
Last class: Why study NLP?

- Useful applications
- Interdisciplinary
- Challenging

Topics for Today

- Brief history of NLP
- Introduction to lexical semantics
- Writing critiques

Last class: Why is it hard?

Early Roots: 1940's and 1950's

- Work on two foundational paradigms
 - Automaton
 - » Turing's (1936) model of algorithmic computation
 - » Kleene's (1951, 1956) finite automata and regular expressions
 - » Shannon (1948) applied probabilistic models of discrete Markov processes to automata for language
 - » Chomsky (1956)
 - » First considered finite-state machines as a way to characterize a grammar
 - Led to the field of formal language theory

Early Roots: 1940's and 1950's

- Work on two foundational paradigms
 - Probabilistic or information-theoretic models for speech and language processing
 - Shannon: the "noisy channel" model
 - Shannon: borrowing of "entropy" from thermodynamics to measure the information content of a language

Two Camps: 1957-1970

- Symbolic paradigm
 - Artificial intelligence
 - » Created in the summer of 1956
 - » Two-month workshop at Dartmouth
 - » Focus of the field initially was the work on reasoning and logic (Newell and Simon)
 - » Early natural language systems were built
 - ◆Worked in a single domain
 - ◆Used pattern matching and keyword search

Two Camps: 1957-1970

- Symbolic paradigm
 - Chomsky
 - » Formal language theory, generative syntax, parsing
 - » Linguists and computer scientists
 - » Earliest complete parsing systems
 - ◆Zelig Harris, UPenn
 - ...A possible critique reading!!

Two Camps: 1957-1970

- Stochastic paradigm
 - » Took hold in statistics and EE
 - » Late 50's: applied Bayesian methods to OCR
 - » Mosteller and Wallace (1964): applied Bayesian methods to the problem of authorship attribution for *The Federalist* papers.

Additional Developments

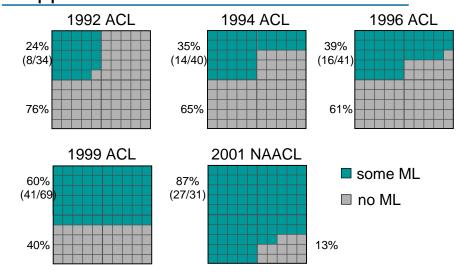
- 1960's
 - First serious testable psychological models of human language processing
 - » Based on transformational grammar
 - First on-line corpora
 - » The Brown corpus of American English
 - ◆1 million word collection
 - ◆Samples from 500 written texts
 - ◆ Different genres (news, novels, non-fiction, academic,....)
 - ◆ Assembled at Brown University (1963-64, Kucera and Francis)
 - » William Wang's (1967) DOC (Dictionary on Computer)
 - ◆On-line Chinese dialect dictionary

1970-1983

- Explosion of research
 - Natural language understanding
 - » SHRDLU (Winograd, 1972)
 - » The Yale School
 - Focused on human conceptual knowledge and memory organization
 - » Logic-based LUNAR question-answering system (Woods, 1973)
 - Discourse modeling paradigm

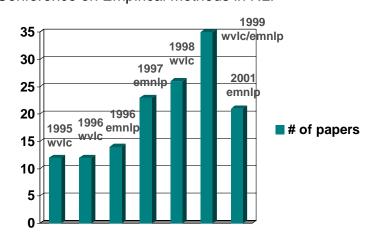
1970-1983

- Explosion of research
 - Stochastic paradigm
 - » Developed speech recognition algorithms
 - ♦HMM's
 - Developed independently by Jelinek et al. at IBM and Baker at CMU
 - Logic-based paradigm
 - » Prolog, definite-clause grammars (Pereira and Warren, 1980)
 - » Functional grammar (Kay, 1979) and LFG

