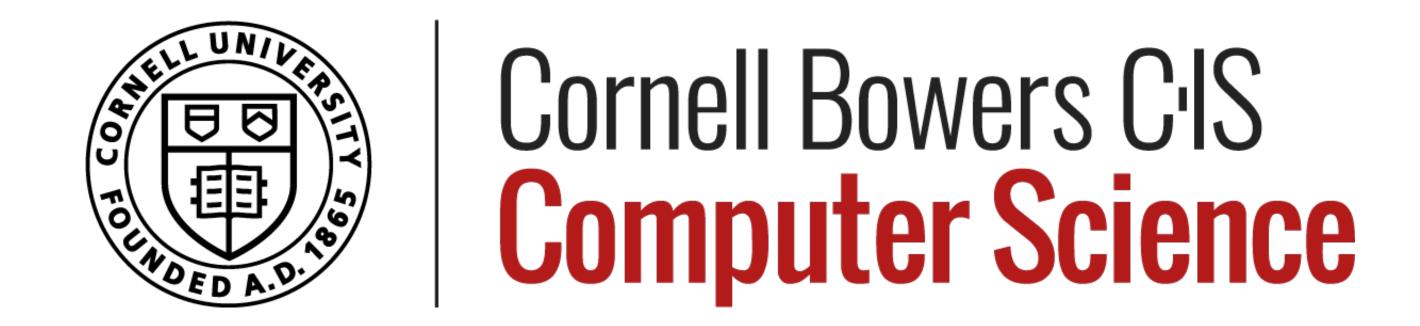
#### Lecture 13: Transformers



Claire Cardie, Tanya Goyal

CS 4740 (and crosslists): Introduction to Natural Language Processing

# Today

- Recap: Attention in RNNs
- Transformers
  - Self-Attention
    - Single-head
    - Multi-head
  - Position Embedding

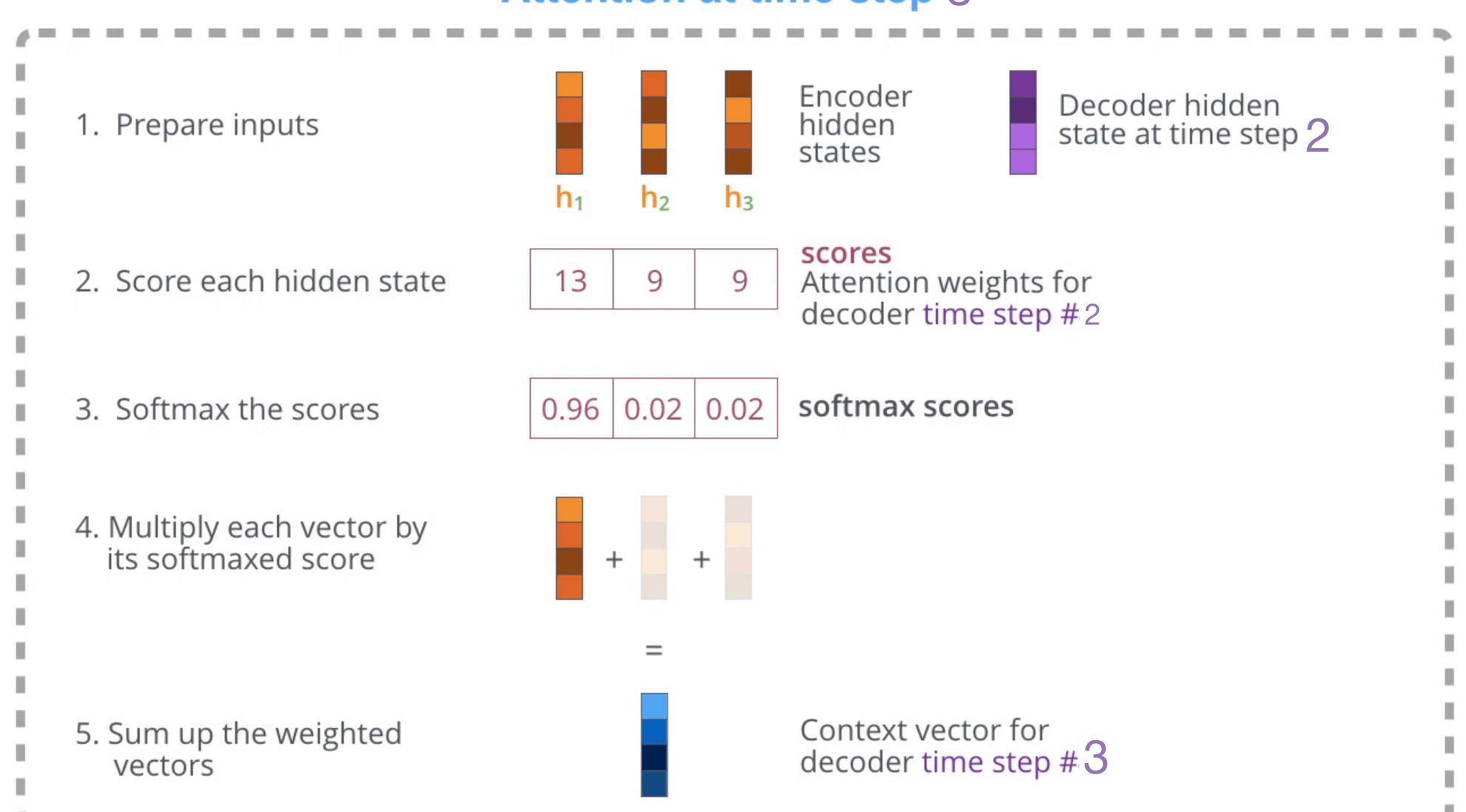
#### Recap: motivation for attention in the enc/dec framework

If we knew a single relevant encoder state  $h_t^{enc}$  to use for our particular decoding step, we could use that instead of a fixed  $c^{
m enc}$ Decoder (output is ignored during encoding) softmax  $h_{n}^{e} = c = h_{0}^{d}$ hidden layer(s) embedding layer  $\mathbf{X}_{2}$ 

