Intro to Natural Language Processing

- Last class
 - Unsmoothed n-gram models
- Today:
 - Smoothing
 - » Add-one (Laplacian)
 - » Good-Turing
 - Combining estimators
 - » (Deleted) interpolation
 - » Backoff

Training N-gram models

- N-gram models can be trained by counting and normalizing
 - Bigrams

$$P(w_n \mid w_{n-1}) = \frac{count(w_{n-1}w_n)}{count(w_{n-1})}$$

General case

$$P(w_n \mid w_{n-N+1}^{n-1}) = \frac{count(w_{n-N+1}^{n-1}w_n)}{count(w_{n-N+1}^{n-1})}$$

Predicting the next word

- Let's go outside and take a ...
 - $P (w_n | w_1^{n-1})$
- Problem?
 - Bigram model

$$P(w_n|w_1^{n-1}) \approx P(w_n|w_{n-1})$$

- Trigram model

$$P(w_n \mid w_1^{n-1}) \approx P(w_n \mid w_{n-2} w_{n-1})$$

Probability of a word sequence

• $P(w_1, w_2, ..., w_{n-1}, w_n)$

$$P(w_1^n) = P(w_1) P(w_2|w_1) P(w_3|w_1^2) \dots P(w_n|w_1^{n-1})$$
$$= \prod_{k=1}^n P(w_k|w_1^{k-1})$$

- Problem?
- Solution: approximate the probability of a word given all the previous words...

N-gram approximations

Bigram model

$$P(w_1^n) \approx \prod_{k=1}^n P(w_k|w_{k-1})$$

Trigram model

$$P(w_1^{n-1}) \approx \prod_{k=1}^n P(w_k \mid w_{k-2} w_{k-1})$$

N-gram approximation

$$P(w_1^n) \approx \prod_{k=1}^n P(w_k | w_{k-N+1}^{k-1})$$

 Markov assumption: probability of some future event (next) word) depends only on a limited history of preceding events (previous words)

Bigram probabilities

 Problem for the maximum likelihood estimates: sparse data

	I	want	to	eat	Chinese	food	lunch
I	.0023	.32	0	.0038	0	0	0
want	.0025	0	.65	0	.0049	.0066	.0049
to	.00092	0	.0031	.26	.00092	0	.0037
eat	0	0	.0021	0	.020	.0021	.055
Chinese	.0094	0	0	0	0	.56	.0047
food	.013	0	.011	0	0	0	0
lunch	.0087	0	0	0	0	.0022	0

Training N-gram models

- N-gram models can be trained by counting and normalizing
 - Bigrams

$$P(w_n \mid w_{n-1}) = \frac{count(w_{n-1}w_n)}{count(w_{n-1})}$$
- General case

$$P(w_n \mid w_{n-N+1}^{n-1}) = \frac{count(w_{n-N+1}^{n-1}w_n)}{count(w_{n-N+1}^{n-1})}$$

- An example of Maximum Likelihood Estimation (MLE)
 - » Resulting parameter set is one in which the likelihood of the training set T given the model M (i.e. P(T|M)) is maximized.

Smoothing

- Need better estimators than MLE for rare events
- Approach
 - Somewhat decrease the probability of previously seen events, so that there is a little bit of probability mass left over for previously unseen events
 - » Smoothing
 - » Discounting methods

Add-one smoothing

- Add one to all of the counts before normalizing into probabilities
- Normal unigram probabilities

$$P(w_x) = \frac{count(w_x)}{N}$$

Smoothed unigram probabilities

$$P(w_x) = \frac{count(w_x) + 1}{N + V}$$

Adjusted counts

$$c_i^* = (c_i + 1) \frac{N}{N + V}$$

Alternate to adjusted counts

Adjusted/discounted counts

$$c_i^* = (c_i + 1) \frac{N}{N + V}$$

Discount d_c

$$d_c = \frac{c^*}{c}$$

Add-one smoothing: bigrams/trigrams

Add-one bigram counts

Original counts

	I	want	to	eat	Chinese	food	lunch
I	8	1087	0	13	0	0	0
want	3	0	786	0	6	8	6
to	3	0	10	860	3	0	12
eat	0	0	2	0	19	2	52
Chinese	2	0	0	0	0	120	1
food	19	0	17	0	0	0	0
lunch	4	0	0	0	0	1	0

New counts

	I	want	to	eat	Chinese	food	lunch
I	9	1088	1	14	1	1	1
want	4	1	787	1	7	9	7
to	4	1	11	861	4	1	13
eat	1	1	3	1	20	3	53
Chinese	3	1	1	1	1	121	2
food	20	1	18	1	1	1	1
lunch	5	1	1	1	1	2	1

Add-one smoothed bigram probabilites

Original

	I	want	to	eat	Chinese	food	lunch
I	.0023	.32	0	.0038	0	0	0
want	.0025	0	.65	0	.0049	.0066	.0049
to	.00092	0	.0031	.26	.00092	0	.0037
eat	0	0	.0021	0	.020	.0021	.055
Chinese	.0094	0	0	0	0	.56	.0047
food	.013	0	.011	0	0	0	0
lunch	.0087	0	0	0	0	.0022	0

Add-one smoothing

	I	want	to	eat	Chinese	food	lunch
I	.0018	.22	.00020	.0028	.00020	.00020	.00020
want	.0014	.00035	.28	.00035	.0025	.0032	.0025
to	.00082	.00021	.0023	.18	.00082	.00021	.0027
eat	.00039	.00039	.0012	.00039	.0078	.0012	.021
Chinese	.0016	.00055	.00055	.00055	.00055	.066	.0011
food	.0064	.00032	.0058	.00032	.00032	.00032	.00032
lunch	.0024	.00048	.00048	.00048	.00048	.00096	.00048

Too much probability mass is moved

- Estimated bigram frequencies
- AP data, 44million words
- Church and Gale (1991)
- In general, add-one smoothing is a poor method of smoothing
- Much worse than other methods in predicting the actual probability for unseen bigrams

$r = f_{MLE}$	f _{emp}	f _{add-1}
0	0.000027	0.000137
1	0.448	0.000274
2	1.25	0.000411
3	2.24	0.000548
4	3.23	0.000685
5	4.21	0.000822
6	5.23	0.000959
7	6.21	0.00109
8	7.21	0.00123
9	8.26	0.00137

Adjusted bigram counts

Original

	I	want	to	eat	Chinese	food	lunch
I	8	1087	0	13	0	0	0
want	3	0	786	0	6	8	6
to	3	0	10	860	3	0	12
eat	0	0	2	0	19	2	52
Chinese	2	0	0	0	0	120	1
food	19	0	17	0	0	0	0
lunch	4	0	0	0	0	1	0

Adjusted add-

one (#'s are off...)

	I	want	to	eat	Chinese	food	lunch
I	6	740	.68	10	.68	.68	.68
want	2	.42	331	.42	3	4	3
to	3	.69	8	594	3	.69	9
eat	.37	.37	1	.37	7.4	1	20
Chinese	.36	.12	.12	.12	.12	15	.24
food	10	.48	9	.48	.48	.48	.48
lunch	1.1	.22	.22	.22	.22	.44	.22