Foundations of Artificial Intelligence

Learning Ranking Functions for Search Engines

CS472 – Fall 2007 Thorsten Joachims

Joint work with: Filip Radlinski, Geri Gay, Laura Granka, Helene Hembrooke, Bing Pang

Overview

- How can we get training data for learning improved retrieval functions?
 - Explicit vs. implicit feedback
 - User study with eye-tracking and relevance judgments
 - Absolute vs. relative feedback
 - Accuracy of implicit feedback
- What learning algorithms can use this training data effectively?
 - Ranking Support Vector Machine
 - User study with meta-search engine

- Analyze how users scan the results page of Google

Relevance Judgements

- Ask relevance judges to explicitly judge the relevance of all pages encountered
- Compare implicit feedback from clicks to explicit judgments

Strategies for Generating Relative Feedback

Strategies

- "Click > Skip Above" - (3>2), (5>2), (5>4)
- "Last Click > Skip Above" - (5>2), (5>4)
- "Click > Earlier Click" - (3>1), (5>1), (5>3)
- "Click > Skip Previous" - (3>2), (5>4)
- "Click > Skip Next"
 - (1>2), (3>4), (5>6)

- Kernel Machines Support Vector Machine http://jbolivar.freeservers.com/ 2.
- SVM-Light Support Vector Machine http://ais.gmd.de/~thorsten/svm light/
- An Introduction to SVMs http://www.support-vector.net/ Support Vector Machine and ... http://svm.bell-labs.com/SVMrefs.html
- Archives of SUPPORT-VECTOR... http://www.jisc.ac.uk/lists/SUPPORT... 6.
- Lucent Technologies: SVM demo applet http://svm.bell-labs.com/SVMsvt.html
- Royal Holloway SVM http://svm.dcs.rhbnc.ac.uk
- SVM World http://www.svmworld.com
- Fraunhofer FIRST SVM page http://svm.first.gmd.de

Comparison with Explicit Feedback

Explicit Feedback	Abstracts
Data	Phase I
Strategy	"normal"
Inter-Judge Agreement	89.5
Click > Skip Above	80.8 ± 3.6
Last Click > Skip Above	83.1 ± 3.8
Click > Earlier Click	67.2 ± 12.3
Click > Skip Previous	82.3 ± 7.3
Click > No Click Next	84.1 ± 4.9

=> All but "Click > Earlier Click" appear accurate

Overview

- · How can we get training data for learning improved retrieval functions?
 - Explicit vs. implicit feedback
 - User study with eye-tracking and relevance judgments
 - Absolute vs. relative feedback
 - Accuracy of implicit feedback
- · What learning algorithms can use this training data effectively?
 - Ranking Support Vector Machine
 - User study with meta-search engine

Learning Retrieval Functions from **Pairwise Preferences** Idea: Learn a ranking function, so that number of violated pair-wise training preferences is minimized. Form of Ranking Function: sort by $rsv(q,d_i) = w_1 * (\#of query words in title of d_i)$ $+ w_2^{2*}$ (#of query words in anchor) + ... + $w_n * (\text{page-rank of } d_i)$ = $w * \Phi(q, d_i)$ Training: Select w so that IF user prefers d_i to d_i for query q, THEN $rsv(q, d_i) > rsv(q, d_j)$

Ranking A	Ranking B	A better	B better	Tie	Total
Learned	Google	29	13	27	69
Learned	MSNSearch	18	4	7	29
Learned	Toprank	21	9	11	41
Result: – Learne – Learne – Learne	ed > Google ed > MSNSea ed > Toprank	arch			

Toprank: rank by increasing minimum rank over all 5 search engines

	Learned Weights
 Weight 0.60 0.48 0.24 0.24 	Feature cosine between query and abstract ranked in top 10 from Google cosine between query and the words in the URL doc ranked at rank 1 by exactly one of the 5 engines
• 0.22	host has the name "citeseer"
• 0.17 • 0.16	country code of URL is ".de" ranked top 1 by HotBot
 -0.15 -0.17 -0.32 -0.38 	country code of URL is ".fi" length of URL in characters not ranked in top 10 by any of the 5 search engines not ranked top 1 by any of the 5 search engines

Conclusions

- Clickthrough data can provide accurate feedback
 Clickthrough provides relative instead of absolute judgments
- Ranking SVM can learn effectively from relative preferences
 Improved retrieval through personalization in meta search
- Current and future work
 - Exploiting query chains
 - Adapting intranet search for Cornell Library Web Collection and Physics E-Print ArXiv
 - Implementation of methods in Osmot Search Engine
 - Robustness to noise, varying user behavior, and "click-spam"
 - Learning theory for interactive learning with preferences
 - Further user studies to get more operational model of user behavior
- Info and Papers

- http://www.joachims.org