Informed Search

CS472/CS473 — Fall 2005

Slide CS472 - Heuristic Search 1

Generic Best-First Search

- 1. Set L to be the initial node(s) representing the initial state(s).
- 2. If L is empty, fail. Let n be the node on L that is "most promising" according to f. Remove n from L.
- 3. If n is a goal node, stop and return it (and the path from the initial node to n).
- 4. Otherwise, add successors(n) to L. Return to step 2.

Slide CS472 - Heuristic Search 3

Suboptimal Best-First Search c,2 b,4 d,1 h,1 e,1 goal2 f,1 goal1

There exist strategies that enable optimal paths to be found without examining all possible paths.

Slide CS472 - Heuristic Search 5

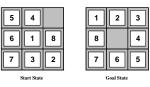
Informed Methods: Heuristic Search

Idea: Informed search by using problem-specific knowledge.

Best-First Search: Nodes are selected for expansion based on an *evaluation function*, f(n). Traditionally, f is a cost measure.

Heuristic: Problem specific knowledge that (tries to) lead the search algorithm faster towards a goal state.

 \rightarrow Heuristic search is an attempt to search the most promising paths first. Uses heuristics, or rules of thumb, to find the best node to expand next.


Slide CS472 - Heuristic Search 2

Greedy Best-First Search

Heuristic function h(n): estimated cost from node n to nearest goal node.

Greedy Search: Let f(n) = h(n).

Example: 8-puzzle

Slide CS472 - Heuristic Search 4

A* Search

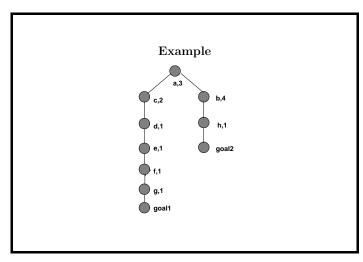
Idea: Use total estimated solution cost:

- g(n) Cost of reaching node n from initial node
- h(n) Estimated cost from node n to nearest goal

A* evaluation function: f(n) = g(n) + h(n)

 $\rightarrow f(n)$ is estimated cost of cheapest solution through n.

Slide CS472 - Heuristic Search 6


Comparison of Search Costs on 8-Puzzle

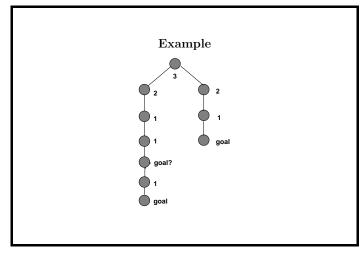
h1: number of misplaced tiles

h2: Manhattan distance

		Search Cost	Effective Branching Factor			
d	IDS	$A*(h_1)$	$A*(h_2)$	IDS	$A*(h_1)$	$A*(h_2)$
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	364404	227	73	2.78	1.42	1.24
14	3473941	539	113	2.83	1.44	1.23
16	-	1301	211	-	1.45	1.25
18	-	3056	363	-	1.46	1.26
20	-	7276	676	-	1.47	1.27
22	-	18094	1219	-	1.48	1.28
24	-	39135	1641	-	1.48	1.26

Slide CS472 – Heuristic Search 7

Slide CS472 – Heuristic Search 8


Admissibility

 $h^*(n)$ Actual cost to reach a goal from n.

A heuristic function h is **optimistic** or **admissible** if $h(n) \leq h^*(n)$ for all nodes n.

If h is **admissible**, then the A* algorithm will never return a suboptimal goal node. (h **never overestimates** the cost of reaching the goal.)

Slide CS472 - Heuristic Search 9

Slide CS472 – Heuristic Search 10

Example: Admissible Heuristic

What if $h(n) = h^*(n)$?

$$f(n) = g(n) + h^*(n)$$

The perfect heuristic function!

Slide CS472 – Heuristic Search 11

Example: Admissible Heuristic

What if h(n) = 0?

$$f(n) = g(n) + h(n)$$

Slide CS472 – Heuristic Search 12

8-puzzle

- 1. h_C = number of misplaced tiles
- 2. $h_M = \text{Manhattan distance}$

Which one should we use?

$$h_C \le h_M \le h^*$$

Slide CS472 - Heuristic Search 13

Constructing Admissible Heuristics

- Use an admissible heuristic derived from a **relaxed** version of the problem.
- Use information from **pattern databases** that store exact solutions to subproblems of the problem.
- \bullet Use inductive learning methods.

Slide CS472 - Heuristic Search 15

Proof of the optimality of A^*

Assume: h admissible; f non-decreasing along any path.

Proof:

Let G be an optimal goal state, with path cost f^* .

Let G_2 be a suboptimal goal state, with path cost $g(G_2) > f^*$.

Let n is a node on an optimal path to G.

Because h is admissible, we must have

$$f^* \ge f(n)$$
.

Also, if n is not chosen over G_2 , we must have

$$f(n) \ge f(G_2)$$
.

Gives us $f^* \ge f(G_2) = g(G_2)$. (Contradiction to G_2 suboptimal!)

Slide CS472 - Heuristic Search 17

Comparison of Search Costs on 8-Puzzle

		Search Cost		Effective Branching Factor		
d	IDS	$A*(h_1)$	A*(h2)	IDS	$A*(h_1)$	A*(h2)
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	364404	227	73	2.78	1.42	1.24
14	3473941	539	113	2.83	1.44	1.23
16	-	1301	211	-	1.45	1.25
18	-	3056	363	-	1.46	1.26
20	-	7276	676	-	1.47	1.27
22	-	18094	1219	-	1.48	1.28
24	-	39135	1641	-	1.48	1.26

Slide CS472 – Heuristic Search 14

Proving the optimality of A^*

Lemma: If h is admissible, then f = g + h can be made non-decreasing.

- 1. g is non-decreasing since cost positive.
- 2. But h can be increasing, while still admissible. Example: Node p, with f = 3 + 4 = 7; child n, with f = 4 + 2 = 6.
- 3. But because any path through n is also a path through p, we can see that the value 6 is meaningless, because we already know the true cost is at least 7 (because h is admissible).
- 4. So, make f = max(f(p), g(n) + h(n))

Slide CS472 - Heuristic Search 16