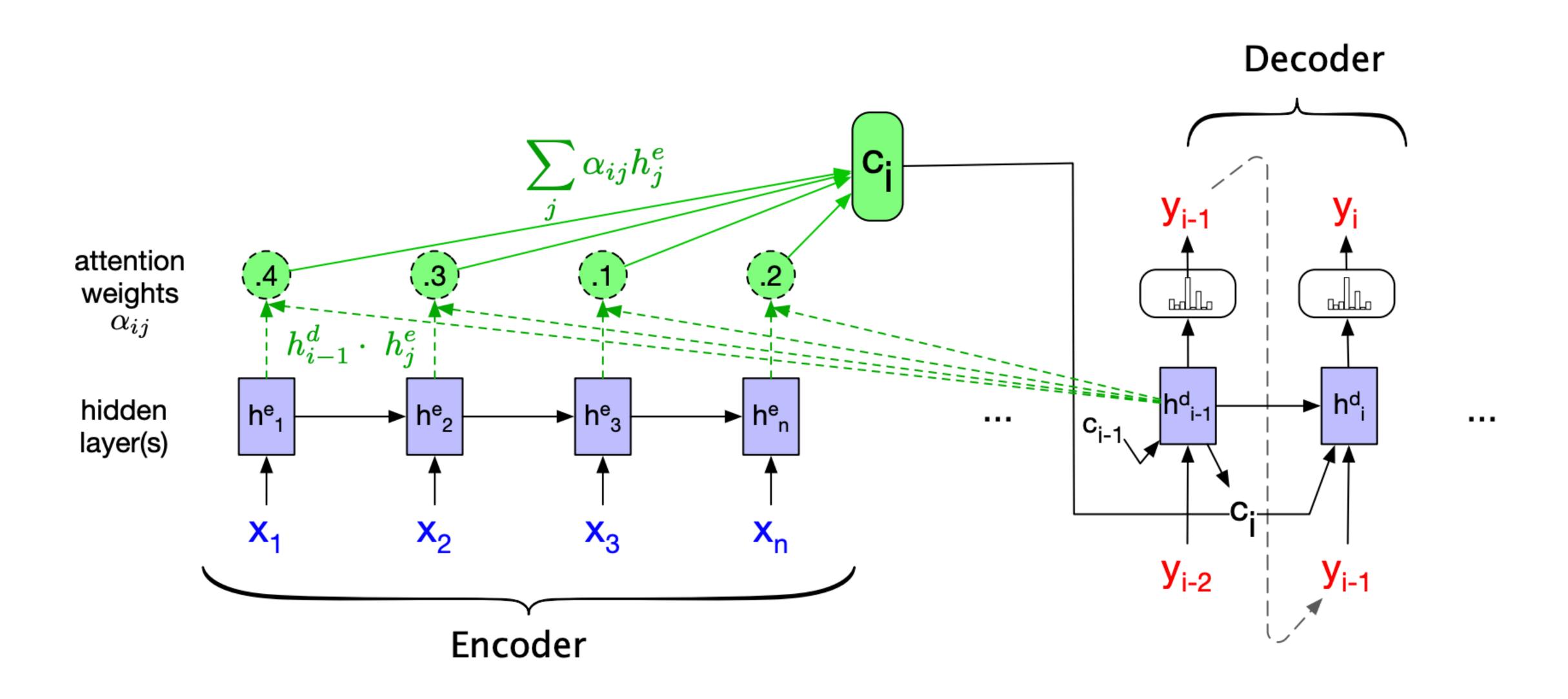
Encoder

# Recap: Attention: allow <u>all</u> enc. hidden states to participate to a weighted degree

#### Attention at time step 3

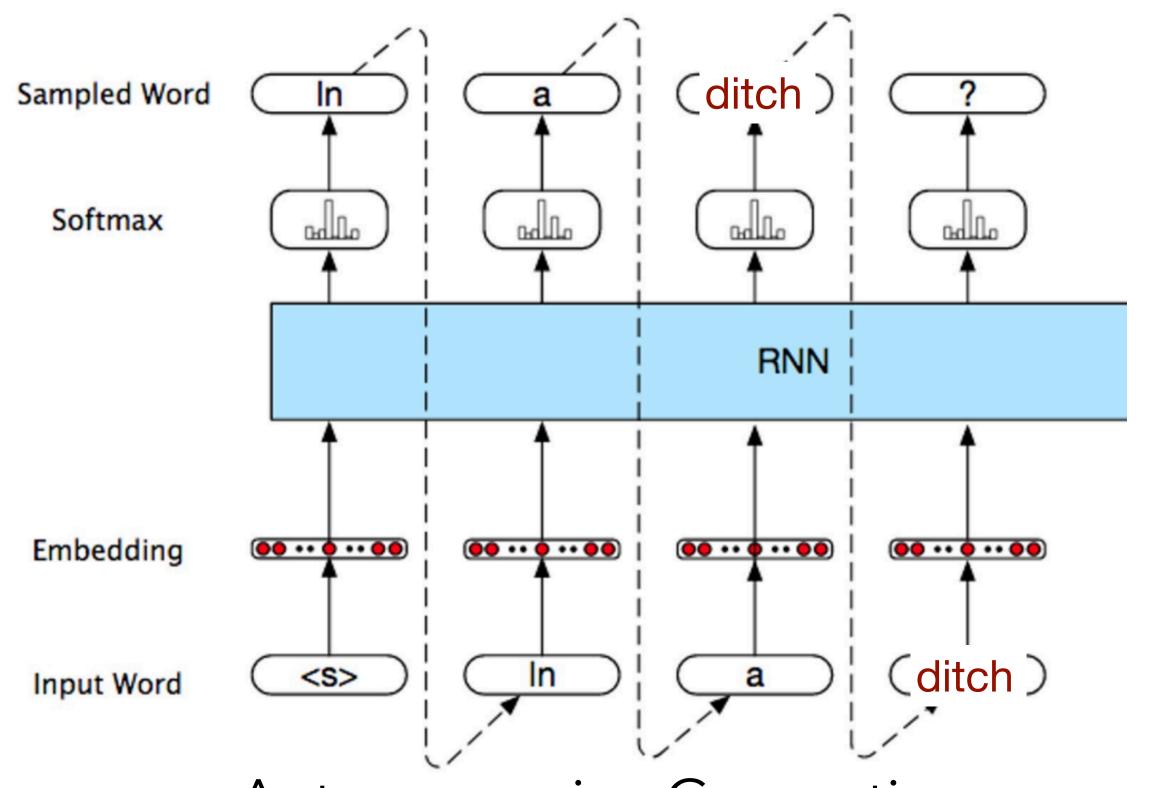


# Recap: Attention allows <u>all</u> enc. hidden states to participate to a weighted degree



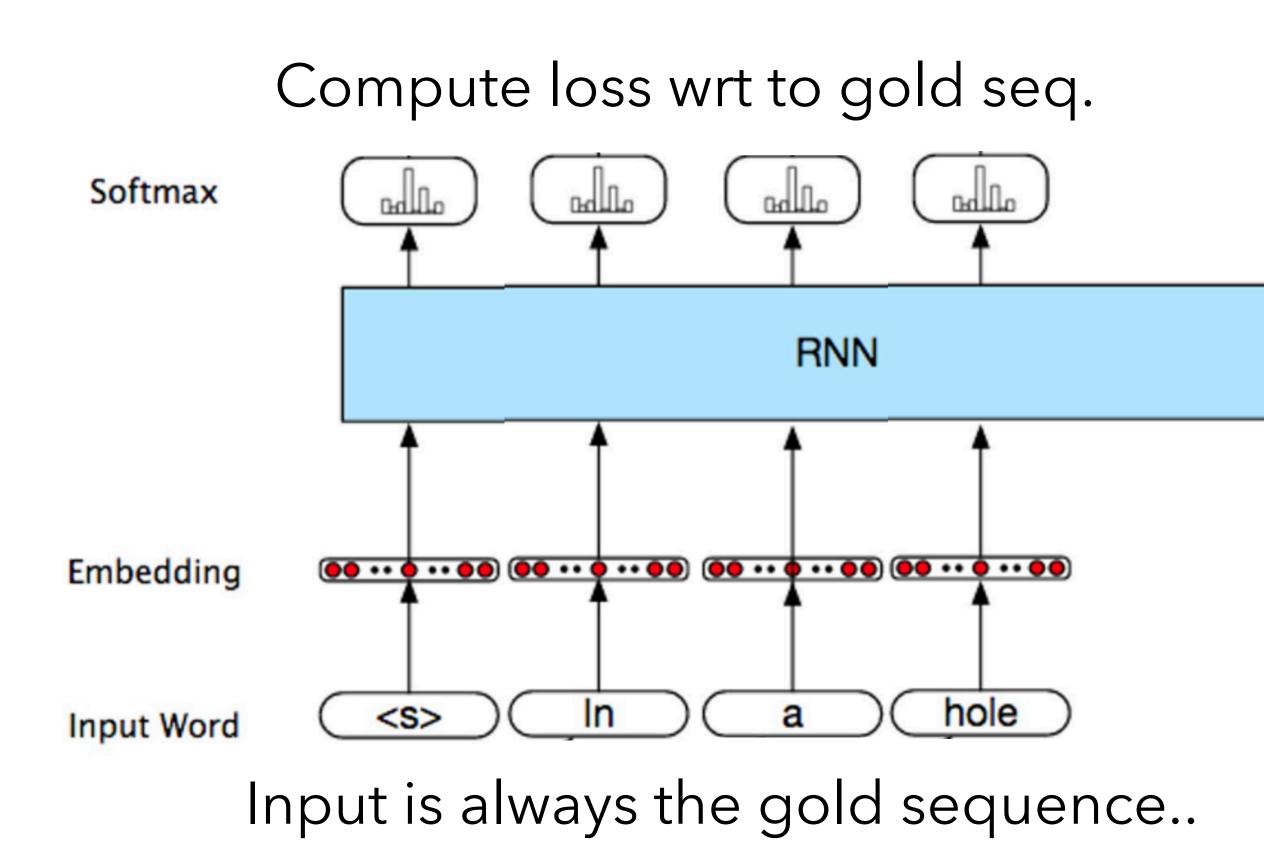
## Mini quiz

Q1: What is teacher forcing? Why do we use it?



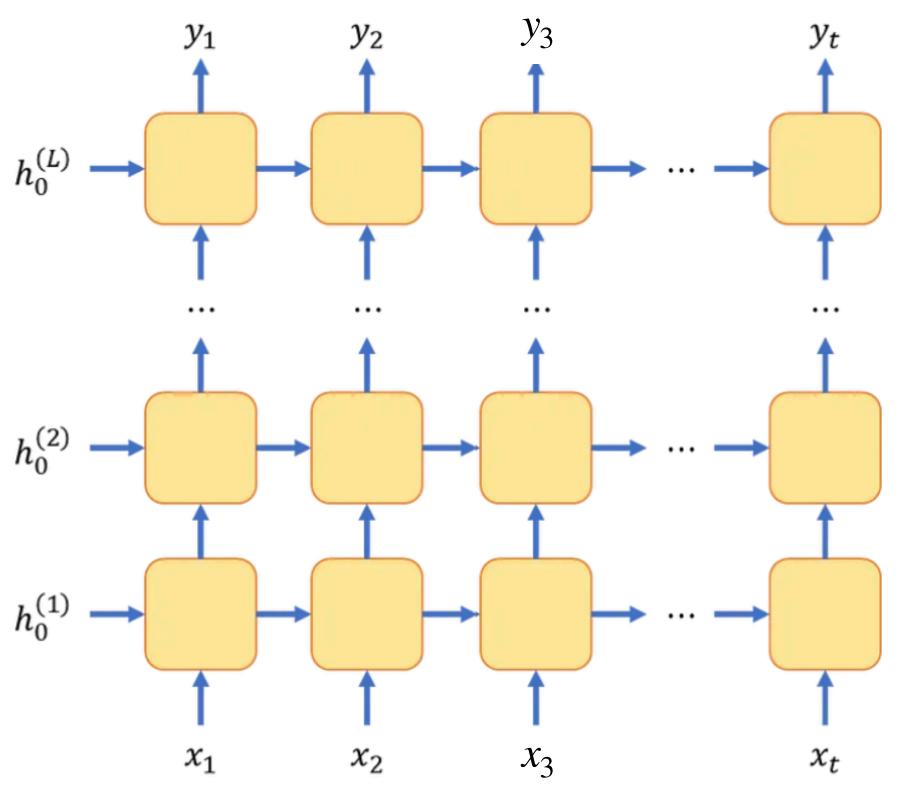
Autoregressive Generation

Gold seq.: <s> In a hole in the wall ...



