Reinforcement Learning

CS472/CS473 - Fall 2005

Reinforcement Learning

• Supervised Learning:

- Training examples: (x,y)
- Direct feedback y for each input x

· Reinforcement Learning

- Sequence of decisions with eventual feedback
- No teacher that critiques individual actions
- Learn to act and to assign blame/credit to individual actions
- Examples
 - · when playing a game, only after many actions final result: win,
 - · Robot fetching bagels from bakery
 - · Navigating the Web for collecting all CS pages
 - · Control problems (reactor control)

Reinforcement Learning

Issues

- Agent knows the full environment a priori vs. unknown environment
- Agent can be passive (watch) or active (explore)
- Feedback (i.e. rewards) in terminal states only; or a bit of feedback in any state
- How to measure and estimate the utility of each action
- Environment fully observable, or partially observable
- Have model of environment and effects of action...or not

→ Reinforcement Learning will adress these issues!

Markov Decision Process

• Representation of Environment:

- finite set of states S
- set of actions A for each state $s \in S$

Process

- At each discrete time step, the agent
 - observes state $\boldsymbol{s}_t \in \boldsymbol{S}$ and then
 - chooses action $a_t \in A$.
- After that, the environment
 - · gives agent an immediate reward r,
 - changes state to s_{t+1} (can be probabilistic)

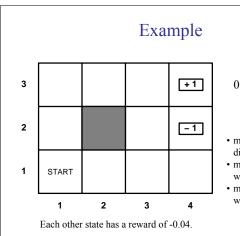
Markov Decision Process

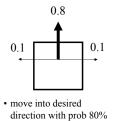
· Model:

- Initial state: S₀
- Transition function: T(s,a,s')
 - \rightarrow T(s,a,s') is the probability of moving from state s to s' when executing action a.
- Reward function: R(s)
- → Real valued reward that the agent receives for entering state s.

Assumptions

- Markov property: T(s,a,s') and R(s) only depend on current state s, but not on any states visited earlier.
- Extension: Function R may be non-deterministic as well





- move 90 degrees to left with prob 10%
- move 90 degrees to right with prob 10%

Policy

+1

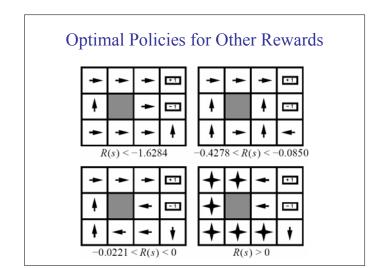
- 1

• Definition:

- A policy π describes which action an agent selects in each state
- $-a=\pi(s)$

Utility

- For now:
- $U([s_0,...,s_N]) = \Sigma_i R(s_i)$
- Let $P([s_0,...,s_N] \mid \pi, s_0)$ be the probability of state sequence $[s_0,...,s_N]$ when following policy π from state s_0
- Expected utility: $U^{\pi}(s) = \Sigma U([s_0,...,s_N]) P([s_0,...,s_N] \mid \pi, s_0)$ \rightarrow measure of quality of policy π
- Optimal policy π^* : Policy with maximal $U^{\pi}(s)$ in each state s



Utility (revisited)

· Problem:

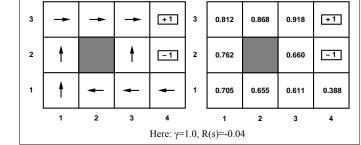
- What happens to utility value when
 - · either the state space has no terminal states
 - · or the policy never directs the agent to a terminal state
 - → Utility becomes infinite

Solution

- Discount factor $0 < \gamma < 1$
 - → closer rewards count more than awards far in the future
- $U([s_0,...,s_N]) = \Sigma_i \gamma^i R(s_i)$
 - → finite utility even for infinite state sequences

How to Compute the Utility for a given Policy?

- Definition: $U^{\pi}(s) = \sum [\sum_{i} \gamma^{i} R(s_{i})] P([s_{0}, s_{1},...] | \pi, s_{0}=s)$
- **Recursive computation:**
 - $U^{\pi}(s) = R(s) + \gamma \Sigma_{s'} T(s, \pi(s), s') U^{\pi}(s')$



Bellman Update (for fixed π)

Goal: Solve set of n=|S| equations (one for each state)

$$\begin{split} U^{\pi}(s_0) &= R(s_0) + \gamma \; \Sigma_{s^{*}} \; T(s_0, \, \pi(s), \, s^{*}) \; U^{\pi}\!(s^{*}) \\ &\cdots \\ U^{\pi}(s_n) &= R(s_n) + \gamma \; \Sigma_{s^{*}} \; T(s_n, \, \pi(s), \, s^{*}) \; U^{\pi}\!(s^{*}) \end{split}$$

Algorithm [Policy Evaluation]:

- i=0; $U_0^{\pi}(s)=0$ for all s
- repeat
 - i = i + 1
 - · for each state s in S do

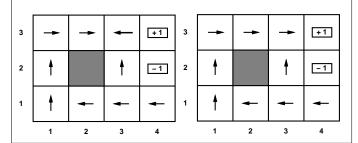
$$- \ U^{\pi}_{\ i}(s) = R(s) + \gamma \ \Sigma_{s'} \ T(s, \pi(s), \, s') \ U^{\pi}_{\ i\text{-}1}(s')$$

- until difference between U_{i}^{π} and U_{i-1}^{π} small enough
- return U^π;

How to Find the Optimal Policy π^* ?