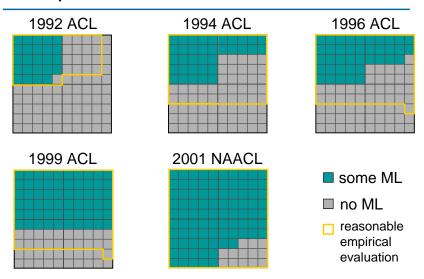

Revival of Empiricism and FSM's

- 1983-1993
 - Finite-state models
 - » Phonology and morphology (Kaplan and Kay, 1981)
 - » Syntax (Church, 1980)
 - Return of empiricism
 - » Rise of probabilistic models in speech and language processing
 - » Largely influenced by work in speech recognition at IBM
 - Considerable work on natural language generation

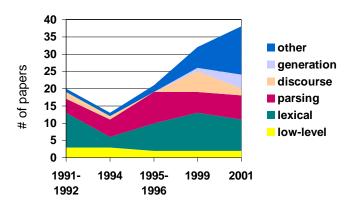
A Reunion of a Sort...


- 1994-pres
 - Probabilistic and data-driven models had become quite standard
 - Increases in speed and memory of computers allowed commercial exploitation of speech and language processing
 - » Spelling and grammar checking
 - Rise of the Web emphasized the need for languagebased information retrieval and information extraction

Statistical and Machine Learning Approaches Rule!



WVLC and EMNLP Conferences


- Workshop on Very Large Corpora
- Conference on Empirical Methods in NLP

Empirical Evaluation

Progression of NL learning tasks

Topics for Today

- Brief history of NLP
- Introduction to lexical semantics
 - Writing critiques

Semantic analysis

- Assigning meanings to linguistic utterances
- Compositional semantics: we can derive the meaning of the whole sentence from the meanings of the parts.
 - Max ate a green apple.
- Relies on knowing:
 - the meaning of individual words
 - how the meanings of individual words combine to form the meaning of groups of words
 - how it all fits in with syntactic analysis

Caveats

- Problems with a compositional approach
 - a former congressman
 - a toy elephant
 - kicked the bucket

Introduction to lexical semantics

- Lexical semantics is the study of
 - the systematic meaning-related connections among words and
 - the internal meaning-related structure of each word
- Lexeme
 - an individual entry in the lexicon
 - a pairing of a particular orthographic and phonological form with some form of symbolic meaning representation
- Sense: the lexeme's meaning component
- Lexicon: a finite list of lexemes

Dictionary entries

- right adj. located nearer the right hand esp. being on the right when facing the same direction as the observer.
- left adj. located nearer to this side of the body than the right.
- red n. the color of blood or a ruby.
- blood n. the red liquid that circulates in the heart, arteries and veins of animals.

Next class

 Providing an NLP system with a large enough knowledge base of such facts will enable it to perform fairly sophisticated semantic tasks (even if the system doesn't know its right from its left).

Topics for Today

- Brief history of NLP
- Introduction to lexical semantics
- → Writing critiques

Critique Guidelines

- <=1 page, typed (single space)</p>
- The purpose of a critique is **not** to summarize the paper; rather you should choose one or two points about the work that you found interesting.
- Examples of questions that you might address are:
 - What are the strengths and limitations of its approach?
 - Is the evaluation fair? Does it achieve it support the stated goals of the paper?
 - Does the method described seem mature enough to use in real applications? Why or why not? What applications seem particularly amenable to this approach?
 - What good ideas does the problem formulation, the solution, the approach or the research method contain that could be applied elsewhere?
 - What would be good follow-on projects and why?

Critique Guidelines

- Are the paper's underlying assumptions valid?
- Did the paper provide a clear enough and detailed enough description of the proposed methods for you to be able to implement them? If not, where is additional clarification or detail needed?
- Avoid unsupported value judgments, like ``I liked..." or ``I disagreed with..." If you make judgments of this sort, explain why you liked or disagreed with the point you describe.
- Be sure to distinguish comments about the writing of the paper from comment about the technical content of the work.