Improving Bayesian Spelling Correction
Jacqueline Bodine

Introduction

The problem of correcting a misspelled word to the word originally intended by the typist has interested many researchers. However, despite the research, the best spelling correctors still achieve below 96% accuracy in returning the correct word as the top candidate correction, though higher levels have been achieved for returning the correct word somewhere in a list of candidate corrections. These accuracy rates imply that any reasonable spell checker today must be interactive, that is to say, it must present the user with a list of possible corrections, and leave the final decision as to which word to choose to the user. Many hours of human labor could be saved if the accuracy rate for the top-candidate correction could be improved. With an improved accuracy rate, spell checkers could change from interactive to automatic, that is to say, they could run without human intervention.

In this project, I analyzed the different components of the Bayesian inference approach to spelling correction to determine the contribution of each component. I then attempted to improve the performance of the spelling corrector by improving the accuracy of the components. While the model I used as a starting point is not the most sophisticated model, hopefully the analysis and results from this project will still be relevant and provide guidance for researchers developing more sophisticated spelling correctors.
Related Work
Damerau 1964

Errors in text can be caused by either transcription errors or human misspellings. In an inspection of misspelled words, Damerau found that over 80 percent had only one spelling error, and that these single errors could be separated into four classes: insertion of an extra letter, deletion of a letter, substitution of an incorrect letter for a correct letter, or transposition of two adjacent letters.

Using this information, Damerau designed a program to find the correct spelling of a word that has one error. The program detects misspelling by first comparing words of four to six characters in length to a list of high frequency words. If the word is not found in the list, it is searched for in the dictionary optimized by alphabetical order, word length, and character occurrence.

If the word does not exist in the dictionary, the program attempts to find the correctly spelled version of the word. All words that differ in length by more than one or differ in character occurrence by more than 2 bit positions are not possible corrections under the one-error assumption, and so they are not checked. The remaining words are checked against the original word using spelling rules that eliminate or swap the positions with differences and compare the rest of the positions in the word.

If the dictionary word is the same length as the misspelled word, and the words differ in only one position, then the dictionary word is accepted because they differ by a single substitution. If the dictionary word and the misspelled word are the same length, and the words differ in only two adjacent positions, then if the characters are interchanged, and if they match, the dictionary word is accepted, because they differ by a single transposition. If the dictionary word is one character longer, then the first difference character in the dictionary word is discarded, the rest of the characters are shifted left and if they match, then the dictionary word is accepted, because they differ by a single deletion. If the dictionary word is one character shorter, then the first difference character in the misspelled word is discarded, the rest of the characters are shifted left, and if the words now match, the dictionary word is accepted because they differ by a single insertion.

This algorithm was shown to correctly identify 96.4% of the words that were misspelled by a since spelling error. Of 964 spelling errors, 122 had more than one spelling error, 812 were correctly identified, and 30 were incorrectly identified. Along with this high accuracy rate, a strength of this algorithm is that it is very simple and efficient for detecting if a misspelled word and a dictionary word could be the same with one spelling error.
This algorithm brings up two areas of concern. The first concern is that the algorithm scales linearly with the size of the dictionary because each dictionary word is checked against the misspelled word. Words of significantly different length or characters than the misspelled words are not checked in detail, but the length and characters are still checked. The second concern is that if there are multiple words within one edit of the misspelled word, this algorithm will always select the first word alphabetically that occurs in the dictionary, and will never consider the other words.
Pollock and Zamora 1984

SPEEDCOP (Spelling Error Detection/Correction Project) is a program designed to automatically correct spelling errors by finding words similar to the misspelled word, reducing the set to words that could be created by a single spelling error, and then sorting the corrections by the probability of the type of error, and then the probability of the corrected word.
The main part of the program works by hashing each word of the dictionary to a skeleton key and an omission key, and then creating dictionaries sorted by the keys. When a misspelled word is encountered, the skeleton key and omission key are created. Words that have keys that appear close to the key of the misspelled word are similar to the misspelled word, and are used as the set of possible corrections.

