Today
- Lexical semantic resources: WordNet
- Word sense disambiguation
 » Dictionary-based approaches
 » Supervised machine learning methods
 » Issues for WSD evaluation

Word sense disambiguation

- Given a *fixed* set of senses associated with a lexical item, determine which of them applies to a particular instance of the lexical item
- Two fundamental approaches
 - WSD occurs during semantic analysis as a side-effect of the elimination of ill-formed semantic representations
 - Stand-alone approach
 » WSD is performed independent of, and prior to, compositional semantic analysis
 » Makes minimal assumptions about what information will be available from other NLP processes
 » Applicable in large-scale practical applications

Dictionary-based approaches

- Rely on machine readable dictionaries
- Initial implementation of this kind of approach is due to Michael Lesk (1986)
 - Given a word \(W \) to be disambiguated in context \(C \)
 » Retrieve all of the sense definitions, \(S \), for \(W \) from the MRD
 » Compare each \(s \) in \(S \) to the dictionary definitions \(D \) of all the remaining words \(c \) in the context \(C \)
 » Select the sense \(s \) with the most overlap with \(D \) (the definitions of the context words \(C \))

Machine learning approaches

- Machine learning methods
 - Supervised inductive learning
 - Bootstrapping
 - Unsupervised
- Emphasis is on acquiring the knowledge needed for the task from data, rather than from human analysts.
Inductive ML framework

Examples of task (features + class)

description of context

ML Algorithm

Novel example (features)

Classifier (program)

learn one such classifier for each lexeme to be disambiguated

Feature vector representation

- **target**: the word to be disambiguated
- **context**: portion of the surrounding text
 - Select a “window” size
 - Tagged with part-of-speech information
 - Stemming or morphological processing
 - Possibly some partial parsing
- Convert the context (and target) into a set of features
 - Attribute-value pairs
 - Numeric, boolean, categorical, ...

Running example

An electric guitar and **bass** player stand off to one side, not really part of the scene, just as a sort of nod to gringo expectations perhaps.

1. Fish sense
2. Musical sense
3. ...

Collocational features

- Encode information about the lexical inhabitants of *specific* positions located to the left or right of the target word.
 - E.g. the word, its root form, its part-of-speech
 - An electric guitar and **bass** player stand off to one side, not really part of the scene, just as a sort of nod to gringo expectations perhaps.

<table>
<thead>
<tr>
<th>pre2-word</th>
<th>pre2-pos</th>
<th>pre1-word</th>
<th>pre1-pos</th>
<th>fol1-word</th>
<th>fol1-pos</th>
<th>fol2-word</th>
<th>fol2-pos</th>
</tr>
</thead>
<tbody>
<tr>
<td>guitar</td>
<td>NN1</td>
<td>and</td>
<td>CJC</td>
<td>player</td>
<td>NN1</td>
<td>stand</td>
<td>VVB</td>
</tr>
</tbody>
</table>
Co-occurrence features

- Encodes information about neighboring words, ignoring exact positions.
 - Select a small number of frequently used content words for use as features
 » 12 most frequent content words from a collection of bass sentences
drawn from the WSJ: fishing, big, sound, player, fly, rod, pound,
double, runs, playing, guitar, band
 » Co-occurrence vector (window of size 10)
- Attributes: the words themselves (or their roots)
- Values: number of times the word occurs in a region surrounding the target word

\[
\begin{array}{cccccccccc}
\text{fishing?} & \text{big?} & \text{sound?} & \text{player?} & \text{fly?} & \text{rod?} & \text{pound?} & \text{double?} & \ldots & \text{guitar?} & \text{band?} \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}
\]

Inductive ML framework

Examples of task
(features + class)

description of context

ML Algorithm

Novel example
(features) ———
Classifier (program) ———
correct word sense

class

Decision list classifiers

- Decision lists: equivalent to simple case statements.
 - Classifier consists of a sequence of tests to be applied to each input example/vector; returns a word sense.
- Continue only until the first applicable test.
- Default test returns the majority sense.

