Evaluation in NLP

CS 4740 (and crosslists): Introduction to Natural Language Processing

https://courses.cs.cornell.edu/cs4740/2025sp

Slides developed by:

Magd Bayoumi, Claire Cardie, Tanya Goyal, Dan Jurafsky, Lillian Lee, James Martin, Marten van Schijndel

Announcements

Today: How do we evaluate the performance of NLP systems?

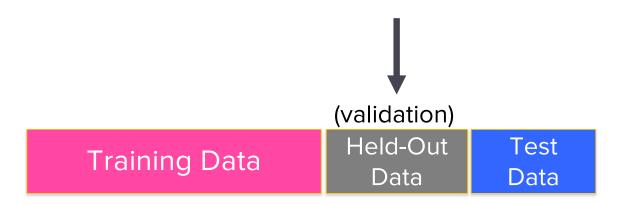
More generally, how do we evaluate ML models?

Train parameters of our model on a training set/training corpus.

Test the model's performance on data we haven't seen: the **test set**

No overlap with the training set.

The **evaluation metric** tells us how well our model performs on the test set.



- 1. Train the model on the training data
- 2. Select an appropriate evaluation metric
- 3. Choose model + hyperparameters to maximize performance on held-out/validation data
- 4. Use selected model+hyperparameters when applying model to test set
- 5. Report results on the test set

Today: How do we evaluate the performance of NLP systems?

- Text classification
- LMs
- Sequence taggingPOS taggingNER tagging

Evaluating text classifiers

Let's concentrate on binary classifiers:

- Is this email spam?spam (+) or not spam (-)
- Does this post have positive or negative sentiment?
 positive sentiment(+) or negative sentiment (-)

We'll need to know

- 1. What did our classifier say about each email or post?
- What should our classifier have said, i.e., the correct answer, usually as defined by humans ("gold label")

First step in evaluation: The confusion matrix

gold standard labels

		gold positive	gold negative
system output labels	system positive system negative	true positive	false positive
		false negative	true negative

Accuracy on the confusion matrix

gold standard labels

		gold positive	gold negative
system output labels	system positive system negative	true positive	false positive
		false negative	true negative

$$\textbf{accuracy} = \frac{tp+tn}{tp+tp+tn+fn}$$
 total # of examples

Why don't we use accuracy?

Accuracy doesn't work well when we're dealing with uncommon or imbalanced classes

Suppose we look at 1,000,000 emails for spam

- 100 of them are spam
- 999,900 are not spam

Imagine the following simple classifier

Every post is not spam

Accuracy re: spam

100 posts are +; 999,900 are -

gold standard labels

		gold positive	gold negative
system output labels	system positive	true positive	false positive
	system negative	false negative	true negative

$$\mathbf{accuracy} = \frac{tp+tn}{tp+fp+tn+fn}$$

Why don't we use accuracy?

Accuracy of our "all posts are negative" classifier

999,900 true negatives and 100 false negatives

Accuracy is 999,900/1,000,000 = 99.99%!

But useless at finding spam!!

Which was our goal!

Accuracy doesn't work well for unbalanced classes

Most emails are not spam!

Instead of accuracy we use precision and recall

gold standard labels

		gold positive	gold negative	
system output	system positive	true positive	false positive	$\mathbf{precision} = \frac{tp}{tp+fp}$
labels	system negative	false negative	true negative	
		$\mathbf{recall} = \frac{\mathbf{tp}}{\mathbf{tp+fn}}$		$accuracy = \frac{tp+tn}{tp+fp+tn+fn}$

Precision: % of selected items (i.e. identified as positive class) that are correct

Recall: % of targeted items (i.e. gold positives) that that are correct

Precision/Recall aren't fooled by the "just call everything spam" classifier!

Stupid classifier

• Accuracy = 999,900/1,000,000 = 99.99%

But the Recall and Precision for this classifier are terrible:

$$\mathbf{Recall} = \frac{\text{true positives}}{\text{true positives} + \text{false negatives}}$$

$$Precision = \frac{true \ positives}{true \ positives + false \ positives}$$

A combined measure: F-measure

F-measure usually refers to F1 --- a combination (the harmonic mean) of precision and recall.

$$F_1 = \frac{2PR}{P+R}$$

Today: Evaluating NLP systems

- Text classification
- LMs
- Sequence taggingPOS taggingNER tagging

How do we evaluate a language model?

unigram, bigram, trigram counts ...

Train parameters of our model on a training set/training corpus.

Select an evaluation metric

Choose model + hyperparameters to maximize the probability of held-out/validation data

Test the model's performance on data we haven't seen: the **test set**

How do we determine when a language model is performing well?

Does our model assign higher probability to "real" / grammatical sentences?