The skeleton key is created by taking the first letter of the word, followed by all of the unique consonants in order, followed by the unique vowels in order. The structure of this key rests on the following rationale:

(1) the first letter keyed is likely to be correct, (2) consonants carry more information than vowels, (3) the original consonant order is mostly preserved, and (4) the key is not altered by the doubling or undoubling of letters or most transpositions. (Pollock and Zamora)
The omission key is designed to account for the cases where one of the early letters in the word is incorrect. If an early letter is incorrect, the skeleton keys for the word and the misspelling might be relatively far apart. They found that different consonants had different probabilities of being omitted, and so the omission key sorts the consonants in a word in the reverse order of that probability, followed by the unique vowels in order of occurrence.

Once sets of similar words are found by the keys, the sets are culled by only keeping words that could be formed by a single spelling error. They use the same algorithm as Damerau, described above. This retains the speed of checking if the word is a plausible correction, but improves upon Damerau’s algorithm by only checking words that are similar according to the keys instead of the whole dictionary.
Pollock and Zamora found that 90-95 percent of misspellings in the scientific and scholarly text they studied contained only one spelling error. This supports Damerau’s findings and lends more support to the single error assumption. They also found that about 10% of misspellings were common misspellings.

To improve their algorithm, they added a 256 word dictionary of common misspellings such as “teh” -> “the” or “annd” -> “and.” These common misspellings were learned from the test data, and could include words that had more than one spelling error. All of the words needed to occur often, and the correction had to be unambiguous, that is, it always had to resolve to the same word. They also added a function word routine, which would check if a misspelled word was a function word concatenated to a correctly spelled word.
SPEEDCOP corrected 85-95 percent of single error misspellings, 75-90 percent of all misspellings where the correct word existed in the dictionary, and 65-90 percent of the total misspellings on a corpus of 50,000 misspellings using a dictionary of 40,000 words. The accuracy of the algorithm is highly dependent upon the assumptions behind the key structure, and the size of the dictionary. The keys alone correct only 56-76 percent of the misspellings.

Kernighan, Church, and Gale 1990

Correct is a program designed to take words rejected by the Unix spell program, generate candidate corrections for the words, and rank the candidates by probability using Bayes’ rule and a noisy channel model. The noisy channel model assumes that misspellings are the result of noise being added during typing, such as by hitting the wrong key, or by hitting more than one key at a time. This algorithm assumes that the misspellings are formed by a single spelling error, and also assumes that each single spelling error occurs with a different probability. For example, it may be more likely that ‘m’ is typed instead of ‘n’ than that ‘de’ is mistyped as ‘ed’.
Correct utilizes four confusion matrices. Each matrix represents a different type of spelling error: insertion, deletions, substitution, or transposition. The elements of the matrix represent the number of times that one letter was inserted after another letter, deleted after another letter, substituted for another letter, or transposed with another letter in the training corpus.

Candidate corrections are scored by Pr(c)Pr(t|c). Pr(c), the prior, is estimated by (freq(c) + 0.5)/N, which is an approximation of the percent of times that a random word in the corpus would be the word c. Pr(t|c), the channel, is computed from the confusion matrices.
The evaluation method was to run the program over words in the AP corpus rejected by Spell, and then compare the results of correct with the results of three human judges. In 87 percent of the cases, correct agreed with the majority of judges. Correct also performed much better than other methods using only the prior, only the channel, or just choosing the first candidate.
The paper points out how the judges felt uncomfortable having to choose a correction given only the misspelled word, and would have preferred to have seen the context around the word. This highlights the fact that we cannot expect perfect performance out of a method that only views the word in isolation. The authors suggest that a better method might extend the prior calculation to take advantage of context clues.