Decision list example

- Binary decision: fish bass vs. musical bass

<table>
<thead>
<tr>
<th>Rule</th>
<th>Sense</th>
</tr>
</thead>
<tbody>
<tr>
<td>fish within window</td>
<td>bass¹</td>
</tr>
<tr>
<td>striped bass</td>
<td>bass¹</td>
</tr>
<tr>
<td>guitar within window</td>
<td>bass²</td>
</tr>
<tr>
<td>bass player</td>
<td>bass²</td>
</tr>
<tr>
<td>piano within window</td>
<td>bass²</td>
</tr>
<tr>
<td>tenor within window</td>
<td>bass²</td>
</tr>
<tr>
<td>tenor bass</td>
<td>bass¹</td>
</tr>
<tr>
<td>play'n bass</td>
<td>bass²</td>
</tr>
<tr>
<td>river within window</td>
<td>bass¹</td>
</tr>
<tr>
<td>viola within window</td>
<td>bass¹</td>
</tr>
<tr>
<td>trombone within window</td>
<td>bass²</td>
</tr>
<tr>
<td>on bass</td>
<td>bass¹</td>
</tr>
<tr>
<td>bass are</td>
<td>bass¹</td>
</tr>
</tbody>
</table>
Learning decision lists

- Consists of *generating* and *ordering* individual tests based on the characteristics of the training data
- **Generation**: every feature-value pair constitutes a test
- **Ordering**: based on accuracy on the training set
 \[
 \text{abs} \left(\log \frac{P(Sense_1 \mid f_i = v_j)}{P(Sense_2 \mid f_i = v_j)} \right)
 \]
- Associate the appropriate sense with each test

WSD Evaluation

- **Corpora**:
 - *line* corpus
 - Yarowsky’s 1995 corpus
 - 12 words (plant, space, bass, …)
 - ~4000 instances of each
 - Ng and Lee (1996)
 - 121 nouns, 70 verbs (most frequently occurring/ambiguous); WordNet senses
 - 192,800 occurrences
 - SEMCOR (Landes et al. 1998)
 - Portion of the Brown corpus tagged with WordNet senses
 - SENSEVAL (Kilgarriff and Rosenzweig, 2000)
 - Annual performance evaluation conference
 - Provides an evaluation framework (Kilgarriff and Palmer, 2000)
- **Baseline**: most frequent sense

WSD Evaluation

- **Metrics**
 - **Precision**
 - Nature of the senses used has a huge effect on the results
 - E.g. results using coarse distinctions cannot easily be compared to results based on finer-grained word senses
 - **Partial credit**
 - Worse to confuse musical sense of *bass* with a fish sense than with another musical sense
 - Exact-sense match → full credit
 - Select the correct broad sense → partial credit
 - Scheme depends on the organization of senses being used

CS474 Natural Language Processing

- **Before…**
 - Lexical semantic resources: WordNet
 - Word sense disambiguation
 - Dictionary-based approaches
- **Today**
 - Word sense disambiguation
 - Supervised machine learning methods
 - Weakly supervised (bootstrapping) methods
 - SENSEVAL
 - Unsupervised methods
Weakly supervised approaches

- **Problem:** Supervised methods require a large sense-tagged training set.
- **Bootstrapping approaches:** Rely on a small number of labeled *seed* instances.

Generating initial seeds

- **Hand label a small set of examples**
 - Reasonable certainty that the seeds will be correct
 - Can choose prototypical examples
 - Reasonably easy to do
- **One sense per collocation** constraint (Yarowsky 1995)
 - Search for sentences containing words or phrases that are strongly associated with the target senses
 - Select *fish* as a reliable indicator of *bass_1*
 - Select *play* as a reliable indicator of *bass_2*
 - Or derive the collocations automatically from machine readable dictionary entries
 - Or select seeds automatically using collocational statistics (see Ch 6 of J&M)

One sense per collocation

- **Yarowsky’s bootstrapping approach**
 - Relies on a **one sense per discourse** constraint: The sense of a target word is highly consistent within any given document
 - Evaluation on ~37,000 examples