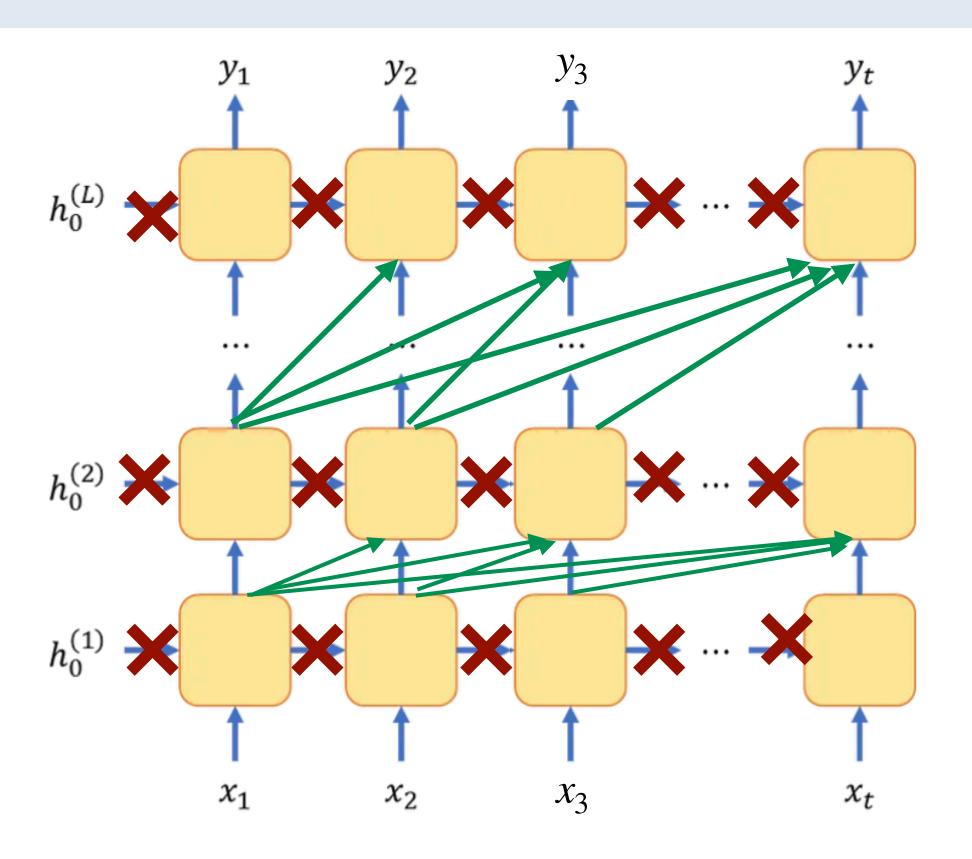
Teacher Forcing during training

#### With attention, do we need recurrence? Maybe not!



Multi-layer RNN

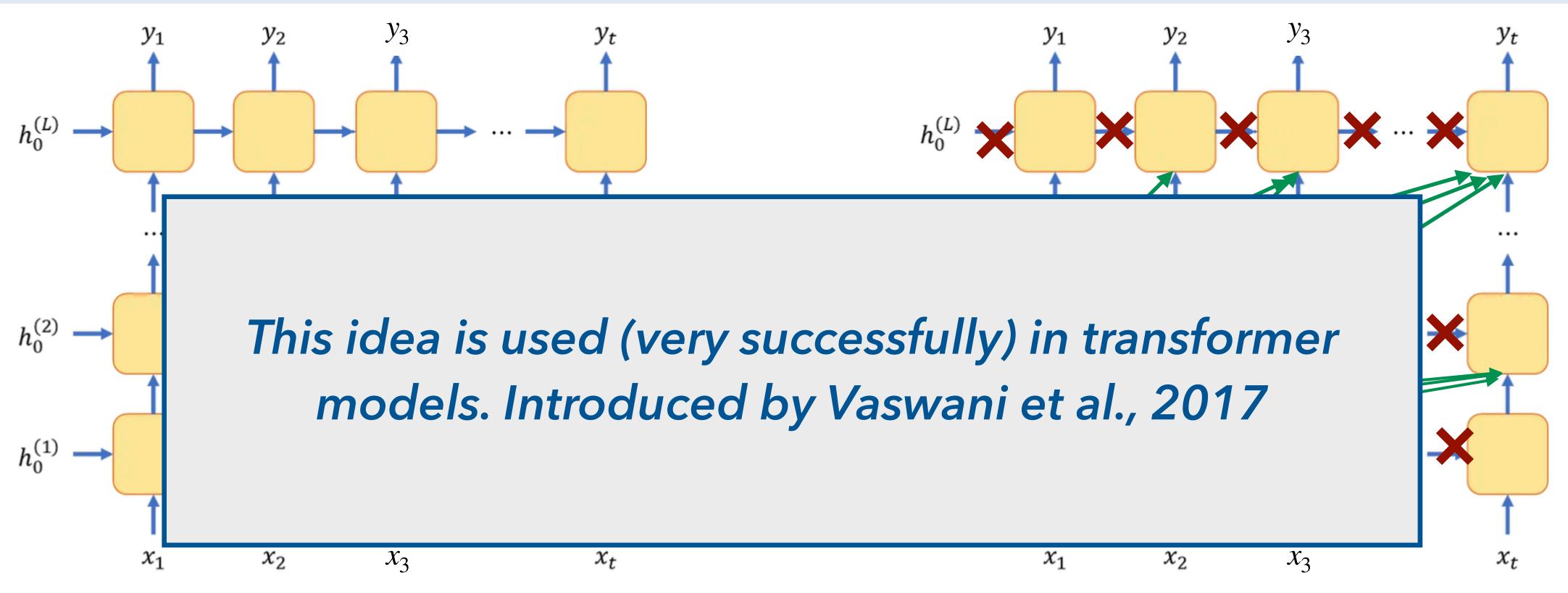
Computation at time *i* takes into account the computation (hidden values) from time *i-1*.



Above: the computation at time i just looks at the outputs from the previous layer.

Computations at the same layer are parallelizable!

#### With attention, do we need recurrence? Maybe not!



Multi-layer RNN

Computation at time *i* takes into account the computation (hidden values) from time *i-1*.

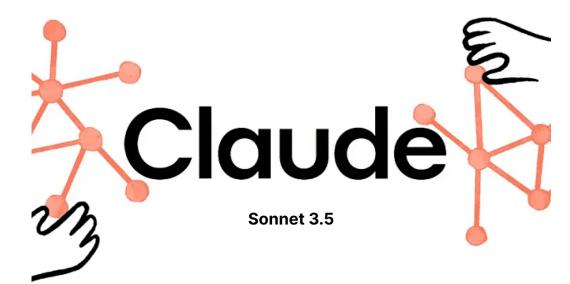
Above: the computation at time i just looks at the outputs from the previous layer.

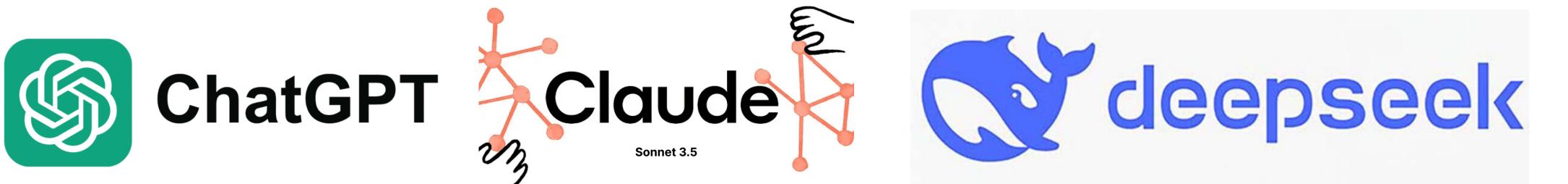
Computations at the same layer are parallelizable!

# Why should we learn about transformers?

Transformer (variants) are the backbone of all powerful LLMs today!

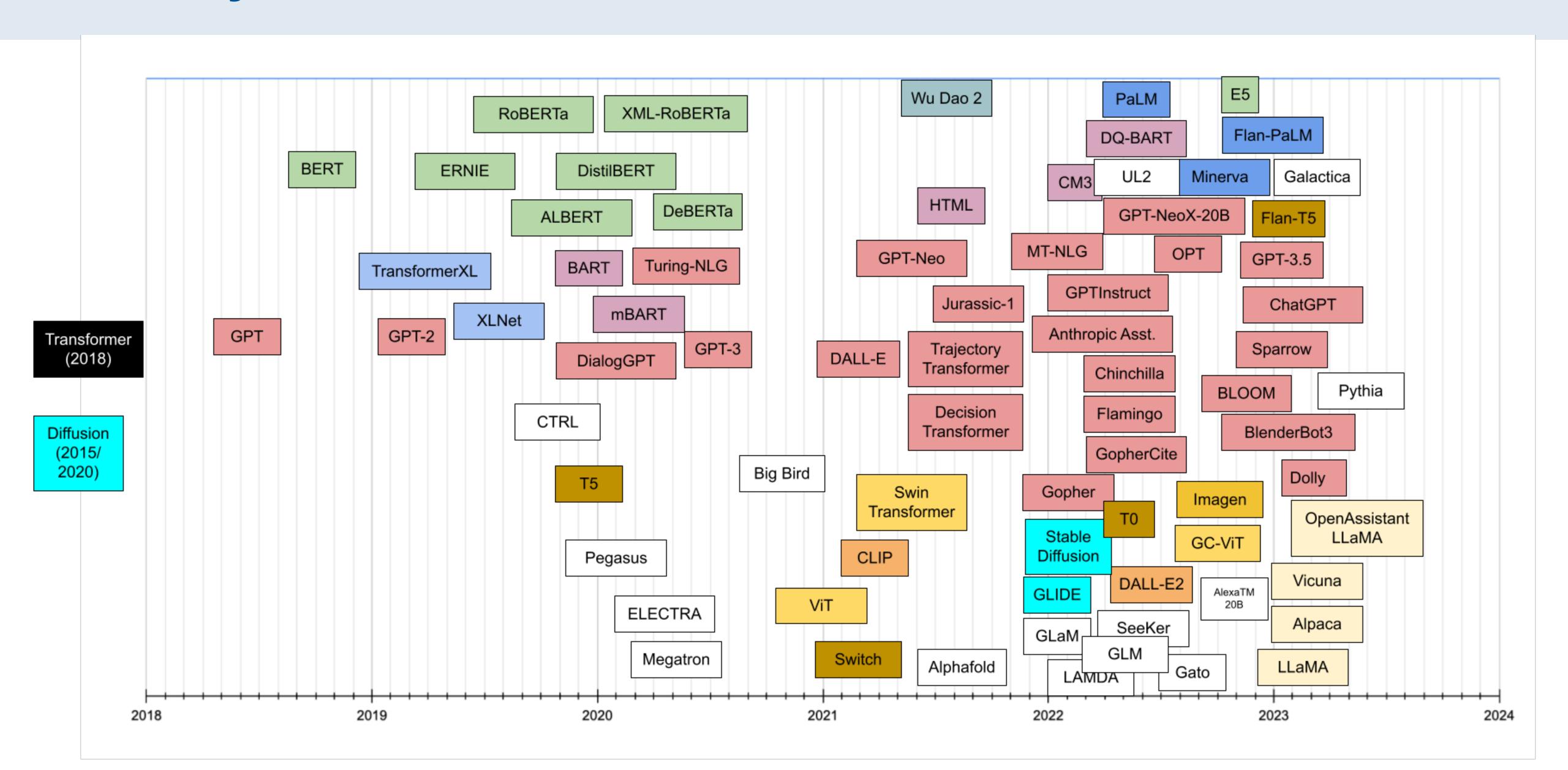






- Tons of visualizations to trace influence of transformers architecture:
  - Amatriain's: <a href="https://amatriain.net/blog/transformer-models-an-">https://amatriain.net/blog/transformer-models-an-</a> introduction-and-catalog-2d1e9039f376/
  - Victor Gaske's: https://ai.v-gar.de/ml/transformer/timeline/