Another area of concern with this model is sparseness of data problem. The prior calculation is smoothed by adding .5 to the frequency of each word, but many items in the confusion matrix are also zero. Just because a certain typo has not occurred before in the text does not mean that it could never happen.

Church and Gale 1990

This paper describes an extension to correct, the program described above. In this extension, the scoring mechanism is modified by adding bigram probability calculations based on the left and right words. The new formula for scoring is Pr(c)*Pr(t|c)*Pr(l|c)*Pr(r|c) where Pr(l|c) is the probability of seeing the left hand word given c, and Pr(r|c) is the probability of seeing the right hand rule given c.

This paper goes more deeply into the issues surrounding generating candidate corrections and the issues surrounding smoothing. Insertions are detected by trying to delete each letter in the misspelled word and checking if it is now in the dictionary. Deletions, substitutions and transpositions are detected by recompiled tables for each dictionary word. This greatly increases storage space requirements, but saves time during the program.

Smoothing is calculated in three ways: The first way is to not smooth, and just use the maximum likelihood estimator. The second way is to add 0.5 to each of the observed frequencies, the expected likelihood estimator. The third way is the Good-Turing method is to change the number of observations r, into (r+1)*number of total observations with 1 added/number of total observations. The expected likelihood estimator is used to smooth the prior. The Good-Turing method is used to smooth the channel probabilities. The Good-Turing method is also used to smooth the bigram probabilities.

This method improves accuracy from 87 percent to 90 percent.
Mays, Damerau, and Mercer 1990
Unlike the previous methods for spelling correction, Mays et al describe a method that uses the context surrounding words to detect and correct spelling errors. With this method, a spelling error does not have to result in a non-word. They use word trigram conditional probabilities to detect and correct misspellings resulting from one spelling error.
Using the noisy channel model and Bayes’ rule, they try to find the word w in the dictionary that maximizes P(w)P(y|w). P(w) is the probability of seeing the word w, and is approximated using the word trigram model. Using a large corpus, they derive the probability of seeing w conditional on having seen the two preceding words. For P(y|w), the probability that y is typed given that the typist meant w, the algorithm assumes that all candidate words generated by one spelling error are equally likely, and that there is a probability alpha of the word being typed correctly.
To evaluate their model, they artificially produced misspellings from a corpus, and then tested the algorithm with different values of alpha. Higher values of alpha resulted in fewer incorrect corrections, but also fewer correct corrections.

This algorithm has a strength in that it allows the size of the dictionary to be increased without decreasing the number of detectable spelling errors. It also has a strength in that it accounts for the context surrounding a word in trying to find a correction. However, it assumes that all candidate corrections are equally likely to occur in isolation, ignoring the possibility that different substitutions could have different probabilities as Kernighan et al found.
Kukich 1992
In this survey paper, Kukich classifies previous attempts at automatically correcting words in text into three categories. The techniques cover both algorithms for detecting/correcting human errors and detecting/correcting OCR errors.

The first category is non-word error detection. OCR errors are often detectable by looking at n-gram analysis across letters. Human errors often do not result in improbably n-grams, and so a better technique is dictionary lookup, optimized for speed with hash tables. The size of the dictionary must be considered, because a larger dictionary will correctly recognize more words, but it will also increase the chances that an error goes undetected because it results in a word found in the larger dictionary. Most evidence shows that larger dictionaries recognize many more real words than the number of errors that they shadow, and so larger dictionaries are actually better. Another issue in error detection is detecting errors across word boundaries. The detector may flag a misspelled word that is actually two words concatenated or part of a split word.