<table>
<thead>
<tr>
<th>Word</th>
<th>Senses</th>
<th>Accuracy</th>
<th>Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>plant</td>
<td>living/factory</td>
<td>99.8%</td>
<td>72.8%</td>
</tr>
<tr>
<td>tank</td>
<td>vehicle/container</td>
<td>99.6%</td>
<td>50.5%</td>
</tr>
<tr>
<td>poach</td>
<td>steal/boil</td>
<td>100.0%</td>
<td>44.4%</td>
</tr>
<tr>
<td>palm</td>
<td>tree/hand</td>
<td>99.8%</td>
<td>36.5%</td>
</tr>
<tr>
<td>axes</td>
<td>grid/tools</td>
<td>100.0%</td>
<td>36.5%</td>
</tr>
<tr>
<td>sake</td>
<td>ice/cool</td>
<td>100.0%</td>
<td>33.7%</td>
</tr>
<tr>
<td>bass</td>
<td>fish/music</td>
<td>100.0%</td>
<td>58.8%</td>
</tr>
<tr>
<td>space</td>
<td>volume/outer</td>
<td>99.2%</td>
<td>67.7%</td>
</tr>
<tr>
<td>motion</td>
<td>legal/physical</td>
<td>99.9%</td>
<td>49.8%</td>
</tr>
<tr>
<td>crane</td>
<td>bird/machine</td>
<td>100.0%</td>
<td>49.1%</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>99.8%</td>
<td>50.1%</td>
</tr>
</tbody>
</table>
Yarowsky’s bootstrapping approach

To learn disambiguation rules for a polysemous word:

1. [Find all instances of the word in the training corpus and save the contexts around each instance.]

2. [For each word sense, identify a small set of training examples representative of that sense. Now we have a few labeled examples for each sense.]

3. Build a classifier (e.g. decision list) by training a supervised learning algorithm with the labeled examples.

4. Apply the classifier to all the unlabeled examples. Find instances that are classified with probability > a threshold and add them to the set of labeled examples.

5. Optional: Use the one-sense-per-discourse constraint to augment the new examples.

6. Go to Step 3. Repeat until the unlabelled data is stable.

SENSEVAL-2 2001

- Three tasks
 - Lexical sample
 - All-words
 - Translation

- 12 languages

- Lexicon
 - SENSEVAL-1: from HECTOR corpus
 - SENSEVAL-2: from WordNet 1.7

- 93 systems from 34 teams

CS474 Natural Language Processing

- Last class
 - Lexical semantic resources: WordNet
 - Word sense disambiguation
 » Dictionary-based approaches
 » Supervised machine learning methods

- Today
 - Word sense disambiguation
 » Supervised machine learning methods (finish)
 » Weakly supervised (bootstrapping) methods
 » SENSEVAL
 » Unsupervised methods

Lexical sample task

- Select a sample of words from the lexicon
- Systems must then tag instances of the sample words in short extracts of text

SENSEVAL-1: 35 words

- 700001 John Dos Passos wrote a poem that talked of ‘the <tag>bitter</tag> beat look, the scorn on the lip.”
- 700002 The beans almost double in size during roasting. Black beans are over roasted and will have a <tag>bitter</tag> flavour and insufficiently roasted beans are pale and give a colourless, tasteless drink.
Lexical sample task: SENSEVAL-1

<table>
<thead>
<tr>
<th>Nouns</th>
<th>Verbs</th>
<th>Adjectives</th>
<th>Indeterminates</th>
</tr>
</thead>
<tbody>
<tr>
<td>-n</td>
<td>N</td>
<td>-v</td>
<td>N</td>
</tr>
<tr>
<td>accident</td>
<td>267</td>
<td>amaze</td>
<td>70</td>
</tr>
<tr>
<td>behaviour</td>
<td>279</td>
<td>bet</td>
<td>177</td>
</tr>
<tr>
<td>bet</td>
<td>274</td>
<td>bother</td>
<td>209</td>
</tr>
<tr>
<td>disability</td>
<td>160</td>
<td>bury</td>
<td>201</td>
</tr>
<tr>
<td>excess</td>
<td>186</td>
<td>calculate</td>
<td>217</td>
</tr>
<tr>
<td>float</td>
<td>75</td>
<td>consume</td>
<td>186</td>
</tr>
<tr>
<td>giant</td>
<td>118</td>
<td>derive</td>
<td>216</td>
</tr>
</tbody>
</table>
| ... | ... | ... | ... | ... | ...
| TOTAL | 2756 | TOTAL | 2501 | TOTAL | 1406 | TOTAL | 1785 |