#### Why should we learn about transformers?



#### Why should we learn about transformers?

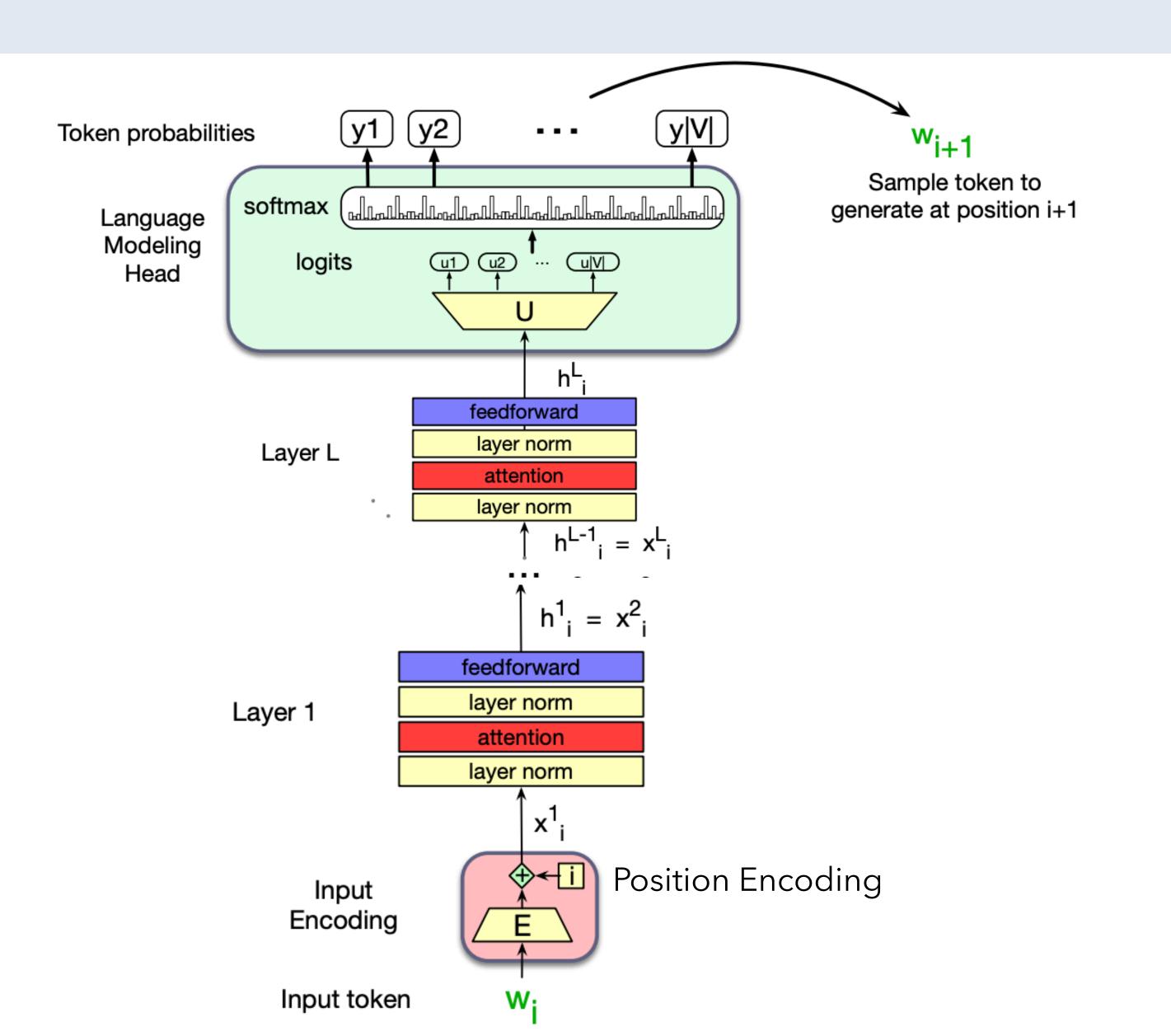
- Public Wager: <a href="https://www.isattentionallyouneed.com/">https://www.isattentionallyouneed.com/</a>
- Proposition: On <u>January 1, 2027</u>, a Transformer-like model will continue to hold the state-of-theart position in most benchmarked tasks in natural language processing.



# Today: Transformer Models

- Introduced in Attention Is All You Need (Vaswani et al. NeurIPS 2017)
- A purely attention-based architecture (highly parallelizable), i.e. no recurrence
- Very deep model for NLP (12 layers)
- Originally envisioned for seq2seq tasks (encoder is 6 layers, decoder is 6 layers)
- The encoder and decoder are the same "architecture" applied differently
- We will first look at the decoder-only transformer today

## Transformer Architecture (Decoder-only)



- We will build up to this!!
- Main components of a transformer model
  - (Multi-head) Attention
  - Feed forward
  - Layer Norm
  - Position Encoding

## Simplified Attention

# Self-Attention Layer A1 A2 A3 A4 A5 Attention atte

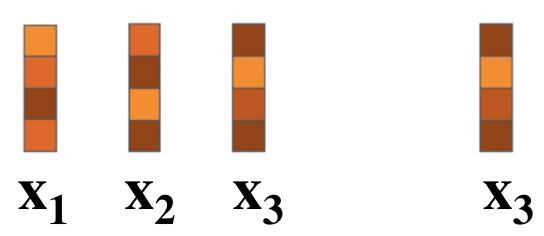
Figure 9.3 Information flow in causal self-attention. When processing each input  $x_i$ , the model attends to all the inputs up to, and including  $x_i$ .

- Simplified attention (Similar to RNNs)
  - $\alpha_{ij}$  = softmax (score  $(\mathbf{x_i}, \mathbf{x_j})$ ),  $\forall j \leq i$

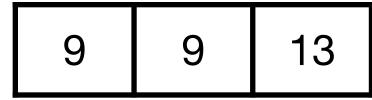
$$\mathbf{a}_i = \sum_{j \leq i} \alpha_{ij} \mathbf{x}_i$$

#### Computation at time step 3, ie. $a_3$

Step1: prepare inputs



Step2: compute scores



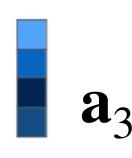
Step3: softmax scores (Attention weights)



Step4: multiply each vector by softmax scores



Step5: sum up the weighted vectors



Step5: sum up the

weighted vectors

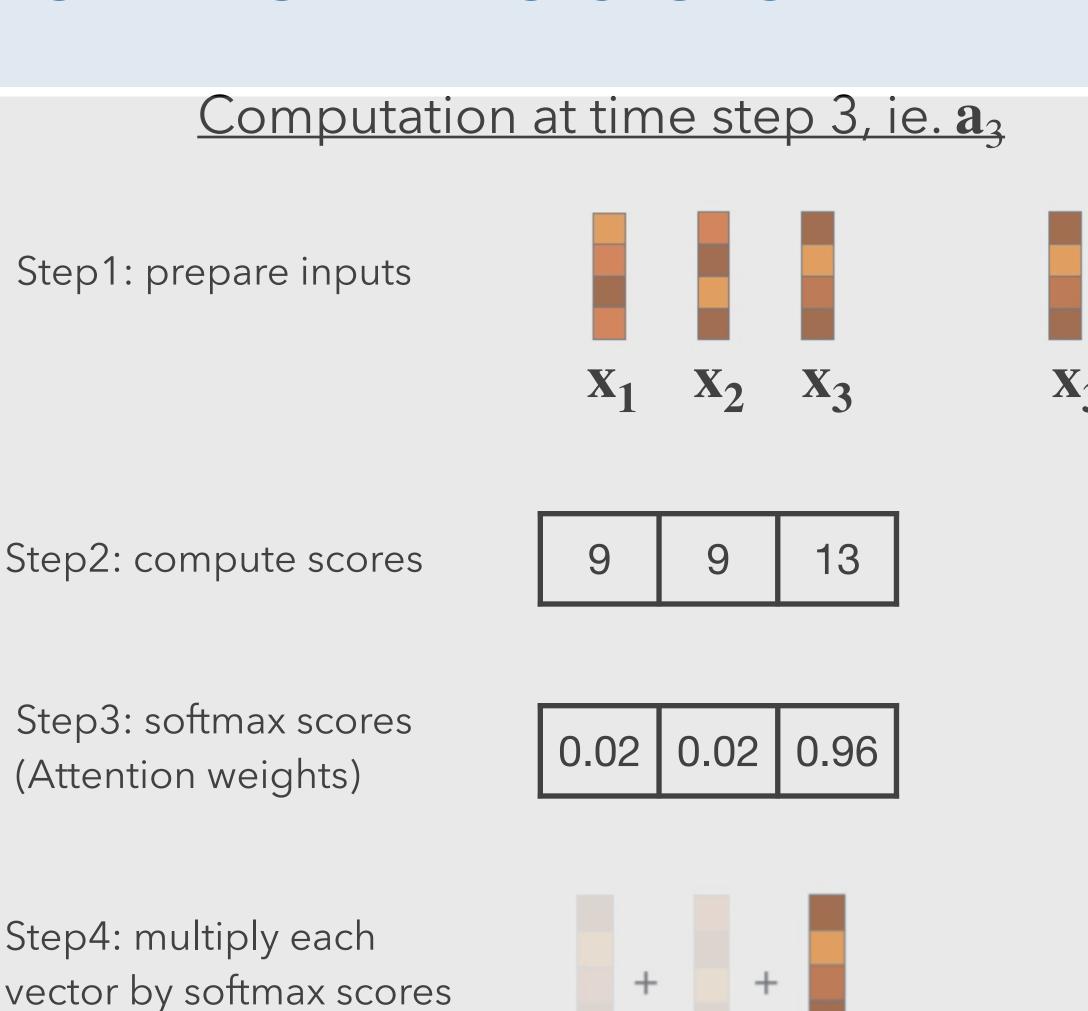
- Attention in Transformer architectures
  - For a given input x<sub>i</sub> (could be the input at any layer of an encoder or decoder) create three different "roles" or "versions":