The second category is isolated-word error correction. Isolated-word error correction refers to the task of looking at a misspelled word and generating candidate corrections. In interactive correction, the program may generate a list of words, and allow the user to select the correct one. In automatic correction, the program must choose the most likely replacement without help from the user. In generating candidate corrections, the programs usually rely on assumptions about the patterns of spelling errors, such as 80 percent of misspelled words only have one spelling error, the first letter of a word is less likely to be misspelled than subsequent words, high frequency letters are more likely to be substituted for low frequency letters, and spelling errors are often phonetically plausible.
Minimum edit distance techniques attempt to find words that are close to the misspelled word. In reverse minimum edit distance techniques, a candidate set is generated by applying every possible single error to the string, generating 53n+25 strings that must be checked against the dictionary. Similarity key techniques hash similar words to similar keys so that the best corrections will be easily findable. Rule based techniques apply rules such as consonant doubling to misspelled words to find the possible correct words that could have been transformed into the misspelling. N-gram techniques are used in OCR to find n-grams that are more likely than the given one. Probabilistic techniques look at transition probabilities and confusion probabilities to find the word that could have been transformed into the misspelling. Neural Net techniques train on data to learn how to correct spelling errors.

The third category is context-dependent word correction. This task involves using the context to detect and correct errors. This means that errors resulting in real words can be detected and corrected. Studies have shown that 40 percent of spelling errors result in real words. These errors may result in local syntactic errors, global syntactic errors, semantic errors, or errors on the discourse or pragmatic level.
Acceptance based approaches try to understand input by relaxing rules. Relaxation based approaches try to find the rule that broke the parsing. Expectation based approaches try to predict the next word, and assume there is an error if the next word is not on the list of assumptions. Statistical methods use models like word trigrams or part of speech bigrams to detect and correct spelling errors. Context-dependent word correction techniques have achieved up to 87 percent accuracy.
Brill and Moore 2000
Brill and Moore propose an improved model for error correction using the noisy channel model and Bayes’ rule. Unlike previous approaches, their approach allows for more than a single spelling error in each misspelled word. They break each word and candidate correction into all possible partitions, and then compute the probability of the dictionary word being the correct correction.

The model uses dynamic programming to calculate the generic edit distance between two strings. The dictionary is precompiled into a trie with the edges corresponding to a vector of weights – the weight of computing the distance from the string to the string prefix. The probabilities of changing one partition into another is stored as a trie of tries.

To evaluate their model, they tried different context window sizes and calculated the percent of times the correct word was in the top three, top two, or first positions. The model achieved 93.6 percent accuracy in being the top choice, and 98.5 percent accuracy in being one of the top three choices when position of the partition is not considered. This rises to 95.1% and 98.8% accuracy when position is considered.

They then extended their model by not assuming all words to be equally likely, and instead using a trigram language model using left context. This resulted in more accurate corrections, but they did not provide equivalent evaluation results.

The algorithm used is not completely clear from this paper, but it seems to have a strength in that it can model phonetic mistakes, and a weakness in that the tries will take up a lot of space.
Garfinkel, Fernandez, and Gopal 2003
This paper describes a model for an interactive spell checker. Because the spell checker is interactive, the goal is to return a list of corrections that includes the correct word, preferably near the top of the list.
They use a likelihood function that relies on several sub arguments. They use the edit distance between the misspelled word and the correction as a model of closeness. They also use the commonness of the correction so that words that are more common are more likely to be returned as results. Finally they have a binary variable that indicates if the word and correction share the same first letter because studies have shown that the first letter is less likely to be incorrect. They weight each of these subarguments (using the edit distance minus 1) and add them to get g(w,m) where the smaller g is, the more likely that w is the correct replacement for m.

The list of candidate words is generated by generating every possible word within two edits of the misspelled word. The authors claim that these lists are generated instantaneously, and so the running time is not an issue.

In the actual results, the weight of the first letter being the same was set to zero, because the other two sub arguments dominated. Furthermore the weight of edit distance and commonness was set so that all words of one edit distance come before words of two edit distance, and the words are then sorted by commonness.
Bayesian Inference

The algorithm that I used for this project was Bayesian Inference on the noisy channel model. The noisy channel model is used to model spelling errors, and to find candidate corrections. The input word, a misspelling, is viewed as the output of running the word that the user meant to type through a noisy channel where errors were introduced. The problem of spelling correction then becomes the problem of modeling the noisy channel, finding the probabilities with which different types of errors occur, and then running the misspelling backwards through the model to find the originally intended word.