Is policy π optimal? How can we tell?

- If π is not optimal, then there exists some state where $\pi(s) \neq \operatorname{argmax}_{a} \Sigma_{s'} T(s, a, s') U^{\pi}(s')$
- How to find the optimal policy π^* ?



How to Find the Optimal Policy π^* ?

Algorithm [Policy Iteration]:

- repeat
 - $U^{\pi} = PolicyEvaluation(\pi, S, T, R)$
 - · for each state s in S do
 - $$\begin{split} \ & \text{If} \ [\ \text{max}_{a} \ \Sigma_{s'} \ T(s, a, s') \ U^{\pi}(s') \ > \ \Sigma_{s'} \ T(s, \pi(s), s') \ U^{\pi}(s') \] \ \text{then} \\ & \ \ \, > \ \pi(s) = \text{argmax}_{a} \ \Sigma_{s'} \ T(s, a, s') \ U^{\pi}(s') \end{split}$$
 - endfor
- until π does not change any more
- return π

Utility ⇔ Policy

Equivalence:

 If we know the optimal utility U(s) of each state, we can derive the optimal policy:

$$\pi^*(s) = \operatorname{argmax}_a \Sigma_s$$
, $T(s, a, s') U(s')$

 If we know the optimal policy π*, we can compute the optimal utility of each state:

PolicyEvaluation algorithm

Bellman Equation:

$$U(s) = R(s) + \gamma \max_{a} \Sigma_{s'} T(s, a, s') U(s')$$

→ Necessary and sufficient condition for optimal U(s).

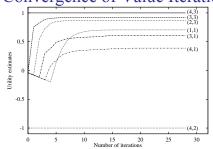
Value Iteration Algorithm

- Algorithm [Value Iteration]:
 - $i=0; U_0(s)=0 \text{ for all } s$
 - repeat
 - i = i + 1
 - for each state s in S do

$$- U_i(s) = R(s) + \gamma \max_a \Sigma_{s'} T(s, a, s') U_{i-1}(s')$$

- endfor
- until difference between U_i and U_{i-1} small enough
- return U_i
- \rightarrow derive optimal policy via $\pi^*(s) = \operatorname{argmax}_a \Sigma_{s'} T(s, a, s') U(s')$

Convergence of Value Iteration



- Value iteration is guaranteed to converge to optimal U for $0 \le \gamma < 1$
- Faster convergence for smaller γ

Reinforcement Learning

Assumptions we made so far:

- Known state space S
- Known transition model T(s, a, s')
- Known reward function R(s)
- →not realistic for many real agents

Reinforcement Learning:

- Learn optimal policy with a priori unknown environment
- Assume fully observable environment (i.e. agent can tell it's state)
- Agent needs to explore environment (i.e. experimentation)

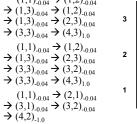
Passive Reinforcement Learning

Task: Given a policy π , what is the utility function U^{π} ?

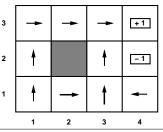
– Similar to Policy Evaluation, but unknown T(s, a, s') and R(s)

Approach: Agent experiments in the environment

- Trials: execute policy from start state until in terminal state.



 $(1,1)_{-0.04} \rightarrow (1,2)_{-0.04}$



Direct Utility Estimation

- · Data: Trials of the form
 - $-(1,1)_{-0.04} \rightarrow (1,2)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow (1,2)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow$ $(2,3)_{-0.04} \rightarrow (3,3)_{-0.04} \rightarrow (4,3)_{1.0}$
 - $(1,1)_{-0.04} \rightarrow (1,2)_{-0.04} \rightarrow (1,3)_{-0.04} \rightarrow (2,3)_{-0.04} \rightarrow (3,3)_{-0.04} \rightarrow$ $(3,2)_{-0.04} \rightarrow (3,3)_{-0.04} \rightarrow (4,3)_{1.0}$
 - $(1,1)_{-0.04} \rightarrow (2,1)_{-0.04} \rightarrow (3,1)_{-0.04} \rightarrow (3,2)_{-0.04} \rightarrow (4,2)_{-1.0}$
- · Idea:
 - Average reward over all trials for each state independently
 - → Supervised Learning Problem
- · Why is this less efficient than necessary?
 - → Ignores dependencies between states $U^{\pi}(s) = R(s) + \gamma \Sigma_{s'} T(s, \pi(s), s') U^{\pi}(s')$

