Propositional Logic: Semantics

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
False	False	True	False	False	True	True
False	True	True	False	True	True	False
True	False	False	False	True	False	False
True	True	False	True	True	True	True

- · Model (i.e. possible world):
 - Assignment of truth values to symbols
 - $\quad Example: \ m{=}\{P{=}True \ , \ Q{=}False\}$
 - Note: Often called "assignment" instead of "model", and "model" is used for an assignment that evaluates to true.
- Validity
 - A sentence α is valid, if it is true in every model.
- · Satisfiability:
 - A sentence α is satisfiable, if it is true in at least one model.
- Entailment:
 - α ⊨ β if and only if, in every model in which α is true, β is also true.

Model Checking

· Idea:

- To test whether $\alpha \vDash \beta$, enumerate all models and check truth of α and β .
- α entails β if no model exists in which α is true and β is false (i.e. $(\alpha \land \neg \beta)$ is unsatisfiable)

• Proof by Contradiction:

 $\alpha \vDash \beta$ if and only if the sentence $(\alpha \land \neg \beta)$ is unsatisfiable.

· Model Checking:

- Variables: One for each propositional symbol
- Domains: {true, false}
- Objective Function: (α ∧ ¬β)
- Which search algorithm works best?

Propositional Logic: Some Inference Rules

Modus Ponens:

Know:	$\alpha \Rightarrow \beta$	If raining, then soggy courts.
and	α	It is raining.
Then:	β	Soggy Courts.

Modus Tollens:

Know:	$\alpha \Rightarrow \beta$	If raining, then soggy courts.
And	$\neg \beta$	No soggy courts.
Then	$\neg \alpha$	It is not raining

And-Elimination:

Know:	$\alpha \wedge \beta$	It is raining and soggy courts.
Then:	α	It is raining.

Example: Forward Chaining

Knowledge-base describing when the car should brake?

(PersonInFrontOfCar ⇒ Brake)

 \land (((YellowLight \land Policeman) \land (\neg Slippery)) \Rightarrow Brake)

 \land (Policecar \Rightarrow Policeman)

 \land (Snow \Rightarrow Slippery)

 $\land (Slippery \Rightarrow \neg Dry)$

 \land (RedLight \Rightarrow Brake) \land (Winter \Rightarrow Snow)

Observation from sensors:

YellowLight ∧ ¬RedLight ∧ ¬Snow ∧ Dry ∧ Policecar ∧ ¬PersonInFrontOfCar

What can we infer?

- And-elimination: Policecar
- Modus Ponens: Policeman
- And-elimination: Dry
- Modus Tollens: ¬Slippery
- And-elimination: YellowLight ∧ Policeman ∧ ¬Slippery
- Modus Ponens: Brake
- And-elimination: ¬Snow
- Modus Tollens: ¬Winter

Inference Strategy: Forward Chaining

Idea:

- Infer everything (?) that can be inferred.
- Notation: In implication $\alpha \Rightarrow \beta$, α (or its compontents) are called premises, β is called consequent/conclusion.

Forward Chaining:

Given a fact p to be added to the KB,

- 1. Find all implications I that have p as a premise
- 2. For each i in I, if the other premises in i are already known to hold
 - a) Add the consequent in i to the KB

Continue until no more facts can be inferred.