Best option: Extrinsic evaluation of model

- Embed LM in an application / task
 - Machine translation, Autocomplete, Speech recognition
- Measure the performance on the application/task with and without the LM using an evaluation metric designed for that task
- Compare performance of model A and B

Best option: Extrinsic evaluation of LM

- Embed LM in an application / task
 - Machine translation, Autocomplete, Speech recognition
- Measure LM performance on the application/task with and without the LM using an evaluation metric designed for that task
 - How many words translated correctly?
 - How many future words are predicted correctly?
 - How many words are transcribed correctly?
 - •
- Compare performance of model A and B

Difficulty of extrinsic evaluation

- Time consuming
 - Can take days or weeks to obtain "gold standard" / labelled / annotated test data

Alternative for LM evaluation: intrinsic evaluation

- Measure quality of the LM model independent of any application
- Standard measure: perplexity
 - <u>Intuition</u>: the better model is the one that has a tighter fit to the test data....one that predicts the test data

Perplexed == confused

- We'll look first at the measure
 - Lower is better
- Then on how to correctly apply it

Intuition behind Perplexity

Shannon game

Similar to the predict next word task

I always order burgers with _____

The cat sat on the _____

NLP is _____

 Unigrams are quite bad at fitting the test data

• Why?

fries 0.1
ketchup 0.1
onions 0.1
lettuce 0.1
tomato 0.1
cheese 0.1
...
cheetos 0.0001
...
the 1e-1000

Perplexity (PP)

For a test set W =
$$w_1 w_2 ... w_N$$

PP (W) = P ($w_1 w_2 ... w_N$) -1/N
= $\sqrt[N]{\frac{1}{P(w_1 w_2 ... w_N)}}$

The higher the (estimated) probability of the word sequence, the **lower** the perplexity.

Must be computed with models that have no knowledge of the test set, i.e. were not trained on (any part of) the test corpus.

Per plexity

For a test set
$$W = w_1 w_2 ... w_N$$

$$PP(w) = P(w_1 w_2 ... w_N)^{-\frac{1}{N}}$$

$$= N \sqrt{\frac{1}{P(w_1 w_2 ... w_N)}}$$

From earlier | use chain rule |
$$= N \sqrt{\frac{1}{N}} \frac{1}{P(w_1 | w_1 ... w_{n-1})}$$

assume bigrams | approx.

Perplexity as weighted branching factor

- Branching factor the number of possible next words that can follow any word
- Consider random sequence of digits (0, ..., 9)
 - Possible branches....?

Perplexity as weighted branching factor

- Branching factor the number of possible next words that can follow any word
- Consider random sequence of digits (0, ..., 9)
 - o Possible branches....? $PP(W) = P(w_1w_2\dots w_n)^{-\frac{1}{N}}$ $= (\frac{1}{10}^N)^{-\frac{1}{N}}$ $= \frac{1}{10}^{-1}$ = 10

Lower perplexity = better model

Training: 38 million words, WSJ

Test set: 1.5 million words, a different portion of WSJ

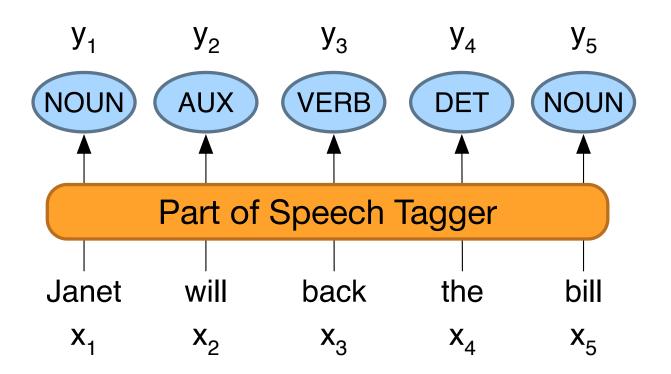
	Unigram	Bigram	Trigram
Perplexity	962	170	109

Today: Evaluating NLP systems

- Text classification
- LMs
- Sequence taggingPOS taggingNER tagging

Part-of-Speech Tagging

Map from sequence $x_1,...,x_n$ of words to $y_1,...,y_n$ of POS tags



Sample "Tagged" English sentences

Preliminary/ADJ findings/NOUN were/AUX reported/VERB in/ADP today/NOUN 's/PART New/PROPN England/PROPN Journal/PROPN of/ADP Medicine/PROPN

Which evaluation metric should we use?

accuracy

NER

[PER Jane Villanueva] of [ORG United], a unit of [ORG United Airlines Holding], said the fare applies to the [LOC Chicago] route.

Accomplished via BIO tagging

Which evaluation metric should we use?

Words	BIO Label
Jane	B-PER
Villanueva	I-PER
of	O
United	B-ORG
Airlines	I-ORG
Holding	I-ORG
discussed	O
the	O
Chicago	B-LOC
route	O
•	O

[PER Jane Villanueva] of [ORG United], a unit of [ORG United Airlines Holding], said the fare applies to the [LOC Chicago] route.

- Not accuracy!!! Why not?
 - Segmentation component of the task causes problems
- Entity is the correct unit to measure
- Use R/P/F

recall = # correctly identified NEs / total # of NEs that should have been identified precision = # correctly identified NEs / # of NEs that were identified

("correct" according to exact match or partial match or proportional match)

Note: There remains a mismatch between the training conditions (token-level) and the testing conditions (entity-level)