With Bayesian Inference, to find the original word given a misspelling, we consider all possible words that the user could have meant. We then want to find the word that maximizes the probability that you meant the word, given the misspelling:

[image: image1.wmf])

|

(

max

arg

ˆ

n

observatio

word

P

w

V

w

Î

=

Basically, we want to find the word that has the highest probability of being correct. However this is difficult to calculate directly, if we counted all of the times that you typed a when you meant b we would run into the sparse data problem. Bayes rule allows us to break the probability into two easier probabilities:

[image: image2.wmf])

(

)

|

(

max

arg

)

(

)

(

)

|

(

max

arg

ˆ

word

P

word

n

observatio

P

n

observatio

P

word

P

word

n

observatio

P

w

V

w

V

w

Î

Î

=

=

The first term is called the likelihood and the second term is called the prior. Both of these terms can be estimated easier than the original probability.
Some assumptions that this model relies on are 1) spelling errors occur in some predictable way with certain probabilities 2) we can generate possible original words.
Motivation

The motivation for this project was to analyze the contributions of the prior and the likelihood to the overall accuracy of the algorithm. This algorithm was used by Kernighan, Church, and Gale in their correct program for Unix.
In order to generate all possible words, they make the simplifying assumption that each misspelling is generated by only one spelling error: a single insertion, deletion, substitution, or transposition. This assumption is backed by Damerau’s research that found that 80% of misspellings fall into that category. Later research corroborated with these findings, or found that even a larger percent of errors would fall into that category. I wanted to find out if those percentages would still hold true.
As said above, Bayesian inference also requires the assumption that spelling errors occur in some predictable way with certain probabilities. In order to estimate the likelihood, they assumed that each of the single errors would occur with a given probability for certain letters. They created a two dimensional array called a confusion matrix to represent the counts of the errors for each type of error. The entries in the insertion matrix represent the number of times that a letter L1 was inserted after typing the letter L2. The entries in the deletion matrix represent the number of times that a letter L1 was deleted after typing the letter L2. The entries in the substitution matrix represent the number of times that the letter L1 was accidentally typed instead of the letter L2. The entries in the transposition matrix represent the number of times that the sequence of letters L1 L2 was accidentally typed as L2 L1.
The use of a two-dimensional array let me to wonder if there would be added accuracy with a three-dimensional array. If the letter before an insertion could affect the probability of making that insertion, would the letter before a substitution also affect the probability of making the substitution, or could the two letters before an insertion have an effect? This was motivated by mistakes I have noticed in my own typing. Often when I start to type ‘in’, my fingers automatically type ‘g’ because of the frequency of typing the string ‘ing’. A similar reasoning for including the letter before a transposition is the rule “i before e except after c”, which if forgotten could lead to a high probability of the mistake “cie”, transposing ie after seeing c. I considered also testing the letter after the mistake, but rejected that idea because people type in order, so it would be unlikely that the next letter could affect it.
Further assumptions made were that the words would only contain the letters a-z, and not punctuation, and that the case of the letters would not matter. I did not choose to test these assumptions because adding punctuation or upper case letters would increase the sparseness of the confusion matrices. After seeing the results, I determined that I should have included punctuation, as the lack thereof prevented the program from correcting many errors.
The correct program uses a smoothed frequency count for the prior calculation. This indicates that a word that was more frequently typed in the corpus would be more likely to appear as the correct word. However, this neglects information about the context of the word. Kernighan, Church and Gale noticed, “The human judges were extremely reluctant to cast a vote given only the information available to the program, and that they were much more comfortable when they could see a concordance line or two.” The problem is, that if a human sees the word “acress”, they do not do a Bayesian inference calculation to determine if the word was meant to be “caress”, “actress”, or “acres.” Instead, they look at the sentence to infer the intended meaning.