query vector:  $\mathbf{q}_i = \mathbf{x}_i \ W^Q$ 

**key** vector:  $\mathbf{k}_i = \mathbf{x}_i \ W^K$ 

value vector:  $\mathbf{v}_i = \mathbf{x}_i \ W^V$ 

 $W^Q$ ,  $W^K$ ,  $W^V$  are learned matrices



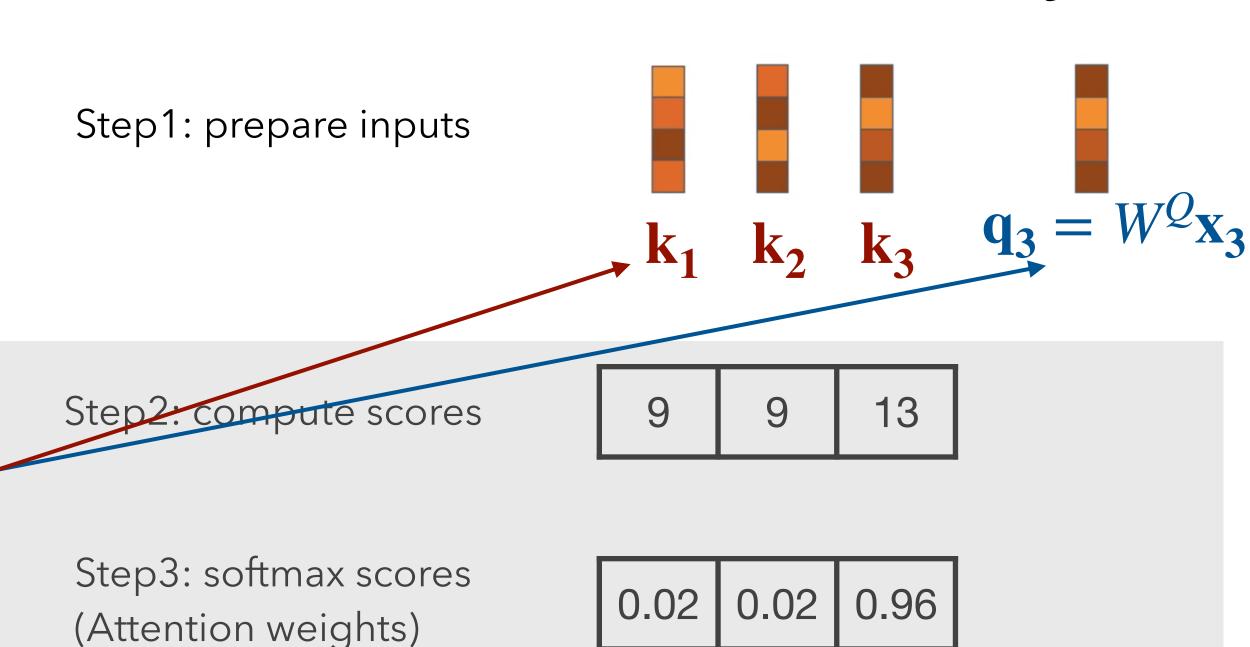
Computation at time step 3, ie.  $a_3$ 

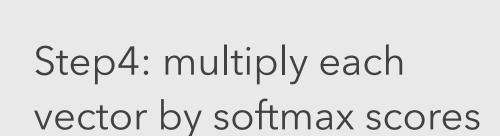
- Attention in Transformer architectures
  - For a given input  $\mathbf{x_i}$  (could be the input at any layer of an encoder or decoder) create three different "roles" or "versions":

query vector:  $\mathbf{q}_i = \mathbf{x}_i W^k$ key vector:  $\mathbf{k}_i = \mathbf{x}_i W^K$ 

value vector:  $\mathbf{v}_i = \mathbf{x}_i \ W^V$ 

 $W^Q, W^K, W^V$  are learned matrices





Step5: sum up the weighted vectors





Step5: sum up the

weighted vectors

Computation at time step 3, ie. a<sub>3</sub>

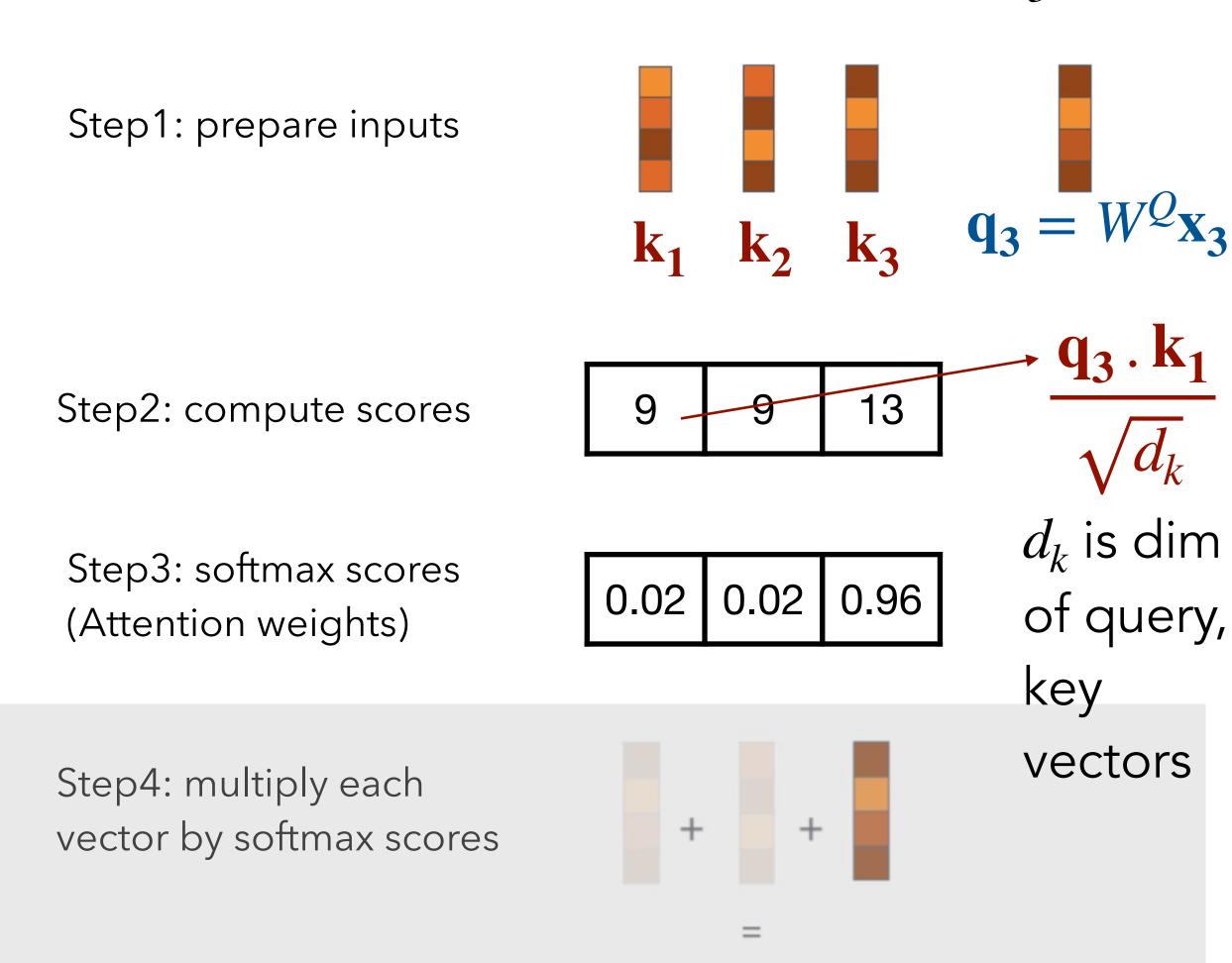
- Attention in Transformer architectures
  - For a given input  $\mathbf{x_i}$  (could be the input at any layer of an encoder or decoder) create three different "roles" or "versions":

query vector:  $\mathbf{q}_i = \mathbf{x}_i \ W^Q$ 

**key** vector:  $\mathbf{k}_i = \mathbf{x}_i \ W^K$ 

value vector:  $\mathbf{v}_i = \mathbf{x}_i \ W^V$ 

 $W^Q$ ,  $W^K$ ,  $W^V$  are learned matrices



Computation at time step 3, ie. a<sub>3</sub>

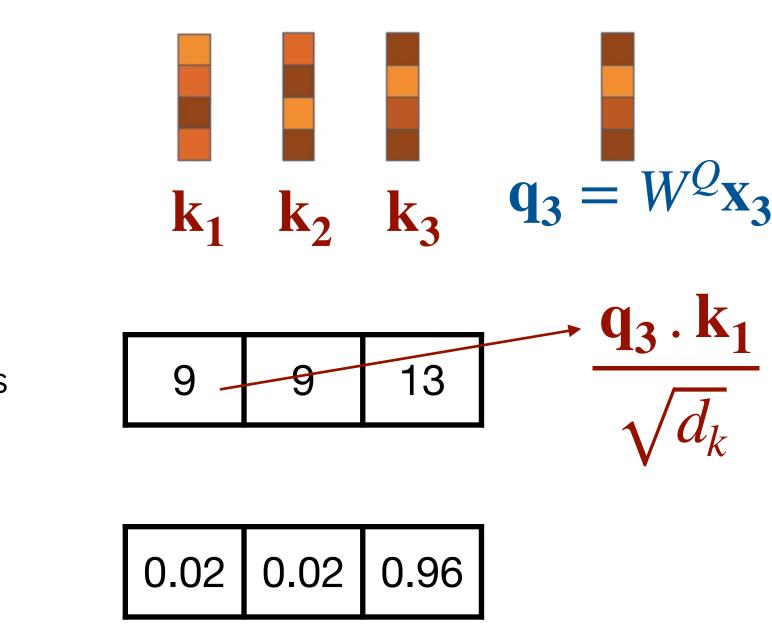
- Attention in Transformer architectures
  - For a given input  $\mathbf{x_i}$  (could be the input at any layer of an encoder or decoder) create three different "roles" or "versions":

query vector:  $\mathbf{q}_i = \mathbf{x}_i \ W^Q$ 

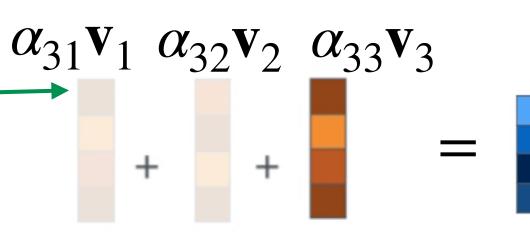
**key** vector:  $\mathbf{k}_i = \mathbf{x}_i \ W^K$ 

value vector:  $\mathbf{v}_i = \mathbf{x}_i \ W^V$ 

Step1: prepare inputs Step2: compute scores Step3: softmax scores (Attention weights)

