CS474 Natural Language Processing

- Last class
 - SENSEVAL
 - Pronunciation subproblem in speech recognition
- Today
 - Noisy channel model
 - » Pronunciation variation in speech recognition

Probabilistic transduction

- surface representation → lexical representation
- string of symbols representing the pronunciation of a word in context → string of symbols representing the dictionary pronunciation
 - [er] → her, were, are, their, your
 - exacerbated by pronunciation variation
 - » the pronounced as THEE or THUH
 - » some aspects of this variation are systematic
- sequence of letters in a mis-spelled word → sequence of letters in the correctly spelled word
 - acress → actress, cress, acres

The pronunciation subproblem

- Given a series of phones, compute the most probable word that generated them.
- Simplifications
 - Given the correct string of phones
 - » Speech recognizer relies on probabilistic estimators for each phone, so it's never entirely sure about the identification of any particular phone
 - Given word boundaries
- "I [ni]..."
 - [ni] → neat, the, need, new, knee, to, and you
 - Based on the (transcribed) Switchboard corpus
- Contextually-induced pronunciation variation

Noisy channel model

- Channel introduces noise which makes it hard to recognize the true word.
- Goal: build a model of the channel so that we can figure out how it modified the true word...so that we can recover it.

Decoding algorithm

- Special case of Bayesian inference
 - Bayesian classification
 - » Given observation, determine which of a set of classes it belongs to.
 - » Observation
 - string of phones
 - » Classify as a
 - word in the language

Bayesian approach

 Use Bayes' rule to transform into a product of two probabilities, each of which is easier to compute than P(w|O)

$$P(x \mid y) = \frac{P(y \mid x) \quad P(x)}{P(y)}$$

$$\hat{w} = \underset{w \in V}{\text{arg max}} \quad \frac{P(O \mid w) \quad P(w)}{P(O)}$$

Pronunciation subproblem

- Given a string of phones, O (e.g. [ni]), determine which word from the lexicon corresponds to it
 - Consider all words in the vocabulary, V
 - Select the single word, w, such that
 P (word w | observation O) is highest

$$\hat{w} = \underset{w \in V}{\operatorname{arg\,max}} \quad P(w \mid O)$$

Pronunciation subproblem

• Compute $\hat{w} = \underset{w \in W}{\operatorname{likelihood}} \quad \underset{\text{prior}}{\text{prior}}$

- where y represents the sequence of phones (e.g. [ni])
- and w represents the candidate word

Computing the prior

- Using the relative frequency of the word in a large corpus
 - Brown corpus and Switchboard Treebank

w	freq(w)	P(w)
knee	61	.000024
the	114,834	.046
neat	338	.00013
need	1417	.00056
new	2625	.001

Sample rules that account for [ni]

Word	Rule Name	Rule	P
the	nasal assimilation	ð ⇒ n / [+nasal] #	[.15]
neat	final t deletion	$t \Rightarrow \emptyset / V \longrightarrow \#$	[.52]
need	final d deletion	$d \Rightarrow 0 / V \longrightarrow \#$	[.11]
new	u fronting	$u \Rightarrow i / - \# [y]$	[.36]

Probabilistic rules for generating pronunciation likelihoods

- Take the rules of pronunciation (see chapter 4 of J&M) and associate them with probabilities
 - Nasal assimilation rule
- Compute the probabilities from a large labeled corpus (like the transcribed portion of Switchboard)
- Run the rules over the lexicon to generate different possible surface forms each with its own probability

Final results

- new is the most likely
- Turns out to be wrong
 - "I [ni]..."

w	p(y w)	p(w)	p(y w)p(w)
new	.36	.001	.00036
neat	.52	.00013	.000068
need	.11	.00056	.000062
knee	1.00	.000024	.000024
the	0	.046	0

Decision trees for encoding lexicalto-surface pronunciation mappings

- Alternative to writing probabilistic pronunciation rules by hand is to learn the rules
- Decision tree approach
 - Riley (1991), Withgott and Chen (1993)
- Input to decision tree: a lexical phone described in terms of a set of features
- Output: classification (i.e. surface phone realization) and a probability

Automatic induction of decision trees

- Riley / Withgott and Chen
 - Used CART (Breiman et al. 1984)
 - C4.5/C5.0 is an alternative
- How are decision trees induced automatically?
 - Training examples
 - Top-down induction

Example: pronunciation of /t/

Training

- One tree for each lexical phone, p
 - One example for each occurrence of a lexical phone in corpus
 - Class value: surface realization of p
 - Features: previous-lexical-phone, next-lexicalphone, position-in-syllable