Constraint Satisfaction

CS472/CS473 — Fall 2005

Slide CS472 - Constraint Satisfaction 1

Moving to a different formalism...

SEND

+ MORE

MONEY

Consider state space for cryptarithmetic (e.g. DFS).

Is this (DFS) how humans tackle the problem?

Human problem solving appears more sophisticated!

For example, we derive new constraints on the fly.

 \rightarrow **little** or **no** search!

Slide CS472 - Constraint Satisfaction 2

Constraint Satisfaction Problems (CSP)

A powerful representation for (discrete) search problems.

A Constraint Satisfaction Problem (CSP) is defined by:

X is a set of n variables X_1, X_2, \ldots, X_n , each defined by a finite domain D_1, D_2, \ldots, D_n of possible values.

C is a set of constraints C_1, C_2, \ldots, C_m . Each C_i involves a subset of the variables; specifies the allowable combinations of values for that subset.

A **solution** is an assignment of values to the variables that satisfies all constraints.

Slide CS472 - Constraint Satisfaction 3

Cryptarithmetic as a CSP

Problem: TWO + TWO = FOUR

Variables:

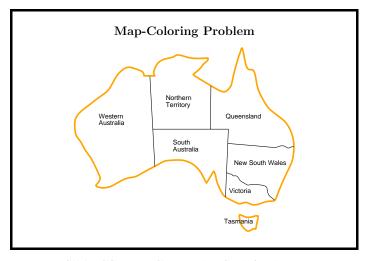
 $T \in \{0, \dots, 9\}; W \in \{0, \dots, 9\}; O \in \{0, \dots, 9\};$

 $F \in \{0, \dots, 9\}; U \in \{0, \dots, 9\}; R \in \{0, \dots, 9\};$

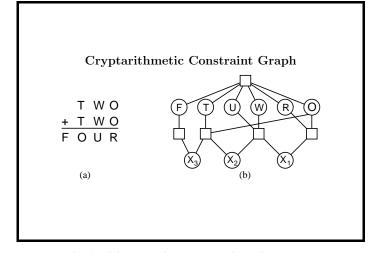
 $X_1 \in \{0, \dots, 1\}; X_2 \in \{0, \dots, 1\}; X_3 \in \{0, \dots, 1\};$

Constraints:

 $O + O = R + 10 * X_1$


 $X_1 + W + W = U + 10 * X_2$

 $X_2 + T + T = O + 10 * X_3$


 $X_3 = F$

each letter has a different digit ($F \neq T, F \neq U, etc$);

Slide CS472 - Constraint Satisfaction 4

Slide CS472 – Constraint Satisfaction 5

Slide CS472 - Constraint Satisfaction 6

Types of Constraints

Unary Constraints: Restriction on single variable

Binary Constraints: Restriction on pairs of variables

Higher-Order Constraints: Restriction on more than two

variables

Slide CS472 - Constraint Satisfaction 7

How to View a CSP as a Search Problem?

Initial State – state in which all the variables are unassigned.

Successor function – assign a value to a variable from a set of possible values.

Goal test – check if all the variables are assigned and all the constraints are satisfied.

 ${\bf Path}\ {\bf cost}\ -{\rm assumes}\ {\rm constant}\ {\rm cost}\ {\rm for}\ {\rm each}\ {\rm step}$

Slide CS472 - Constraint Satisfaction 9

${\bf CSP-Goal\ Decomposed\ into\ Constraints}$

${f Backtracking\ Search}$: a DFS that

- \bullet chooses values for variables one at a time
- \bullet checks for consistency with the constraints.

Decisions during search:

- Which variable to choose next for assignment.
- Which value to choose next for the variable.

Slide CS472 – Constraint Satisfaction 11

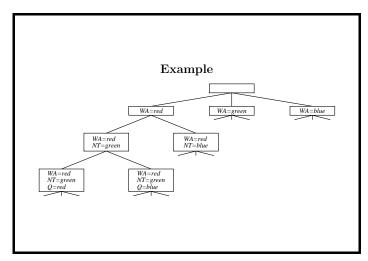
Constraint Satisfaction Problems (CSP)

For a given CSP the problem is one of the following:

- 1. find all solutions
- 2. find one solution
 - just a feasible solution, or
 - a "reasonably good" feasible solution, or
 - the optimal solution given an objective function
- 3. determine if a solution exists

Slide CS472 - Constraint Satisfaction 8

Branching Factor


 ${\bf Approach} \ {\bf 1} - {\rm any} \ {\rm unassigned} \ {\rm variable} \ {\rm at} \ {\rm a} \ {\rm given}$ state can be assigned a value by an operator: branching factor as high as sum of size of all domains.

Approach 2 – since order of variable assignment not relevant, consider as the successors of a node just the different values of a *single* unassigned variable: max branching factor = max size of domain.

Maximum Depth of Search Tree

n the number of variables \rightarrow all solutions at depth n. Prefer DFS or BFS?

Slide CS472 - Constraint Satisfaction 10

Slide CS472 - Constraint Satisfaction 12

General Purpose Heuristics

• Variable and value ordering:

Minimum remaining values (MRV): choose the variable with the *fewest* possible values.

Degree heuristic: assign a value to the variable that is involved in the largest number of constraints on other unassigned variables.

Least-constraining value heuristic: choose a value that rules out the smallest number of values in variables connected to the current variable by constraints.

Slide CS472 – Constraint Satisfaction 13