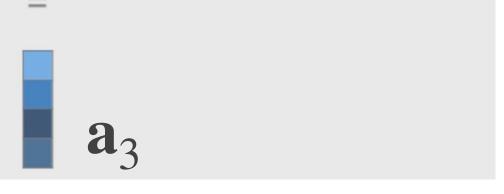


Step4: multiply each vector by softmax scores



 $W^Q, W^K, W^V$  are learned matrices

Step5: sum up the weighted vectors



Computation at time step 3, ie. a<sub>3</sub>

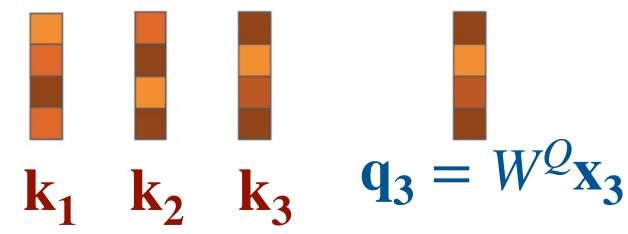
- Attention in Transformer architectures
  - For a given input x<sub>i</sub> (could be the input at any layer of an encoder or decoder) create three different "roles" or "versions":

query vector:  $\mathbf{q}_i = \mathbf{x}_i \ W^Q$ 

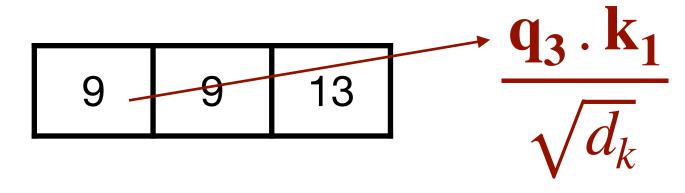
**key** vector:  $\mathbf{k}_i = \mathbf{x}_i \ W^K$ 

value vector:  $\mathbf{v}_i = \mathbf{x}_i \ W^V$ 

Step1: prepare inputs



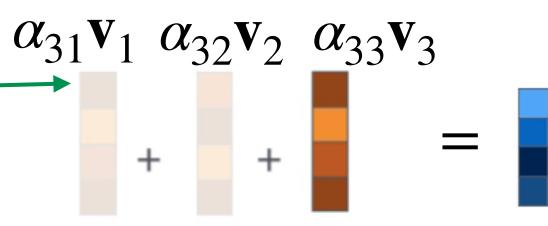
Step2: compute scores



Step3: softmax scores (Attention weights)

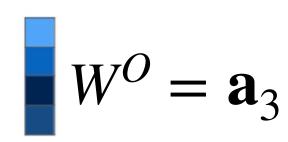


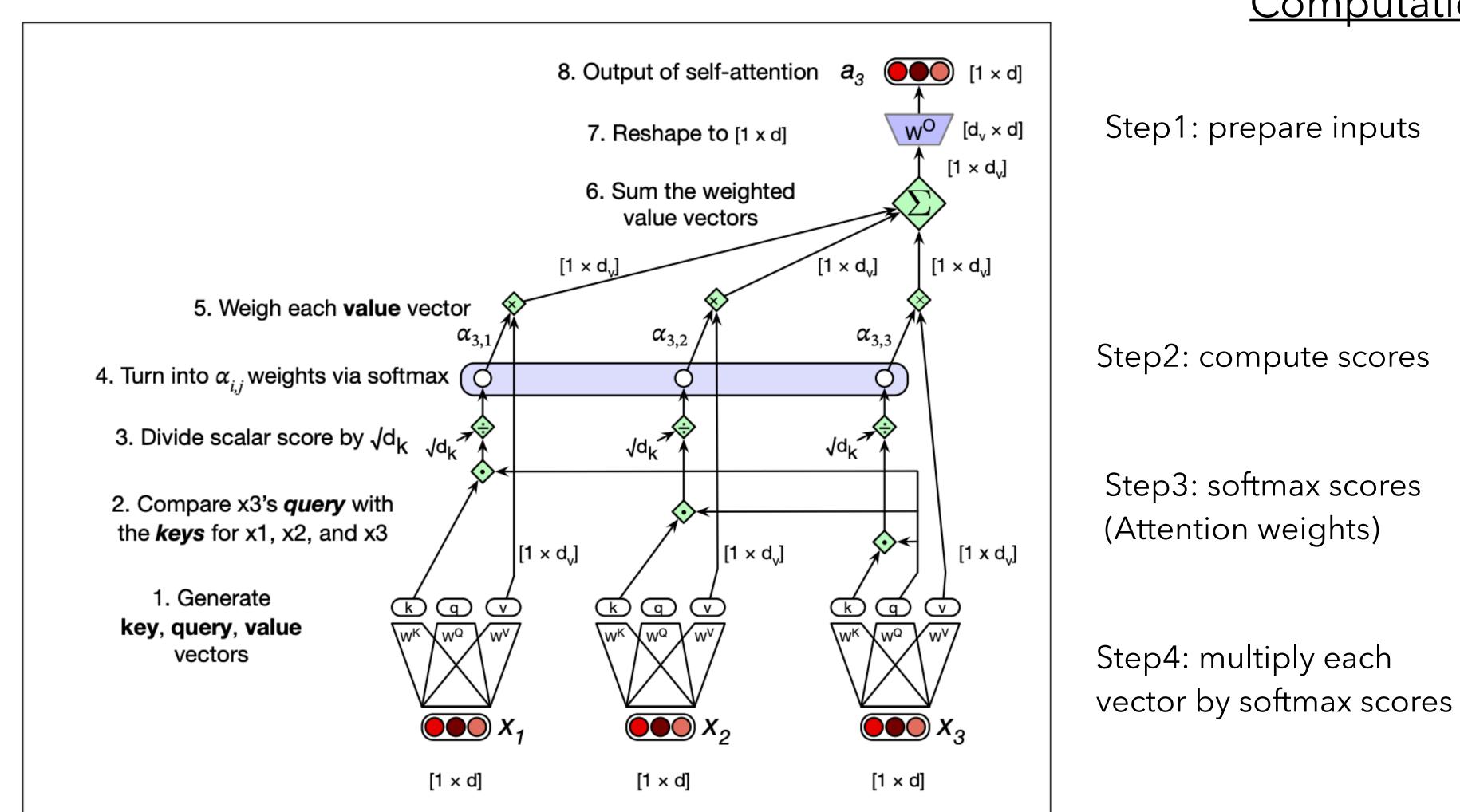
Step4: multiply each vector by softmax scores



 $W^Q$ ,  $W^K$ ,  $W^V$  are learned matrices

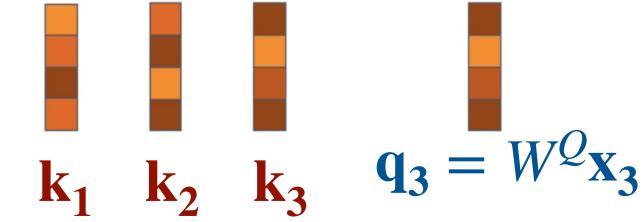
Step5: sum up the weighted vectors **and project** 

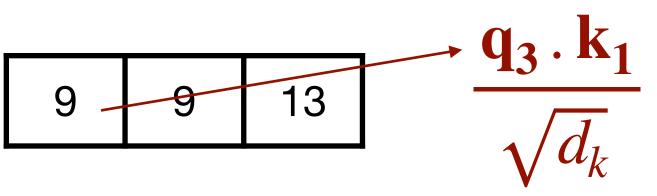


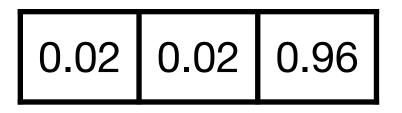


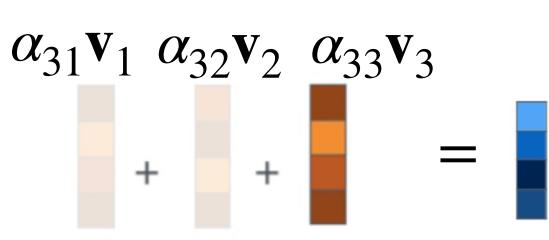
Calculating the value of  $a_3$ , the third element of a sequence using causal (left-Figure 9.4 to-right) self-attention.

