Planning

CS472/CS473 - Fall 2005

Planning

A planning agent will construct plans to achieve its goals, and then execute them.

Analyze a situation in which it finds itself and develop a strategy for achieving the agent's goal.

Achieving a goal requires finding a sequence of actions that can be expected to have the desired outcome.

Problem Solving

Representation of actions

actions generate successor states

Representation of states

all state representations are complete

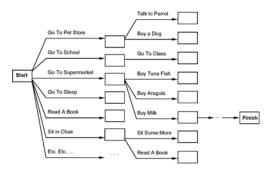
Representation of goals

contained in goal test and heuristic function

Representation of plans

unbroken sequence of actions leading from initial to goal state

Planning Example



GOAL: Get a quart of milk and a bunch of bananas and a variable-speed cord-less drill.

Planning vs. Problem Solving

Open up the representation of states, goals and actions.

- States and goals represented by sets of sentences Have (Milk)
- Actions represented by rules that represent their preconditions and effects:
 Buy(x) achieves Have(x) and leaves everything else unchanged
- → This allows the planner to make direct connections between states and actions.

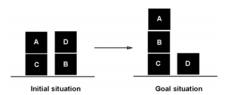
Planning vs. Problem Solving

- 2. Most parts of the world are independent of most other parts.
 - Can solve $Have(Milk) \wedge Have(Bananas) \wedge Have(Drill)$ using divide-and-conquer strategy.
 - Can re-use sub-plans (go to supermarket)

Planning vs. Problem Solving

- Planner is free to add actions to the plan wherever they are needed, rather than in an incremental sequence starting at the initial state.
 - No connection between the order of planning and the order of execution.
 - Representation of states as sets of logical sentences makes this freedom possible.

Planning as a Logical Inference Problem



Axioms

On(A,C) On(C,Table), On(D,B), On(B,Table), Clear(A), Clear(D)

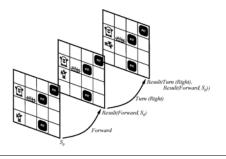
Plus rules for moving things around...

Prove: On $(A,B) \wedge On(B,C)$

Planning as Deduction: Situation Calculus

In first-order logic, once a statement is shown to be true, it remains true forever.

Situation calculus: way to describe change in first-order logic.



Situation Calculus

Fluents: functions and predicates that vary from one situation to the next

on(A,C) $on(A,C,S_0)$

at(agent,[1,1]) $at(agent,[1,1],S_0)$

Atemporal functions and predicates: true in any

situation

block(A)

 $gold(G_1)$

Situation Calculus: Actions

Actions are described by stating their effects.

Possibility Axiom: $preconditions \rightarrow Poss(a,s)$.

 $\forall s \forall x \neg On(x, Table, s) \land Clear(x, s) \Rightarrow Poss(PlaceOnTable(x), s)$

Effect Axiom: $Poss(a,s) \rightarrow Changes that result from action.$

 $\forall s \forall x Poss(PlaceOnTable(x), s) \Rightarrow \\On(x, Table, Result(PlaceOnTable(x), s))$

Situation Calculus: Action Sequences

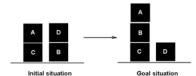
We'd like to be able to prove:

 $\exists seq \ On(A,B,Result(seq.S_0)) \land On(B,C,Result(seq.S_0))$

Which would produce, for example, the following:

 $On(A,B,Result(Put(A,B),Result(Put(B,C),Result(PoT(D),Result(PoT(A),S_0))))))$

 $On(B,C,Result(Put(A,B),Result(Put(B,C),Result(PoT(D),Result(PoT(A),S_0))))))$



Situation Calculus: Problem

Axioms:

 $\begin{aligned} &\text{On}(\mathbf{A}, \mathbf{C}, \mathbf{S}_0) \text{ On}(\mathbf{C}, \text{Table}, \mathbf{S}_0), \text{ On}(\mathbf{D}, \mathbf{B}, \mathbf{S}_0), \text{ On}(\mathbf{B}, \text{Table}, \mathbf{S}_0), \\ &\text{Clear}(\mathbf{A}, \mathbf{S}_0), \text{ Clear}(\mathbf{D}, \mathbf{S}_0) \\ &\forall s \forall x \neg On(x, Table, s) \land Clear(x, s) \Rightarrow Poss(PlaceOnTable(x), s) \end{bmatrix} \\ &\forall s \forall x Poss(PlaceOnTable(x), s) \Rightarrow \\ &On(x, Table, Result(PlaceOnTable(x), s)) \end{aligned}$

Prove:

- 1. On(A,Table,Result(PoT(A),S0))
- 2. On(D,B,Result(PoT(A),S0))

The Frame Problem

Problem: Actions don't specify what happens to objects not involved in the action, but the logic framework requires that information.

 $\forall s \forall x Poss(PoT(x), s)) \Rightarrow On(x, Table, Result(PoT(x), s))$

Frame Axioms: Inform the system about preserved relations.

 $\forall s \forall x \forall y \forall z [(On(x, y, s) \land (x \neq z)) \Rightarrow On(x, y, Result(PoT(z), s))]$

... and Its Relatives

Representational Frame Problem: proliferation of frame axioms.

Solution: use successor-state axioms Action is $possible \Rightarrow (Fluent$ is true in result state $\Leftrightarrow (Action's \ effect \ made$ it true \lor It was true before and action left it alone)).

Inferential Frame Problem: have to carry each property through all intervening situations during problem-solving, even if the property remains unchanged throughout.

Qualification Problem: difficult, in the real world, to define the circumstances under which a given action is guaranteed to work

Ramification Problem: proliferation of *implicit* consequences of actions.

The Need for Special Purpose Algorithms

So...We have a formalism for expressing goals and plans and we can use resolution theorem proving to find plans.

Problems:

- Frame problem
- Time to find plan can be exponential
- Logical inference is semi-decidable
- Resulting plan could have many irrelevant steps

We'll need to:

- Restrict language
- Use a special purpose algorithm called a planner