All-words task

- Systems must tag almost all of the content words in a sample of running text
 - sense-tag all predicates, nouns that are heads of noun-phrase arguments to those predicates, and adjectives modifying those nouns
 - ~5,000 running words of text
 - ~2,000 sense-tagged words

Translation task

- SENSEVAL-2 task
- Only for Japanese
- word sense is defined according to translation distinction
 - if the head word is translated differently in the given expressional context, then it is treated as constituting a different sense
- word sense disambiguation involves selecting the appropriate English word/phrase/sentence equivalent for a Japanese word

SENSEVAL-2 results

<table>
<thead>
<tr>
<th>Language</th>
<th>Task</th>
<th>No. of submissions</th>
<th>No. of teams</th>
<th>IAA</th>
<th>Baseline</th>
<th>Best system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Czech</td>
<td>AW</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>94</td>
</tr>
<tr>
<td>Basque</td>
<td>LS</td>
<td>3</td>
<td>2</td>
<td>.75</td>
<td>.65</td>
<td>76</td>
</tr>
<tr>
<td>Estonian</td>
<td>AW</td>
<td>2</td>
<td>2</td>
<td>.72</td>
<td>.85</td>
<td>67</td>
</tr>
<tr>
<td>Italian</td>
<td>LS</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>39</td>
</tr>
<tr>
<td>Korean</td>
<td>LS</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>.71</td>
<td>74</td>
</tr>
<tr>
<td>Spanish</td>
<td>LS</td>
<td>12</td>
<td>5</td>
<td>.64</td>
<td>.48</td>
<td>65</td>
</tr>
<tr>
<td>Swedish</td>
<td>LS</td>
<td>8</td>
<td>5</td>
<td>.95</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>Japanese</td>
<td>LS</td>
<td>7</td>
<td>3</td>
<td>.86</td>
<td>.72</td>
<td>78</td>
</tr>
<tr>
<td>Japanese</td>
<td>TL</td>
<td>9</td>
<td>8</td>
<td>.81</td>
<td>.37</td>
<td>79</td>
</tr>
<tr>
<td>English</td>
<td>AW</td>
<td>21</td>
<td>12</td>
<td>.75</td>
<td>.57</td>
<td>69</td>
</tr>
<tr>
<td>English</td>
<td>LS</td>
<td>26</td>
<td>15</td>
<td>.86</td>
<td>.51/16</td>
<td>64/40</td>
</tr>
</tbody>
</table>
SENSEVAL-2 de-briefing

- Where next?
 - Supervised ML approaches worked best
 » Looking at the role of feature selection algorithms
 - Need a well-motivated sense inventory
 » Inter-annotator agreement went down when moving to WordNet senses
 - Need to tie WSD to real applications
 » The translation task was a good initial attempt

SENSEVAL-3 2004

- 14 core WSD tasks including
 - All words (Eng, Italian): 5000 word sample
 - Lexical sample (7 languages)
- Tasks for identifying semantic roles, for multilingual annotations, logical form, subcategorization frame acquisition

English lexical sample task

- Data collected from the Web from Web users
- Guarantee at least two word senses per word
- 60 ambiguous nouns, adjectives, and verbs
- test data
 - ½ created by lexicographers
 - ½ from the web-based corpus
- Senses from WordNet 1.7.1 and Wordsmyth (verbs)
- Sense maps provided for fine-to-coarse sense mapping
- Filter out multi-word expressions from data sets

<table>
<thead>
<tr>
<th>Class</th>
<th>Nr of words</th>
<th>Avg senses (fine)</th>
<th>Avg senses (coarse)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nouns</td>
<td>20</td>
<td>5.8</td>
<td>4.35</td>
</tr>
<tr>
<td>Verbs</td>
<td>32</td>
<td>6.31</td>
<td>4.59</td>
</tr>
<tr>
<td>Adjectives</td>
<td>5</td>
<td>10.2</td>
<td>9.8</td>
</tr>
<tr>
<td>Total</td>
<td>57</td>
<td>6.47</td>
<td>4.96</td>
</tr>
</tbody>
</table>

Table 1: Summary of the sense inventory
Results

- 27 teams, 47 systems
- Most frequent sense baseline
 - 55.2% (fine-grained)
 - 64.5% (coarse)
- Most systems significantly above baseline
 - Including some unsupervised systems
- Best system
 - 72.9% (fine-grained)
 - 79.3% (coarse)