#### Computation at time step 3, ie. a<sub>3</sub>

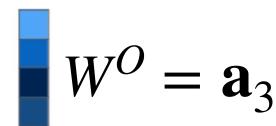




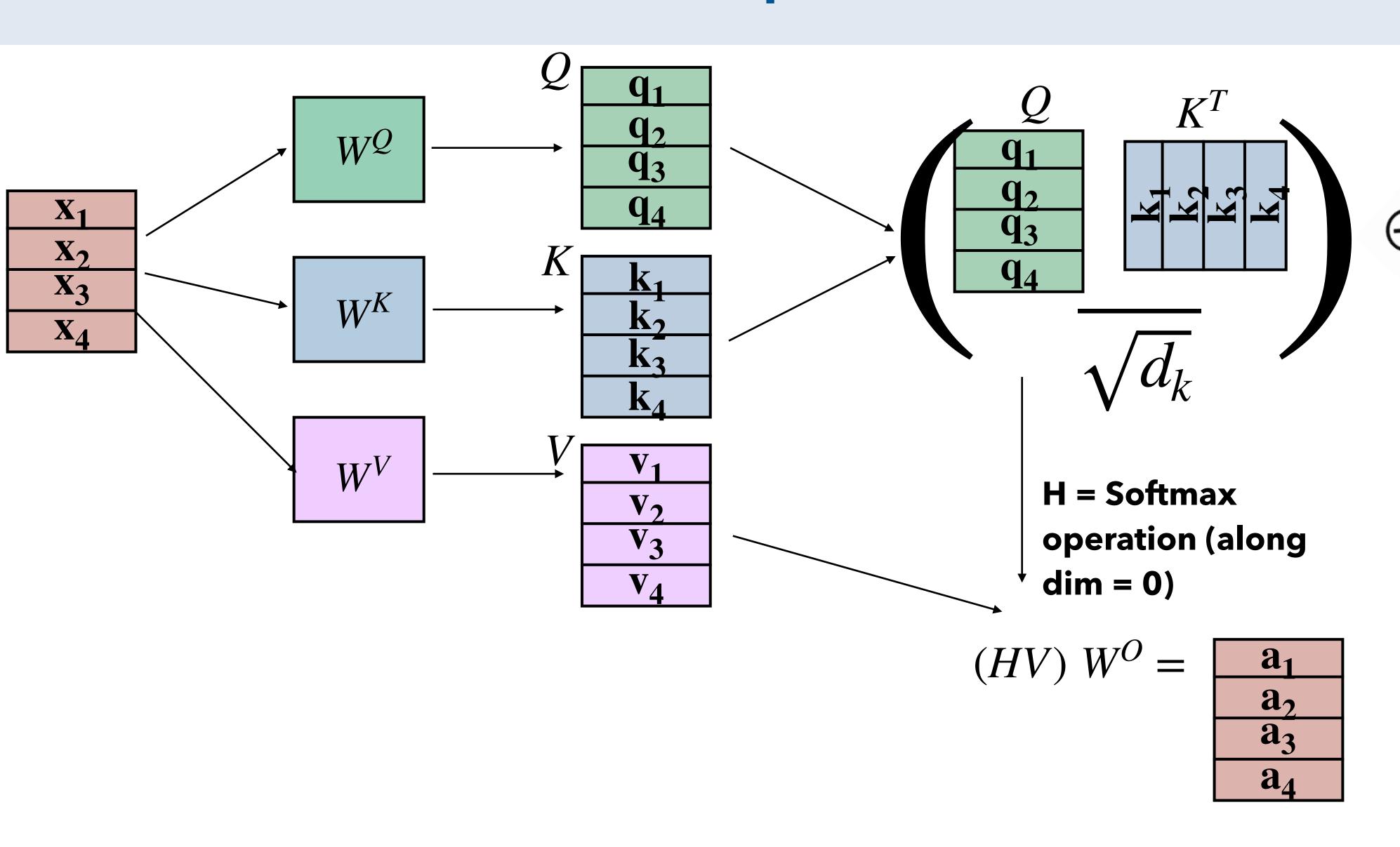


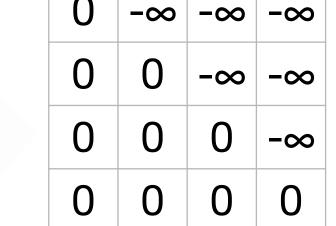


Step5: sum up the weighted vectors and project



## Attention Computation (matrix form)





Causal mask so that inputs at time i only attend to previous inputs (Aside: in transformer encoders, inputs at time i attend to all other encoder inputs)

#### Multi-headed Attention

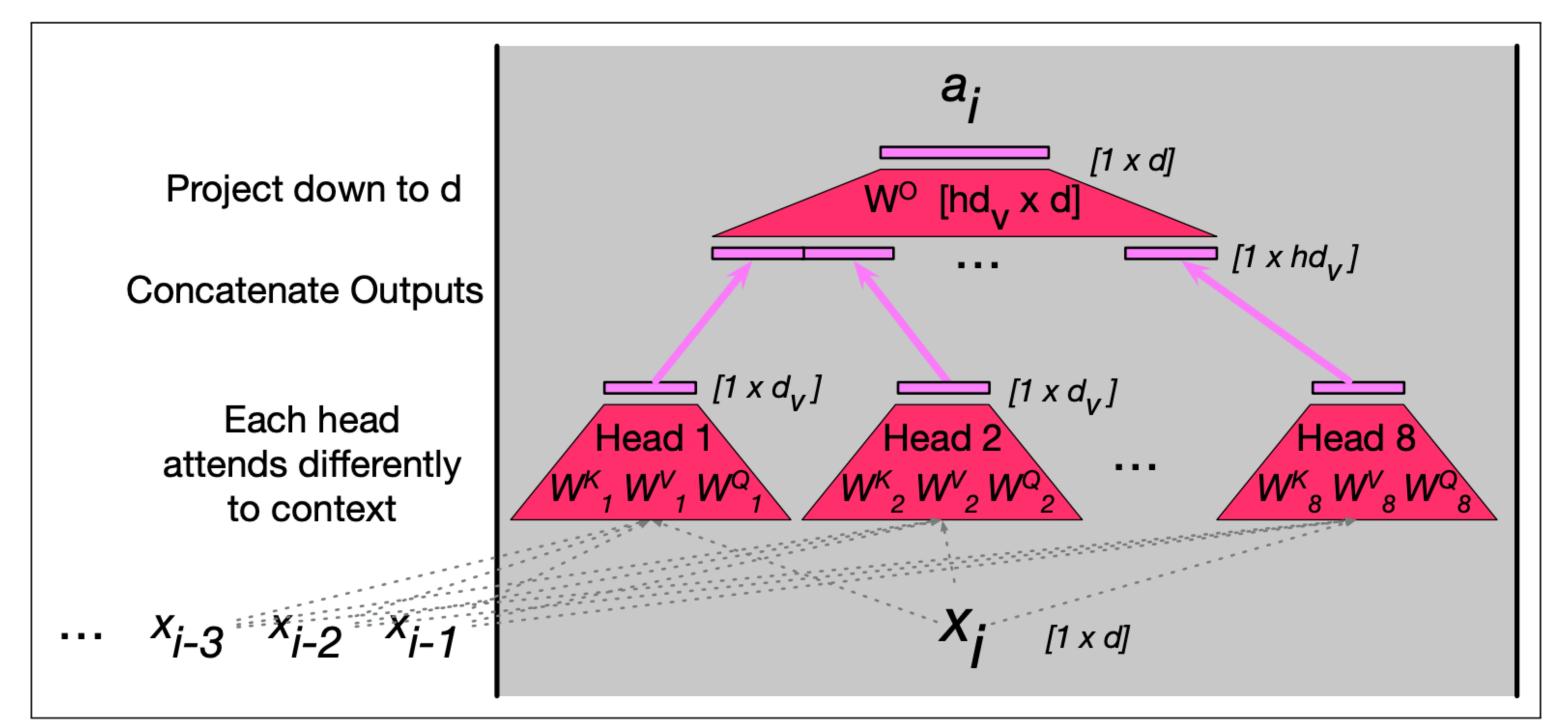
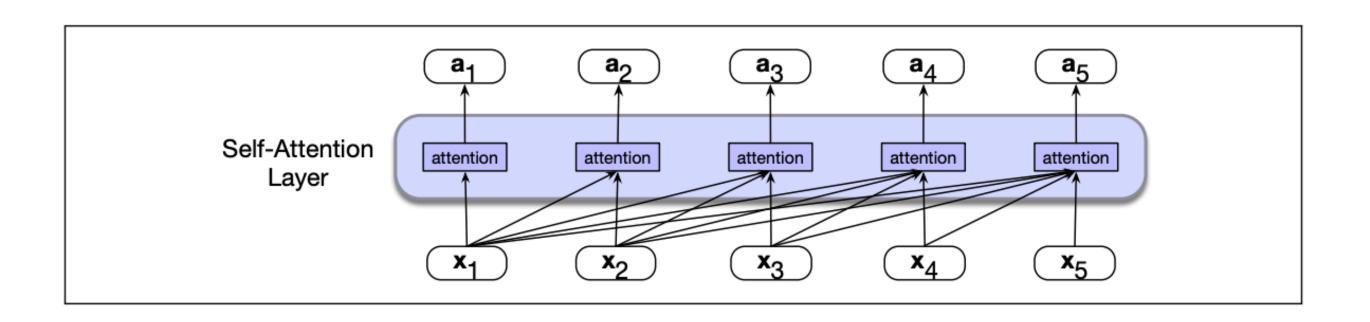


Figure 9.5 The multi-head attention computation for input  $x_i$ , producing output  $a_i$ . A multi-head attention layer has A heads, each with its own key, query and value weight matrices. The outputs from each of the heads are concatenated and then projected down to d, thus producing an output of the same size as the input.

- Multiple heads -> multiple
   "independent" projections
   (keys, queries, values) for
   each input.
- Each head has different  $W^Q$ ,  $W^K$ ,  $W^V$  matrices

Different heads can
 potentially capture different
 phenomenon.