Church and Gale attempted to add context to their model using bi-grams of the word before and the word, and the word and the word after. They found that smoothing the data with MLE or ELE was worse than not including the context, but that the Good-Turing method improved accuracy from 87% to 90%. I decided to try another method of adding context that looked at more than just the surrounding word on either side of the misspelling. I wanted to only require words before the misspelling, so that they spelling corrector could correct the text in order, and assume that words before the misspelling are correct. I also wanted to use more words in the sentence. N-grams would have bad sparse data problems, and I hypothesized that the order of the words would not matter so much as what they indicate. For example, the word “theater” anywhere in the sentence should indicate “actress”, while “land” should indicate “acres”.
I decided to model context in a simple way. Ignoring the location of words, I viewed a sentence as a bag of words, and assumed that certain words would appear in sentences with other words. This created problems because while this is true for content words, it is not true for many filler words and function words. There might not be any words would you expect to often see in sentences with the word “the”. In order to prevent the corruption of my data by this fact, I only counted words that occurred with less than a threshold frequency. This meant that the locality score would only provide information when the words were relatively rare.

Implementation Details
Training Data

I had originally intended to generate a training data corpus by using existing spell checkers and choosing the first word as the correction, and running them over online sources. A preliminary test showed that this would be insufficient because the first correction offered was often wrong. For calculating the confusion matrices, I used data from the Birkbeck Spelling Error Corpus, available through the Oxford Text Archive at http://ota.ahds.ac.uk/. For calculating the prior I used Kilgarriff’s BNC Word Frequency List available at http://www.itri.bton.ac.uk/~Adam.Kilgarriff/bnc-readme.html. For calculating locality information I used books from Project Gutenberg (http://www.gutenberg.net/) and Live Journal entries I found through the “Random Journal” page (http://www.livejournal.com/random.bml). To determine if a word was in the dictionary I used Atkinson’s SCOWL Word Lists available at http://wordlist.sourceforge.net/.
Likelihood

I implemented the two dimensional matrices the same was as Kernighan, Church and Gale, except that I used the raw counts and added 0.5 to each count, and did not divide by the number of times that the correct word was attempted. I could not divide by the attempts-count because I did not generate the error count myself from a corpus so I did not know the numbers.
I tried dividing by an n-gram count, which would be the frequency in the English language that the correct string of letters was attempted but this reduced the accuracy. This may be because the n-grams were not from the same corpus as the errors. It may also have been because the program only accepts misspellings, so dividing by the count will actually give you a false probability. For example, if the count of the substitution error of typing ‘o’ for ‘e’ is 100, but the count of typing e is 100000, that would mean the mistake is relatively rare, and would have a low probability. However the mistake is still a more common mistake than others, and so it would still make sense to give that error a high probability. The probability of the error may be 100/100000, but the probability of the error, given that an error was made may be much higher.
For three-dimensional matrices I used the same training data, but for each error, increased the count in the appropriate one-dimensional, two-dimensional, and three-dimensional matrix. The three-dimensional matrix data was sparse, but the sum of the row in a three-dimensional matrix would correspond to the count in the related two-dimensional matrix cell. Using this information, I used the one-dimensional and two-dimensional information to smooth the data in the three-dimensional matrix. Adding 0.5 to each count implies that the probability of any unseen error is the same. However it seems more likely that the probability of an unseen insertion after seeing two letters would be related to the probability of the insertion after seeing one letter, or the probability of inserting that letter at all. The formula used to calculate the count was
(1D + 0.5)/26^2 + 2D/26 + 3D

Where 1D represents the count from the one-dimensional matrix cell, 2D represents the count from the appropriate two-dimensional matrix cell, and 3D represents the count from the three-dimensional matrix cell.

Prior

To calculate the prior probability, I used a smoothed frequency count divided by the smoothed total number of words.