SENSEVAL-3 lexical sample results

<table>
<thead>
<tr>
<th>System/Team</th>
<th>Description</th>
<th>P</th>
<th>R</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>iTBuner (Thamburilliam et al.)</td>
<td>A supervised system using a Levenshtein similarity between context of ambiguous words and dictionary definitions. Experiments are performed for various window sizes, various similarity measures</td>
<td>66.1</td>
<td>65.7</td>
<td>74.9</td>
</tr>
<tr>
<td>ITT Kernel</td>
<td>Random methods for sense prediction, pattern mining and syntactic analysis, and unsupervised term induction in an SVM classifier.</td>
<td>73.6</td>
<td>72.6</td>
<td>79.3</td>
</tr>
<tr>
<td>mostl</td>
<td>A combination of knowledge sources (post-of-words of neighboring words, words in context, local collocations, syntactic relations), in an SVM classifier.</td>
<td>71.4</td>
<td>72.4</td>
<td>78.8</td>
</tr>
<tr>
<td>TAU</td>
<td>Similar to iTBuner, with different correction function of a post-of-words</td>
<td>72.3</td>
<td>72.3</td>
<td>78.8</td>
</tr>
<tr>
<td>BUC</td>
<td>A combination of knowledge sources (post-of-words of neighboring words, words in context, local collocations, syntactic relations), in a SVM classifier.</td>
<td>71.4</td>
<td>72.4</td>
<td>78.8</td>
</tr>
<tr>
<td>BUC-Exp</td>
<td>Similar to BUC, but with a neural classifier.</td>
<td>71.4</td>
<td>72.4</td>
<td>78.8</td>
</tr>
</tbody>
</table>

SENSEVAL-3 results (unsupervised)

<table>
<thead>
<tr>
<th>System/Team</th>
<th>Description</th>
<th>P</th>
<th>R</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cameron (Un)</td>
<td>A maximum entropy model for unsupervised Shifting, using neighboring words and syntactic structures as features. A few annotated instances are used to train context classes to WordNet/WordNet sense</td>
<td>56.3</td>
<td>56.3</td>
<td>64.4</td>
</tr>
<tr>
<td>PML</td>
<td>An unsupervised system, using local part-of-speech and frequency information</td>
<td>54.7</td>
<td>54.7</td>
<td>63.6</td>
</tr>
<tr>
<td>CL-Research (Likhosher)</td>
<td>An unsupervised system solving on definition properties, syntactic, semantic, subcategorization patterns, other lexical information, as given in a dictionary.</td>
<td>45.0</td>
<td>45.0</td>
<td>55.5</td>
</tr>
<tr>
<td>CASSENKO</td>
<td>A maximum entropy model for unsupervised Shifting, using neighboring words and syntactic structures as features. A few annotated instances are used to train context classes to WordNet/WordNet sense</td>
<td>50.1</td>
<td>41.7</td>
<td>49.3</td>
</tr>
</tbody>
</table>

CS474 Natural Language Processing

- Last class
 - Lexical semantic resources: WordNet
 - Word sense disambiguation
 » Dictionary-based approaches
 » Supervised machine learning methods

- Today
 - Word sense disambiguation
 » Supervised machine learning methods (finish)
 » Issues for WSD evaluation
 » SENSEVAL
 » Weakly supervised (bootstrapping) methods
 Unsupervised methods
Unsupervised WSD

- Rely on **agglomerative clustering** to cluster feature-vector representations (without class/word-sense labels) according to a similarity metric.
- Represent each cluster as the average of its constituent feature-vectors.
- Label the cluster by hand with known word senses.
- Unseen feature-encoded instances are classified by assigning the word sense of the most similar cluster.
- Schuetze (1992, 1998) uses a (complex) clustering method for WSD.
 - For coarse binary decisions, unsupervised techniques can achieve results approaching those of supervised and bootstrapping methods.
 - In most cases approaching the 90% range.
 - Tested on a small sample of words.

Issues for evaluating clustering

- The correct senses of the instances used in the training data may not be known.
- The clusters are almost certainly heterogeneous w.r.t. the sense of the training instances contained within them.
- The number of clusters is almost always different from the number of senses of the target word being disambiguated.