## Zooming out

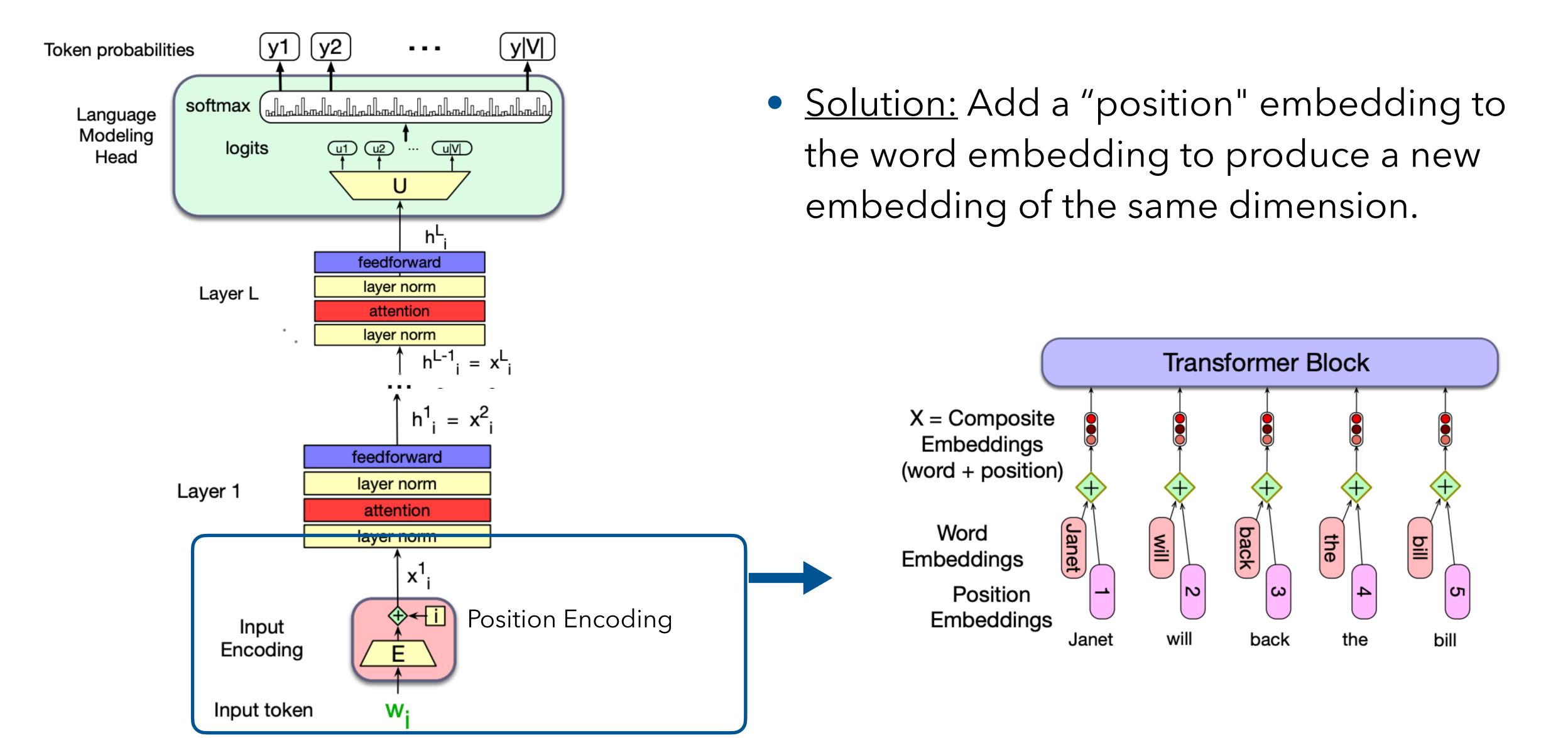


- Self-attention layer transformed the input  $\boldsymbol{x_i}$  to output  $\boldsymbol{a_i}$
- Word order information is lost!

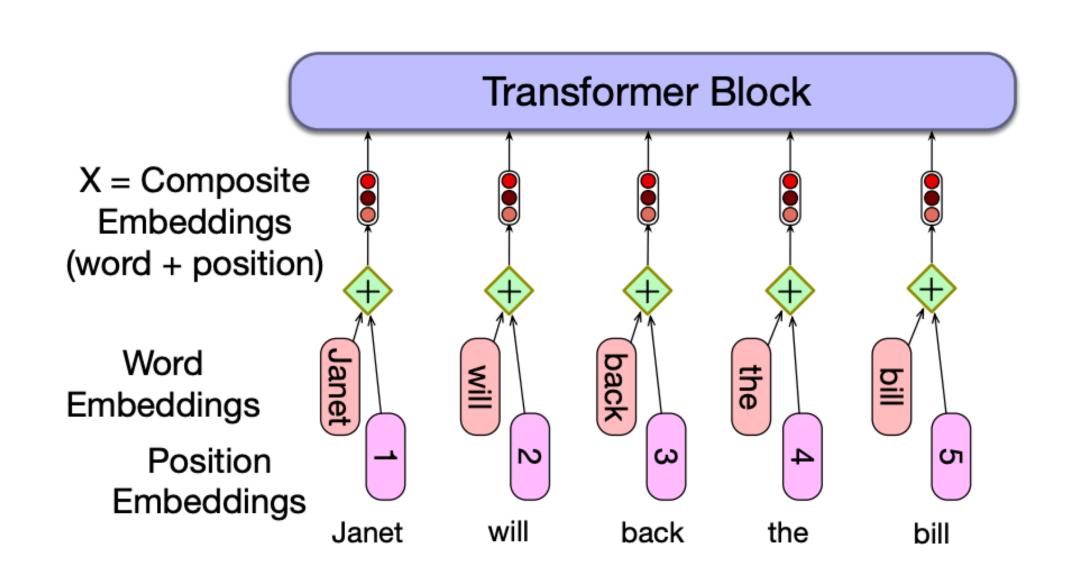
#### An <u>old</u> dog and a <u>young</u> boy ....

- boy attends to both <u>old</u> and <u>young</u>. We <u>young</u> to have a higher influence on boy's hidden representation than <u>old</u>. Attention does not ensure this.
- Q: How do RNNs include this information?

## Let's go back to our transformer arch



## Let's go back to our transformer arch

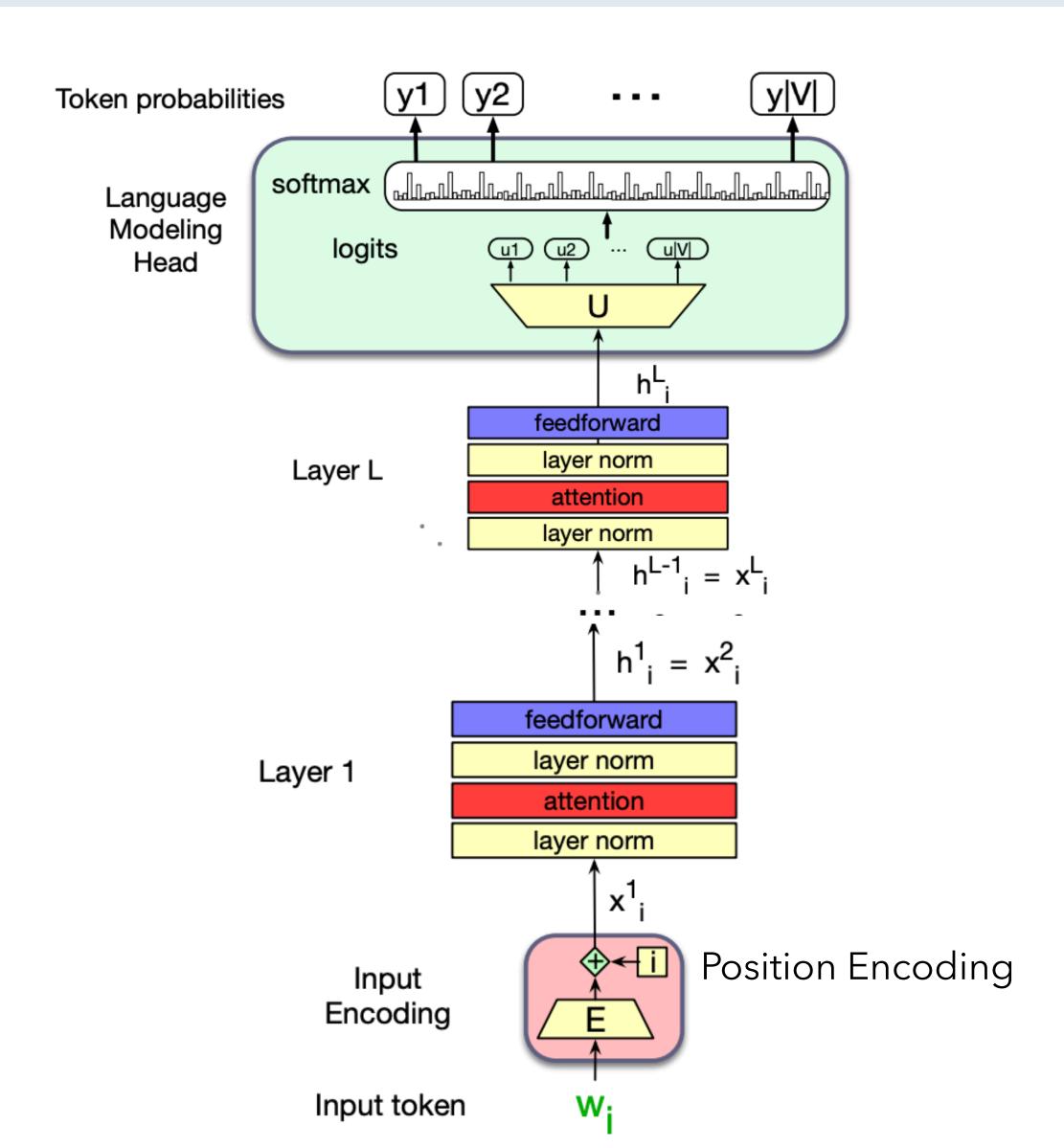


• <u>Solution</u>: Add a "position" embedding to the word embedding to produce a new embedding of the same dimension.

How do we get these positional embeddings?

- Assume all sequences will have length between 0 to N (say 512).
   Randomly initialize embeddings for each position.
- These will get trained with other transformer parameters.

## Let's go back to our transformer arch



#### • Today:

- Multi-head self-attention
- Position Embeddings

#### • Next Class:

- Layer Norm
- Feedforward layer
- Putting it all together
- Encoder Decoder

# Slide Acknowledgements

 Earlier versions of this course offerings including materials from Claire Cardie, Marten van Schijndel, Lillian Lee.