Adaptive Dynamic Programming (ADP)

- Idea:
 - Run trials to learn model of environment (i.e. T and R)
 - Memorize R(s) for all visited states
 - · Estimate fraction of times action a from state s leads to s'
 - Use PolicyEvaluation Algorithm on estimated model
- - Can be quite costly for large state spaces
 - For example, Backgammon has 10⁵⁰ states
 - → Learn and store all transition probabilities and
 - → PolicyEvaluation needs to solve linear program with 10^{50} equations and variables.

Temporal Difference (TD) Learning

· Idea:

- Do not learn explicit model of environment!
- Use update rule that implicitly reflects transition probabilities.

· Method:

- Init $U^{\pi}(s)$ with R(s) when first visited
- After each transition, update with $U^{\pi}(s) = U^{\pi}(s) + \alpha [R(s) + \gamma U^{\pi}(s') - U^{\pi}(s)]$
- $-\alpha$ is learning rate. α should decrease slowly over time, so that estimates stabilize eventually.

· Properties:

- No need to store model
- Only one update for each action (not full PolicyEvaluation)

- $-(1,1)_{-0.04}$ $(1,2)_{-0.04}$ $(1,3)_{-0.04}$ $(1,2)_{-0.04} \rightarrow$ $(1,3)_{-0.04} \rightarrow$
- $(2,3)_{-0.04} \rightarrow$ $(3,3)_{-0.04} \rightarrow$
- $(4,3)_{1.0}$ $-(1,1)_{-0.04}$ $(1,2)_{-0.04}$
 - $(1,3)_{-0.04} \rightarrow$ (2,3)_{-0.04} →
 - $(3,3)_{-0.04} \rightarrow$ $(3,2)_{-0.04} \rightarrow$ $(3,3)_{-0.04} \rightarrow$
 - $(4,3)_{1.0}$

Active Reinforcement Learning

- · Task: In an a priori unknown environment, find the optimal policy.
 - unknown T(s, a, s') and R(s)
 - Agent must experiment with the environment.
- Naïve Approach: "Naïve Active PolicyIteration"
 - Start with some random policy
 - Follow policy to learn model of environment and use ADP to estimate utilities.
 - Update policy using $\pi(s)$ ← argmax_a $\Sigma_{s'}$ T(s, a, s') U $\pi(s')$
- · Problem:
 - Can converge to sub-optimal policy!
 - By following policy, agent might never learn T and R everywhere.
 - → Need for exploration!

Exploration vs. Exploitation

• Exploration:

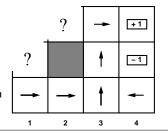
- Take actions that explore the environment
- Hope: possibly find areas in the state space of higher reward
- Problem: possibly take suboptimal steps

Exploitation:

- Follow current policy
- Guaranteed to get certain expected reward

Approach:

- Sometimes take random
- Bonus reward for states that have not been visited often yet



Q-Learning

Problem: Agent needs model of environment to select action via

 $\operatorname{argmax}_{a} \Sigma_{s'} T(s, a, s') U^{\pi}(s')$

Solution: Learn action utility function O(a,s), not state utility function U(s). Define Q(a,s) as

 $U(s) = max_a Q(a,s)$

 \rightarrow Bellman equation with Q(a,s) instead of U(s)

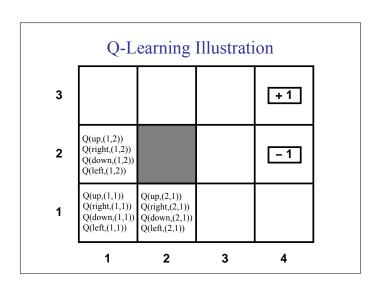
 $Q(a,s) = R(s) + \gamma \Sigma_{s'} T(s, a, s') \max_{a'} Q(a',s')$

 \rightarrow TD-Update with Q(a,s) instead of U(s)

 $Q(a,s) \leftarrow Q(a,s) + \alpha [R(s) + \gamma \max_{a} Q(a',s') - Q(a,s)]$

Result: With Q-function, agent can select action without model of environment

argmax_a Q(a,s)



Function Approximation

• Problem:

- Storing Q or U,T,R for each state in a table is too expensive, if number of states is large
- Does not exploit "similarity" of states (i.e. agent has to learn separate behavior for each state, even if states are similar)

- Approximate function using parametric representation
- For example: $U(s) = \vec{w} \cdot \Phi(s)$
 - $\Phi(s)$ is feature vector describing the state
 - "Material values" of board
 - Is the queen threatened?

- ...