# **Instance-Based Learning**

CS472/CS473 - Fall 2005

## What is Learning?

### • Examples

- Riding a bike (motor skills)
- Telephone number (memorizing)
- Read textbook (memorizing and operationalizing rules)
- Playing backgammon (strategy)
- Develop scientific theory (abstraction)
- Language
- Recognize fraudulent credit card transactions
- Etc

## (One) Definition of Learning

### **Definition** [Mitchell]:

A computer program is said to learn from

- experience E with respect to some class of
- · tasks T and
- performance measure P,

if its performance at tasks in T, as measured by P, improves with experience E.

### Examples

#### · Spam Filtering

- T: Classify emails HAM / SPAM
- E: Examples (e<sub>1</sub>,HAM),(e<sub>2</sub>,SPAM),(e<sub>3</sub>,HAM),(e<sub>4</sub>,SPAM), ...
- P: Prob. of error on new emails

### • Personalized Retrieval

- T: find documents the user wants for query
- E: watch person use Google (queries / clicks)
- P: # relevant docs in top 10

#### Play Checkers

- T: Play checkers
- E: games against self
- P: percentage wins

### How can an Agent Learn?

### Learning strategies and settings

- · rote learning
- learning from instruction
- · learning by analogy
- · learning from observation and discovery
- · learning from examples

-Carbonell, Michalski & Mitchell.

# Inductive Learning / Concept Learning

### • Task:

– Learn (to imitate) a function  $f: X \rightarrow Y$ 

### • Training Examples:

- Learning algorithm is given the correct value of the function for particular inputs → training examples
- An **example** is a pair (x, f(x)), where x is the input and f(x) is the output of the function applied to x.

#### • Goal:

Learn a function h: X → Y that approximates
 f: X → Y as well as possible.

## **Concept Learning Example**

|   | Food (3)                   | Chat (2) | Fast (2) | Price (3) | Bar<br>(2) | BigTip |
|---|----------------------------|----------|----------|-----------|------------|--------|
|   | great                      | yes      | yes      | normal    | no         | yes    |
| ١ | great<br>great<br>mediocre | no       | yes      | normal    | no         | yes    |
| ١ | mediocre                   | yes      | no       | high      | no         | no     |
| ١ |                            | yes      | yes      | normal    | yes        | yes    |

**Instance Space X:** Set of all possible objects described by attributes (often called features).

**Target Function f:** Mapping from Attributes to Target Feature (often called label) (f is unknown)

**Hypothesis Space H:** Set of all classification rules h<sub>i</sub> we allow.

Training Data D: Set of instances labeled with Target Feature

## Classification and Regression Tasks

#### Naming:

If Y is a the real numbers, then called "regression". If Y is a discrete set, then called "classification".

#### **Examples:**

- Steering a vehicle: image in windshield → direction to turn the wheel (how far)
- Medical diagnosis: patient symptoms → has disease / does not have disease
- Forensic hair comparison: image of two hairs → match or not
- Stock market prediction: closing price of last few days →
  market will go up or down tomorrow (how much)
- Noun phrase coreference: description of two noun phrases in a document → do they refer to the same real world entity

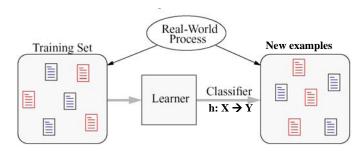
## **Inductive Learning Algorithm**

- Task:
  - Given: collection of examples
  - Return: a function h (hypothesis) that approximates f
- Inductive Learning Hypothesis:

Any hypothesis found to approximate the target function well over a sufficiently large set of training examples will also approximate the target function well over any other unobserved examples.

- Assumptions of Inductive Learning:
  - The training sample represents the population
  - The input features permit discrimination

### **Inductive Learning Setting**



#### Task:

• Learner induces a general rule h from a set of observed examples that classifies new examples accurately.

# **Instance-Based Learning**

#### • Idea:

- Similar examples have similar label.
- Classify new examples like similar training examples.