[image: image3.wmf]ords

NumUniqueW

NumWords

word

Count

word

P

5

.

0

5

.

0

)

(

)

(

+

+

=

Locality

To generate the locality information, I read in one sentence at a time from the training data. For each word in the sentence, I increased the count of the number of times it had appeared in a sentence with the words before it, if the words were below a threshold frequency. I then divided the count by the number of sentences that the word original word appeared in to get the probability that Word A is in a sentence given that Word B is also in the sentence.
To get the locality score for a misspelling, I get the locality count for the low frequency words that occur before the misspelling in the sentence, and average them.
Calculating sorted candidate correction list
The main function of the algorithm takes as input a misspelled word, the sentence that the word was from, and the index in the sentence where the misspelling occurs. A preliminary list of candidates is generated by trying every possible insertion, deletion, substitution, and transposition on the misspelling, discarding strings that are not in the dictionary word list. For each remaining word, the likelihood, prior, and locality information is calculated, and they are multiplied together to get a score. The list of candidates is sorted by score, with the highest score first, and returned.
Evaluation

To evaluate my algorithm I used test data from the Live Journal latest comments feed. I hand corrected the spelling mistakes so that I would have a corpus of spelling errors and their corrections with context. I ran this on the algorithm to find the number of misspelled words, the percentage of misspelled words with only one error, the number of misspellings with only one candidate correction, and the accuracy. I obtained three accuracy scores: number of times the first candidate was correct/number of one-error misspellings, number of times one of the top five candidates were correct/number of one-error misspellings, and the number of times the correct spelling was anywhere in the list/number of one-error misspellings.
The percentage of misspelled words with only one error represented a ceiling for the accuracy that the program could achieve, since it could not correct any word with more than one error. The percentage of words with only one candidate correction represented a floor for the accuracy. This means that a certain percent of words only had one valid dictionary word within an edit distance of one, so that I could not fail to return the correct word in the first place. The percentage of times the correct spelling was anywhere in the list would be 100% if the dictionary included every correct spelling.
Then, in order to understand what influence the different parts of the algorithm had on the accuracy, I recalculated the accuracy using only parts of the score. I tried ranking the candidates by only the likelihood, only the prior, or only the likelihood multiplied by the prior. I also tried using the two-dimensional confusion matrices for the likelihood calculations.
Results

270 Total Errors

90% of misspelled words have one error

53% of words have only one candidate
Percentage Correct (Out of one-error misspellings):

	
	Likelihood
	Prior
	Locality
	Likelihood & Prior
	All

	
	2D
	3D
	
	
	2D
	3D
	2D
	3D

	1st
	80.25
	76.95
	87.24
	76.54
	89.71
	90.53
	90.12
	91.36

	Top 5
	95.47
	95.06
	98.35
	94.65
	97.94
	98.35
	98.77
	98.35

	Any
	99.59
	99.59
	99.59
	99.59
	99.59
	99.59
	99.59
	99.59

The 99.59% rate is because the word “amoxicillin” was not in the word list that I used.
Conclusion
The prior calculation has the greatest individual accuracy, indicating that it contributes the most to the accuracy of the spell checker. However, in all cases adding more information improved the accuracy, so all parts of the probability calculation are important. On it’s own, the locality score performed the worst, indicating that perhaps a better way of estimating context would be helpful.

The 90% rate of misspellings having only one error is in line with what other researchers have found. While this rate seems high, it still means that one out of every ten spelling errors can not be corrected with any program that makes the one-error assumption.

All of the methods of correcting the spelling perform much better than the 53% of words that only have one candidate correction.
The spell checker performed better than I had expected in comparison to other spell checkers. The correct program achieved 87% accuracy compared to my reimplementation (Likelihood and Prior, 2D) of 89.71%. With context provided by n-grams they achieved 90% accuracy which is nearly identical to my version of locality scores (All 2D) which achieved 90.12%. This indicates that my way of adding context was not worse than the n-gram method. Adding a third dimension to the confusion matrices improved the accuracy in both cases.

