Adversarial Search

CS472/CS473 — Fall 2005

Slide CS472 - Adversarial Search 1

Game Playing

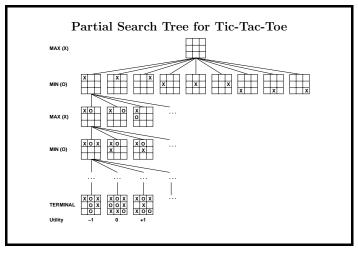
 ${\bf Initial\ State}\ \ {\rm is\ the\ initial\ board/position}$

Successor Function defines the set of legal moves from any position

Terminal Test determines when the game is over

Utility Function gives a numeric outcome for the game

Slide CS472 - Adversarial Search 3



Slide CS472 - Adversarial Search 5

Game Playing

An AI Favorite

- structured task
- clear definition of success and failure
- does not require large amounts of knowledge (at first glance)
- focus on games of perfect information

Slide CS472 - Adversarial Search 2

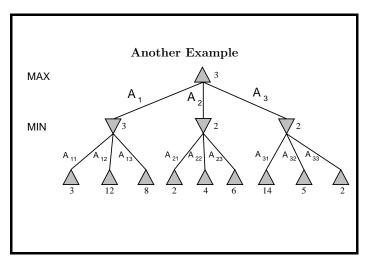
Game Playing as Search

Slide CS472 – Adversarial Search 4

Simplified Minimax Algorithm

- 1. Expand the entire tree below the root.
- 2. Evaluate the terminal nodes as wins for the minimizer or maximizer (i.e. utility).
- 3. Select an unlabeled node, n, all of whose children have been assigned values. If there is no such node, we're done — return the value assigned to the root.
- 4. If n is a minimizer move, assign it a value that is the minimum of the values of its children. If n is a maximizer move, assign it a value that is the maximum of the values of its children. Return to Step 3.

Slide CS472 - Adversarial Search 6



Slide CS472 - Adversarial Search 7

Improving Minimax — $\alpha - \beta$ pruning

Idea: Avoid generating the whole search tree

Approach: Analyze which subtrees have no influence on the solution

Slide CS472 - Adversarial Search 9

$\alpha - \beta$ Search

 α = lower bound on Max's outcome; initially set to $-\infty$ β = upper bound on Min's outcome; initially set to $+\infty$

We'll call $\alpha - \beta$ procedure recursively with a narrowing range between α and β .

Maximizing levels may reset α to a higher value; Minimizing levels may reset β to a lower value.

Slide CS472 - Adversarial Search 11

Minimax

function MINIMAX-DECISION(game) returns an operator

for each op in OPERATORS[game] do

 $Value[op] \leftarrow Minimax-Value(Apply(op, game), game)$

end return the op with the highest VALUE[op]

function MINIMAX-VALUE(state, game) returns a utility value

 $\textbf{if} \ \mathsf{TERMINAL\text{-}TEST}[\mathit{game}] (\mathit{state}) \ \textbf{then}$

return UTILITY[game](state)

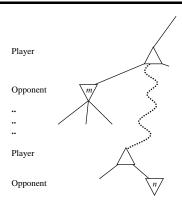
else if MAX is to move in state then

return the highest MINIMAX-VALUE of SUCCESSORS(state)

else

return the lowest MINIMAX-VALUE of SUCCESSORS(state)

Slide CS472 - Adversarial Search 8



If m is better than n for Player, never get to n in play.

Slide CS472 - Adversarial Search 10

$\alpha - \beta$ Search Algorithm

- 1. If terminal state, compute e(n) and return the result.
- 2. Otherwise, if the level is a minimizing level,
 - Until no more children or $\beta \leq \alpha$,
 - $-v_i \leftarrow \alpha \beta$ search on child.
 - If $v_i < \beta$, $\beta \leftarrow v_i$.
 - Return $min(v_i)$.
- 3. Otherwise, the level is a ${\bf maximizing}$ level:
 - Until no more children or $\alpha \geq \beta$,
 - $-v_i \leftarrow \alpha \beta$ search on child.
 - If $v_i > \alpha$, set $\alpha \leftarrow v_i$.
 - Return $max(v_i)$.

Slide CS472 – Adversarial Search 12