### • Algorithm:

- Given some new example x for which we need to predict its class y
- Find most similar training examples
- Classify x "like" these most similar examples

### • Questions:

- How to determine similarity?
- How many similar training examples to consider?
- How to resolve inconsistencies among the training examples?

### K-Nearest Neighbor (KNN)

- Given: Training data  $(\vec{x}_1, y_1), ..., (\vec{x}_n, y_n)$ 
  - Attribute vectors:  $\vec{x_i} \in X$
  - Target attribute:  $y_i \in \{-1, +1\}$
- Parameter:
  - Similarity function:  $K: X \times X \longrightarrow \Re$
  - Number of nearest neighbors to consider: k
- Prediction rule
  - New example x'
  - K-nearest neighbors: k training examples with smallest  $K(\vec{x_i}, \vec{x}')$

$$h(ec{x}') = rg\max_{y \in Y} \left\{ \sum_{i \in knn(ec{x}')} 1_{[y_i = y]} 
ight\}$$

## **KNN** Example

|   | Food (3) | Chat (2) | Fast (2) | Price (3) | Bar<br>(2) | BigTip |
|---|----------|----------|----------|-----------|------------|--------|
| 1 | great    | yes      | yes      | normal    | no         | yes    |
| 2 | great    | no       | yes      | normal    | no         | yes    |
| 3 | mediocre | yes      | no       | high      | no         | no     |
| 4 | great    | yes      | yes      | normal    | yes        | yes    |

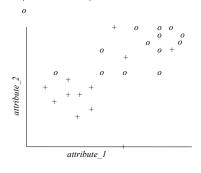
- New examples:
  - (great, no, no, normal, no)
  - (mediocre, yes, no, normal, no)

## Types of Attributes

- Symbolic (nominal)
  - EyeColor {brown, blue, green}
- Boolean
  - anemic {TRUE,FALSE}
- Numeric
  - Integer: age [0, 105]
  - Real: length
- Structural
  - Natural language sentence: parse tree
  - Protein: sequence of amino acids

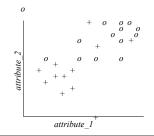
### KNN for Real-Valued Attributes

- Similarity Functions:
  - Gaussian:  $K(\vec{x}_i, \vec{x}') \sim e^{-(\vec{x}_i \vec{x}')^2}$
  - Cosine: $K(\vec{x}_i, \vec{x}') = cos(\vec{x}_i, \vec{x}')$

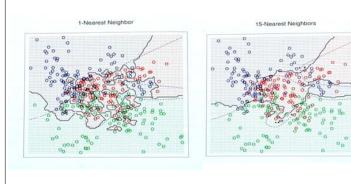


## Selecting the Number of Neighbors

- Increase k:
  - Makes KNN less sensitive to noise
- Decrease k:
  - Allows capturing finer structure of space
- → Pick k not too large, but not too small (depends on data)



## Example: Effect of k



Hastie, Tibshirani, Friedman 2001

# Advantages and Disadvantages of KNN

- · Simple algorithm
- Need similarity measure and attributes that "match" target function.
- For large training sets, requires large memory is slow when making a prediction.
- Prediction accuracy can quickly degrade when number of attributes grows.

## Curse-of-Dimensionality

- Prediction accuracy can quickly degrade when number of attributes grows.
  - Irrelevant attributes easily "swamp" information from relevant attributes

$$K(\vec{x}_i, \vec{x}') \sim e^{-\left(\sum_{j \in A_{rel}} (\vec{x}_i[j] - \vec{x}'[j])^2 + \sum_{j \in A_{irrel}} (\vec{x}_i[j] - \vec{x}'[j])^2\right)}$$

- → When many irrelevant attributes, similarity measure becomes less reliable
- Remedy
  - Try to remove irrelevant attributes in pre-processing step
  - Weight attributes differently
  - Increase k (but not too much)

### Remarks on KNN

- · Memorizes all observed instances and their class
- Is this rote learning?
- Is this really learning?
- When does the induction take place?