   | 1   | 1       | 2    | 1     | 1     |
| spend   | 2  | 1    | 2   | 1   | 1       | 1    | 1     | 1     |

Smoothed bigram probs (Add-1)  $P_{MLEAdd-1} = \frac{c(w_{i-1}, w_i) + 1}{c(w_{i-1}) + |\mathcal{V}|}$ 

|         | i       | want    | to      | eat     | chinese | food    | lunch   | spend   |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| i       | 0.0015  | 0.21    | 0.00025 | 0.0025  | 0.00025 | 0.00025 | 0.00025 | 0.00075 |
| want    | 0.0013  | 0.00042 | 0.26    | 0.00084 | 0.0029  | 0.0029  | 0.0025  | 0.00084 |
| to      | 0.00078 | 0.00026 | 0.0013  | 0.18    | 0.00078 | 0.00026 | 0.0018  | 0.055   |
| eat     | 0.00046 | 0.00046 | 0.0014  | 0.00046 | 0.0078  | 0.0014  | 0.02    | 0.00046 |
| chinese | 0.0012  | 0.00062 | 0.00062 | 0.00062 | 0.00062 | 0.052   | 0.0012  | 0.00062 |
| food    | 0.0063  | 0.00039 | 0.0063  | 0.00039 | 0.00079 | 0.002   | 0.00039 | 0.00039 |
| lunch   | 0.0017  | 0.00056 | 0.00056 | 0.00056 | 0.00056 | 0.0011  | 0.00056 | 0.00056 |
| spend   | 0.0012  | 0.00058 | 0.0012  | 0.00058 | 0.00058 | 0.00058 | 0.00058 | 0.00058 |

# Other smoothing options

- ► Back-off smoothing: use lower-order n-gram
  - For tri-gram, use tri-gram if you have good evidence, otherwise use bi-gram, otherwise unigram
- Linear interpolation: mix lower-order n-grams
  - For tri-gram, mix with with bi-gram and unigram probabilities

$$P_{\lambda}(x_i | x_{i-1}, x_{i-2}) = \lambda_3 p_{\text{MLE}}(x_i | x_{i-1}, x_{i-2}) + \lambda_2 p_{\text{MLE}}(x_i | x_{i-1}) + \lambda_1 p_{\text{MLE}}(x_i)$$

$$\sum_{i=1}^{n} \lambda_i = 1$$

# Slide Acknowledgements

- Earlier versions of this course offerings including materials from Marten van Schijndel, Lillian Lee.
- Yoav Artzi's LM-class.