Pollock and Zamora achieved 77-96% accuracy on different corpora with SPEEDCOP. This range spans the accuracy that I achieved, but also indicates that perhaps with a different test set I would achieve much different results.
Garfinkel et al. reported the scores for First, Top-Five, and Any. The achieved 85% for First, 98% for Top Five, and 100% for Any.
The best results I found were from Brill and Moore who could correct words with more than one spelling error. They achieved 95.1% accuracy which must be compared against 82.36% - the number of times the correct answer was the first correction/ the total number of misspellings. They have 98.8% accuracy in returning the correct word as one of the top 3 candidates.
Future Work

The results of this project suggest many areas for future work. On their own, the three-dimensional matrices had lower accuracy than the two-dimensional matrices, but when combined with the prior and likelihood they improved the accuracy. It would be interesting to do more research to understand the exact influence of the three-dimensional matrices, perhaps training them with more data or with dividing by the number of correct attempts to see if they do improve the overall accuracy.

The locality score alone gave a surprisingly low accuracy rate. With an improved locality score, the locality should be able to outperform the prior calculation, since it is like a prior with context. From the errors where the locality score failed, it seemed that the sentences did not have words that strongly selected the correct spelling, or that the top two candidates were similar words, but in different tenses or parts of speech. This indicated that perhaps incorporating part of speech data would improve the locality score. It also indicated that stemming the words in the locality score would probably not help.

Any automatic spell checker would need to correct more than 90% of the misspellings. A good area for future work would be handling the case where there was more than one spelling error, and handling errors of an inserted or deleted space, where there is not a one-to-one correlation between the misspelled word and the correct word.

A large number of words in the corpus included apostrophes and dashes. Allowing punctuation marks to be part of a word will greatly increase the number of corrections that can be made.

One of the major difficulties of this project was finding data for training and testing. I was not able to find a large corpus with spelling errors and their corrections in context. This meant that I needed to use data from separate corpora for training, which may have affected the accuracy of my program. It also meant that I had to create my own testing corpus by hand. If there were a large corpus of spelling errors, future researchers could have a larger set of training data from the same source, and a large test set so that they could achieve better accuracy.
Bibliography

Brill, Eric and Robert C. Moore. 2000. An Improved Error Model for Noisy Channel Spelling Correction. In Proceedings, 38th Annual Meeting of the Association for Computational Linguistics, Hong Kong, pp. 286-293.
Church, K. and W. Gale (1991). “Probability Scoring for Spelling Correction.” Statistics and Computing, v.1, p.93-103.
Fred J. Damerau, A technique for computer detection and correction of spelling errors, Communications of the ACM, v.7 n.3, p.171-176, March 1964.
Robert Garfinkel, Elena Fernandez, Ram Gopal, Design of an interactive spell checker: optimizing the list of offered words, Decision Support Systems, v.35 n.3, p.385-397, June 2003.

Jurafsky, D. and J. Martin (2000). Speech and Language Processing, Prentice Hall.

Kernighan, M. D., Church, K. W., and Gale, W. A. 1990. A spelling correction program based on a noisy channel model. In Proceedings of COLING-90, The 13th International Conference on Computational Linguistics, vol. 2 (Helsinki, Finland). Hans Karlgren, Ed. 205-210.
Kukich, K. (1992). Techniques for automatically correcting words in text. ACM Computing Surveys, 24(4):377-439.

Mays, E., F. Damerau, and R. Mercer. (1991). “Context Based Spelling Correction.” Information Processing and Management. 27(5): 517-522.
Pollock, J. J., and Zamora, A. 1984. Automatic spelling correction in scientific and scholarly text. Communications of the ACM, 27(4), 358-368(1984).

_1146161020.unknown

_1146165981.unknown

_1146156042.unknown

